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This paper compares several well-known methods for denoising orientation data
with methods adapted from mathematical image analysis. The latter ones turn out
to be much more powerful in terms of preserving low angle grain boundaries and
filling holes of non-indexed orientations. We also discuss the effect of denoising to
the determination of the kernel average misorientation and the geometrically nec-
essary dislocation density. Synthetic as well as experimental data are considered
for this comparison. The examples demonstrate that variational denoising tech-
niques are capable of significantly improving the accuracy of properties derived
from EBSD maps.

1 Introduction

Individual crystal orientations are commonly obtained from light microscopy, electron back
scatter diffraction (EBSD) by indexing of Kikuchi patterns [25], from automated crystal
orientation mapping inside the transmission electron microscope (ACOM-TEM) by indexing
spot diffraction patterns [19], or from X-ray diffraction (XRD) [18]. As with any other
experimental data these crystal orientations are usually corrupted by errors. In case the error
is not systematic but random it is called noise.1

In this paper we aim at recovering the “true” orientation map from a noisy EBSD or
ACOM-TEM orientation map. The key requirement to be able to separate noise from true
orientations is the assumption that the noise is spatially independent. This means that the
error in one pixel is not correlated to the error in a nearby pixel. In particular, we assume that
the orientation map is measured on a sufficiently fine grid such that the true orientations are
spatially independent. Directly speaking, our algorithms will not be able to recover one-pixel
features but will consider those as noise.

1In this context, noisy orientation data will be considered “raw data” irrespective of any (automated) data
processing related to the aforementioned measurement procedures.
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Denoising of EBSD data has already been addressed in several papers [7, 9, 10, 14]. In the
current paper we compare well-established methods like the mean filter, the Kuwahara filter
[9, 14] and the median filter [10] with variational denoising techniques [1, 4, 6, 21, 23] adapted
from mathematical image analysis to the setting of orientation data.

The central idea of variational denoising methods is to determine the true orientations as
a solution of a minimization problem that couples the fit of the recovered orientations to the
noisy orientations with a measure for the smoothness of the orientation map. This measure
of smoothness models our expectations about the orientation map and should favor smooth
changes of the crystal orientation disrupted by a few grain and subgrain boundaries.

The paper is divided into two parts: In the first part, we discuss the basic properties of
the aforementioned denoising techniques and illustrate them at a synthetic as well as at an
experimental EBSD orientation map. In the second part, we discuss the impact of these
denoising techniques to various applications, i.e., the determination of the kernel average mis-
orientation, the orientation gradient and the geometrically necessary dislocation density. All
these examples demonstrate that variational denoising techniques are capable of significantly
improving the accuracy of properties derived from EBSD maps.

All figures and numerical experiments have been done using MTEX 5.1.1 [13] and the script
files publicly available at https://github.com/mtex-toolbox/mtex-paper/tree/master/

DenoisingCrystalOrientationMaps.

1.1 Crystal Orientations and Misorientations

Throughout this paper orientations are denoted by bold capital letters, e.g. O, and refer
to proper rotations that map coordinates with respect to a crystal fixed Euclidean reference
frame to coordinates with respect to a specimen fixed Euclidean reference frame. Accordingly,
OS with S ∈ S denotes the class of all orientations symmetrically equivalent toO with respect
to the symmetry group S.

Given two orientations O1,O2 its misorientation is defined by O−11 O2. The corresponding
class of symmetrically equivalent misorientations becomes S−11 O

−1
1 O2S2 with S1,S2 ∈ S.

The misorientation M = S−11 O
−1
1 O2S2 with the smallest rotational angle is called disori-

entation. Accordingly, the rotational angle δ and the rotational axis ηC of M are called
disorientation angle and disorientation axis. It is important to understand, that according
to this definition the disorientation axis ηC is with respect to the crystal reference frame
and hence only well-defined up to multiplications with crystal symmetries S ∈ S. However,
when translated into specimen coordinates the disorientation axis η = O1S1ηC = O2S2ηC
is uniquely defined.

Multiplying the disorientation angle δ with the disorientation axis η we obtain the so-called
disorientation vector

θ = δη. (1.1)

This disorientation vector will play an important role throughout this paper as it allows to
represent elements of the curved orientation space locally by ordinary three dimensional vec-
tors. The point is that while many standard mathematical operations, like taking the mean,
fail in the curved orientation space, they are well-defined in the three dimensional vector space
of disorientation vectors. In our applications we often use the grain mean orientation as the
reference orientation O2, which guaranties that orientation O1 and the reference orientation
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(a) Synthetic orientation data
with misorientation angle 18◦ at
the grain boundary,

(b) after adding De la Vallée
Possin noise with half-width 2◦,

(c) after adding 5 percent impul-
sive noise too.

Figure 2.1: Artificial orientation maps colorized by the misorientation angle.

O2 are sufficiently close together to allow for a good approximation.2

2 Comparison of Denoising Methods

2.1 An artificial Orientation Map

In this section we construct a very simple synthetic orientation map which we will use to
benchmark different denoising methods in the subsequent sections. The synthetic orientation
map consists of 100 × 25 pixels, cf. Fig. 2.1(a). While the left half of the map is perfectly
identically oriented (Euler angles (0◦, 0◦, 0◦)), the right half has a constant texture gradient
of −0.36 degree per pixel. This results in a 18 degree grain boundary separating both halves.
In order to simulate a measured orientation map we add different kinds of noise.

When dealing with noisy scalar data f̃(x) at locations x = (x1, x2) ∈ R2 one usually
assumes a noise model of the form

f̃(x) = f(x) + ε(x), (2.1)

where f(x) are the noise free data and ε(x) is the noise, e.g., an independent random sample
of a Gaussian distribution. For orientation data O(x) we have to replace the summation in
(2.1) by the multiplication with some random orientations E(x), i.e.,

Õ(x) = E(x)O(x).

We assume the orientations E(x) to be an independent random sample of a probability dis-
tribution E on the space of rotations. Important examples of such distributions follow now.

Bingham- and De la Vallée Poussin-distributed Noise. A generalization of the Gaussian
distribution to orientations is the Bingham distribution [2]. Representing the misorientations
E(x) by unit quaternions q = (q0, q1, q2, qe)

T the corresponding density function is given by

f(q) = C exp(qTAq) (2.2)

2Approximating an orientation by its disorientation vector with respect to some reference orientation can be
seen as projecting the orientation into the tangential space of the reference orientation. This mapping is
often referred to as (matrix) logarithm and the inverse mapping as (matrix) exponential, cf. [16].
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with a symmetric 4 × 4 matrix A and a normalization constant C such that the integral
over f is one. Assuming that the eigenvector corresponding to the largest eigenvalue of A is
the orientation (0, 0, 0) and that all other eigenvalues are equal, we obtain anisotropic noise
without drift. The variance depends on the fraction between the largest and the smallest
eigenvalue.

A suitable approximation for the anisotropic Bingham distribution is given by the following
De la Vallée Poussin (DlVP) distribution [20]:

f(q) =
B
(
3
2 ,

1
2

)
B
(
3
2 , κ+ 1

2

) q2κ1 , (2.3)

where B denotes the Beta function, q1 is the real part of the quaternion q and κ models
the variance. Using the DlVP distribution (2.3), the numerically challenging computation of
the normalization constant of distribution (2.2) can be omitted. Figure 2.1(b) displays the
artificial orientation map corrupted by DlVP-distributed noise with half-width of two degree.

Impulsive Noise. While the generalization of Gaussian noise discussed in the previous para-
graph models small deviations from the true orientation due to indexing errors, the noise
model in this paragraph models the case that the indexing process results in a completely
wrong orientation that is entirely independent of the true orientation. Such noise is called
impulsive noise. The corresponding distribution involves a parameter α ∈ [0, 1]. Then, with
a chance of α the original orientation is replaced by a random orientation and with a chance
of 1 − α the original orientation is left unchanged. Our artificial orientation map corrupted
by Gaussian-like noise and impulsive noise with α = 0.05 is depicted in Figure 2.1(c).

2.2 Definition of a Filter

Denoising a noisy orientation map Õ(x) = E(x)O(x) means finding an orientation map Ô
that is as close as possible to the “true” orientation map O. We will call any algorithm that
computes out of a noisy orientation map Õ a denoised map Ô a filter F and write

Ô = FÕ.

Accordingly, FÕ(x) denotes the orientation at pixel position x in the denoised map.

2.3 The Mean Filter

Let x be a certain pixel position within an EBSD map and r ∈ N. Then we denote by Nr(x)
the set of all neighboring pixels up to order r and by #Nr(x) the number of these neighbors.
Now, the so-called mean filter is defined as

FmeanÕ(x) =
1

#Nr(x)

∑
x′∈Nr(x)

Õ(x′) (2.4)

which replaces the noisy orientation Õ(x) at position x = (x1, x2) with the mean of all
orientations Õ(x′) in the neighborhood Nr(x) of x.

It is important to note that equation (2.4) is formally not correct. The point is that due
to the curved non-Euclidean geometry of the orientation space the sum of orientations is
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Figure 2.2: Artificial orientation maps corrupted by DlVP noise (all) and impulsive noise
(right) after denoising with the mean filter involving first order neighbors (left
and right) and third order neighbors (middle).

in general not an orientation anymore. A better option to compute the mean orientation
is the largest Eigenvector of the mean orientation tensor as described in [2] or using the
disorientation vectors defined in (1.1). However, in order to keep notation simple in the present
section we will stick to the notation in (2.4), keeping in mind that its actual computation is
a bit more involved.

We can even generalize the mean filter by introducing a weighting function w : R+ → R+

which models the impact of an orientation to the mean orientation in dependency of its
distance between the points x and x′, i.e.,

FmeanÕ(x) =

∑
x′∈N (x)

w(‖x− x′‖) Õ(x′)∑
x′∈N (x)

w(‖x− x′‖)
. (2.5)

Setting the weighting function ω(d) = 1, the filter is independent of the distance d = ‖x− x′‖
to the neighboring pixel at x′ and we end up with formula (2.4). Setting ω to

ω(d) = e−d
2/σ2

the corresponding mean filter can be interpreted as the convolution of the noisy image with
a Gaussian. The weighting function ω could also be chosen to be dependent on some quality
measure of the orientation measurement at position x′ or the misorientation angle between
the Õ(x) and Õ(x′).

The basic motivation for the mean filter is the central limit theorem. As a consequence,
the mean filter behaves particularly well if the orientation data are corrupted by Bingham
noise. Figure 2.2 shows the application of the mean filter to synthetic orientation data which
consist of a uniform part, a grain boundary and a linear gradient, all corrupted by Bingham-
distributed noise. We observe that the data are smoothed and the noise is reduced and that
this effect increases if the second or third order neighbors are used for averaging too. On
the downside, increasing the number of neighbors increases also the blurring to the grain
boundary.

While the mean filter behaves well for Gaussian type noise, it cannot handle impulsive
noise. This is illustrated in the right subfigure of Fig. 2.2. The reason is that the mean filter
averages equally over all orientations and is not able to identify outliers.
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Figure 2.3: Artificial orientation maps corrupted by DlVP noise (all) and impulsive noise
(right) after denoising with the median filter involving first order neighbors (left)
and third order neighbors (middle and right).

2.4 The Median Filter

Let again denote N (x) the set of neighboring measurement positions to x and let δ(O, Õ)
denote the disorientation angle between two orientations O and Õ. Then according to [11] the
median filter FmedianÕ(x) on some noisy orientation map Õ(x) is defined as the orientation
Õ(x′) with x′ ∈ N r(x) such that it possesses the minimum mean distance to all other
orientations Õ(x̄), x̄ ∈ Nr(x) in the neighborhood, i.e., x′ ∈ N (x) is chosen such that for
any other choice x′′ ∈ N (x) it is satisfied∑

x̄∈N (x)

δ(Õ(x′), Õ(x̄)) ≤
∑

x̄∈N (x)

δ(Õ(x′′), Õ(x̄)). (2.6)

Note that the median filter may be extended to be applicable to multiple phases. In this
case we set δ(O, Õ) to some large value whenever the orientations O and Õ belong to different
phases. Furthermore, the reliability of orientation measurements can be incorporated into the
filter using a weight function ω(x) similarly as for the mean filter. Let us assume that 1/ω(x)
models the reliability of the orientation measurement Õ(x), i.e. by being the band contrast,
the mean angular deviation (MAD), a confidence index or some cross-correlation score. Then,
condition (2.6) can be generalized to

∑
x̄∈N (x)

ω(x) δ(Õ(x′), Õ(x̄))

ω(x′) + ω(x̄)
≤

∑
x̄∈N (x)

ω(x′′) δ(Õ(x′′), Õ(x̄))

ω(x′′) + ω(x̄)

which prefers measurements with smaller expected error to those with higher expected error.
By construction, the median filter does not introduce new orientations but the orientations

of the filtered map are a subset of the noisy orientations. As a consequence, the median
filter works very well in removing outliers, e.g., for impulsive noise, cf. Fig. 2.3 (right), and
does not blur subgrain boundaries. On the downside, it leads to blocky images which tend
to underestimate the true local texture gradient and KAM. These effects are illustrated by
Figure 2.3 (left). Another type of median filter that works in a comparable manner was
reported in [15].

2.5 The Kuwahara Filter

A second denoising method that is build in tool of many EBSD pattern processing software
is the Kuwahara filter. Similarly to the mean and the median filter, the Kuwahara filter is
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Figure 2.4: Artificial orientation maps corrupted by DlVP noise (all) and impulsive noise
(right) after denoising with the Kuwahara filter involving first neighbors (left)
and third neighbors (middle and right).

a sliding window filter that determines the new orientation FKuwaharaÕ(x) from the noisy
orientations Õ(x′) within a certain neighborhood N (x) around the original pixel x. The
idea of the Kuwahara filter is to split this neighborhood N (x) into smaller regions Ni(x),
i = 0, . . . , 3 which are usually taken as the four quadrants if the original region is assumed to
be centered at the origin. Next, for each subregion Ni(x) the mean orientation mi(x) and
the standard deviation σi(x) of the misorientation angle to mi(x) are computed. Finally, the
filtered orientation FKuwaharaÕ(x) is chosen to be the mean orientation mi(x) corresponding
to the smallest standard deviation.

Due to the selection of a subregion before taking the mean, the Kuwahara filter shows a
good performance at grain boundaries but tends to generate blocky structures in the presence
of Gaussian noise, cf. Fig. 2.4. For impulsive noise it behaves quite well if the outliers are not
to dense such that there is always a subregion without outlier. However, in order to make the
Kuwahara filter effective for Gaussian noise the sliding window has to be chosen about twice
as big as for the mean filter, which makes it likely to have an outlier in each subregion. As
soon as this happens the outliers generate blocky artifacts in the filtered image, cf. Fig. 2.4
(right).

2.6 Variational Filters

The variational approach to image denoising consists of approximating noisy data Õ(x) by
orientations Ô = FvarÕ(x) that minimize a certain energy functional

J(Ô) =
∑
x

δ(Õ(x), Ô(x))2 + αϕ(Ô),

where the first summand is the data fidelity term, which ensures that the approximating
values Ô(x) are not to far from the measured values O(x) and the second summand ϕ(Ĝ),
called penalty term, ensures that the approximating image Ô is more smooth than Õ. The
regularization parameter α allows to adjust the solution between being very close to the
original data and being very smooth.

Smoothing Splines. The simplest form of a variational filter uses the square Euclidean norm
of the Laplacian as the penalty term, i.e.

J(Ô) =
∑
x

δ(Õ(x), Ô(x))2 + α
∣∣∣4Ô(x)

∣∣∣2 . (2.7)
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Figure 2.5: Artificial orientation maps corrupted by DlVP noise (all) and impulsive noise
(right) after denoising with smoothing splines with α = 0.2 (left), α = 5 (middle
and right).

Solutions of the corresponding minimization problem are known as smoothing splines. How-
ever, the generalization of the Laplacian 4O(x) to orientation valued functions O(x) is not
straight forward. Possible definitions have been discussed in [5]. In this work we first ap-
proximate the orientation map Õ locally by a disorientation vector map θ̃(x), cf. (1.1), with
respect to some reference orientation. Since, the disorientation vector map θ̃(x) takes values
in R3 we can then use the Euclidean Laplacian and apply standard algorithms, e.g. [8] to
compute the minimizer θ̂ of the translated problem

J(θ̂) =
∑
x

δ(θ̃(x), θ̂(x))2 + α
∣∣∣4θ̂(x)

∣∣∣2 → min .

Finally, we translate the disorientation vector map θ̂(x) back into an orientation map Ô(x).
The approximation of orientations by disorientation vectors with respect some reference orien-
tation is fairly good as long as the orientations are close to the reference orientation. Hence,
it is appropriate to apply the approximation for each grain separately and choose as the
reference orientation the mean orientation of the grain.

In its standard form, smoothing splines behave poorly with respect to impulsive noise.
To overcome this restriction the algorithm described in [8] includes an adaptive reweighing
scheme that puts a lower weight to function values identified as outliers. Fig. 2.1(c) shows that
the adaption to orientation data behaves well with respect to impulsive noise. The smoothing
spline algorithm described in [8] also possesses two more features interesting for denoising
EBSD data. Firstly, it implements a cross correlation based approach to automatically detect
the regularization parameter α. As the automatic detection of this parameter requires several
runs of the minimization problem it is recommended to detect the optimal regularization
parameter for the largest grain only and use this value for all other grains. Secondly, it allows
for weights ω(x) that can be used to describe the reliability of orientation data at position x,
cf. Subsec. 2.4. Fitting to orientations with low weight is then considered less important in
the approximation process then fitting orientations with a high weight.

The results for our synthetic example are shown in Figure 2.5. We observe that the smooth-
ing splines filter has a similar outcome as the mean filter. In particular it shows good results
in the uniform and in the linear part but blurs the grain boundary.

Total Variation. The blurring effect of the smoothing splines is mostly due to the use of
the square in the penalty term in (2.7). If we replace the Laplacian with the norm of the
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Figure 2.6: Artificial orientation maps corrupted by DlVP noise (all) and impulsive noise
(right) after denoising by total variation with α = 0.025 (left), α = 0.5 (middle
and right).

gradient and remove the square we end up with the well-known isotropic total variation (TV)
functional

J(Ô) =
∑
x

δ(Ô(x), Õ(x))2 + α ‖∇Ô(x)‖2 . (2.8)

The mathematical challenge in solving the corresponding minimization problem is related
to the fact that the penalty term is not differentiable. There is a huge amount of literature
describing algorithms that approximately solve (2.8) in the Euclidean setting. Among others,
the following algorithms have been generalized to orientation values: an algorithm based on
half-quadratic minimization [4] and an algorithm based on proximal mappings [23].

The idea of half-quadratic minimization is to approximate the square root of squares in the
TV term by a differentiable functional. Furthermore, we may include a cut-off at a certain
threshold angle d such that misorientations larger then the threshold, e.g. at (sub) grain
boundaries, are not penalized. An example for such a function is

ϕ(δ) =

{√
δ2 + ε ω < d,

0 δ ≥ d,

which for ε→ 0 converges to the TV penalty term.

Applying the total variation filter to our synthetic EBSD map we observe in Fig. 2.6 almost
as sharp grain boundaries as the median filter produces and almost as smooth uniform and
linear parts as by the mean filter. The only artifact we observe is that the linear portion
does not decay at the left hand boundary to the uniform level. On the downside, the total
variation filter is not able to distinguish between grain boundaries that exceed the threshold
δ and impulsive noise as illustrated in Fig. 2.6 (right).

Infimal Convolution. The drawback of TV regularization is that it priors piecewise constant
functions, i.e., the results are prone to staircasing. An idea to overcome this issue is to
decompose the image O(x) = U(x)V (x) into the product of a piecewise constant part U(x)
which is penalized with the TV term and a smooth part V (x) that is penalized by a higher
order differential operator, i.e. the Laplacian. In this setting the functional

J(Û , V̂ ) =
∑
x

δ(Õ(x), Û(x)V̂ (x))2 + α ‖∇Û(x)‖2 + β
∣∣∣4V̂ (x)

∣∣∣ . (2.9)
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Figure 2.7: Artificial orientation maps corrupted by DlVP noise (all) and impulsive noise
(right) after denoising by infimal convolution with α = 0.025 (left), α = 0.5
(middle and right).

to minimize has to arguments Û , V̂ which are punished separately but generate the final
orientation map via Ô = Û V̂ . Again, half-quadratic minimization and proximal mappings
are two suitable methods to find the minimizer of (2.9). The most challenging part in ap-
plying infimal convolution is the choice of the two regularization parameters α and β. It is
recommended to start with a very high value for β and to choose the parameter α such that
the noise is sufficiently reduced. For large β the solution of the infimal convolution functional
is almost the same as for the total variation functional and hence we should expect some
staircasing. Next, we can reduce the parameter β until the staircasing effect is reduced.

2.7 Morphological Filters and Inpainting

As we have seen in the previous sections most of the denoising methods do not work well with
impulsive noise. A possible workaround for this problem is to perform grain reconstruction
on the noisy EBSD map and consider all one pixel grains as impulsive noise. Those pixel
values are first removed and latter filled by the respective denoising method. This methods
is illustrated in Figure 2.8 for the synthetic orientation data given in Fig. 2.1(c).

Infimal convolution is not included into this list as we have not yet implemented inpainting
with this method. We observe that all remaining denoising methods show a good performance
filling one-pixel holes. Especially, the mean filter, the Kuwahara filter and the total variation
method show much better results in comparison to case when the outliers have not been
removed Fig. 2.2(right), 2.4(right) and 2.6(right).

This approach can be generalized by removing all grains with a specific shape, e.g. all
grains that are only one pixel thick but arbitrary long. While for the sliding window filters
the size of the window limits the capability to fill arbitrarily large holes, such a restriction does
not persist for variational denoising techniques. This fact makes them extremely powerful for
denoising purely-indexed EBSD maps, e.g. from highly-deformed materials.

Up to here, only artificial, synthetic orientation data has been considered. As a particularly
challenging example of experimental data we consider now an EBSD map of a real geological
Forsterite sample which is publicly available as a standard data in MTEX [13]. As visible in
Figure 2.9(a) we find a lot of non-indexed pixels in the map. Non the less, the grain structure
is still observable. However, due to the large amount of non-indexed pixels the traditional
grain boundary (GB) reconstruction method completely fails to recover the original grain
structure, cf. Fig. 2.9(b). In such settings it turns out to be extremely useful to reconstruct
the grain structure using the Voronoi decomposition algorithm as described in [3]. This
algorithm places the grain boundaries accurately through the non-indexed regions and gives
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(a) noisy data with one-pixel grains removed (b) mean filter, third order neighbors

(c) median filter, third order neighbors (d) Kuwahara filter, third order neighbors

(e) smoothing splines, α = 5 (f) total variation, α = 0.5

Figure 2.8: Simulated data corrupted by 2 degree DlVP noise and 5 percent impulsive noise
where the impulsive noise is removed as one pixel grains and the holes are filled
by the inpainting method.

(a) raw geological data (b) traditional GB reconstruction (c) advanced GB reconstruction

Figure 2.9: Grain boundaries reconstructed from poorly-indexed geological Forsterite data,
the standard IPF color map from MTEX is used [13].

a GB reconstruction which is much closer to our expectation, cf. Fig. 2.9(c).

In order to make orientation gradients within the grains visible we colorize the orientations
in Figure 2.10 according to their misorientation angle and axis with respect to the grain mean
orientation, cf. [22]. We observe some sharp subgrain boundaries in the upper left grain and
some horizontal and vertical artifacts in the lower left grains, which most likely originate from
the measurement process.

Subsequently, we applied the denoising methods discussed in this paper to this example data
set. Since grain boundaries reconstructed by the Voronoi decomposition based algorithm may
pass through pixels which then can not be assigned to a certain grain anymore, we decided
to leaving all those pixels crossed by a grain boundary unfilled. For the mean, median and
Kuwahara filter we have chosen the size of the sliding window sufficiently large such that most
of the non- indexed pixels got filled. The resulting denoised maps nicely display the main
characteristics of the different denoising methods. The mean filter and the smoothing splines
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(a) raw data (b) mean filter (c) median filter

(d) Kuwahara filter (e) smoothing splines (f) total variation

Figure 2.10: Raw and denoised EBSD data of a geological Forsterite sample colored according
to misorientation angle and axis with respect to the grain mean orientation: The
more the colors are saturated the higher the deviation from the mean orientation.

clearly “smooth away” subgrain boundaries, while median and Kuwahra filter create blocky
artifacts and ignore small features as the small yellow region in the upper left grain. The
total variation reconstruction performs a very convincing work. Subgrain boundaries remain
sharp and regions with many inpaited pixels become very smooth, i.e., the algorithm does not
generate an artificial structure. Moreover, the aforementioned inherent artifacts (horizontal
and vertical lines) remain clearly visible as such and even become visible in formerly poorly
indexed regions, e.g., in the middle grain at the upper boundary.

3 Applications

In this section we discuss the impact of different denoising methods to specific use cases.

3.1 Kernel Average Misorientation Estimation

The kernel average misorientation (KAM) is an isotropic measure for the local texture gradient
and is commonly applied to evaluate the local strain or stored energy. Given an orientation
map O(x) we denote by N ε

r (x) the set of r-th order neighboring measurements x′ to x that
have a misorientation angle δ(O(x),O(x′)) less then a certain threshold ε. Now, the kernel
average misorientation is defined as

KAM(x) =
1

#N ε
r (x)

∑
x′∈N ε

r (x)

δ(O(x),O(x′)).

Taking noisy data Õ(x) = E(x)O(x) into account the kernel average missorientation KAM
can be split into a portion KAMtrue that originates from the true data and a portion KAMnoise
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Figure 3.1: The kernel average misorientation (from third order neighbors) in degree for the
exact synthetic data as defined in Section 2 (left) and for the same data corrupted
by DlVP noise with half-width σ = 1◦ (right).

that originates from the noise

#N ε
r (x) ·KAM(x) =

∑
x′∈N ε

r (x)

δ(E(x)O(x), E(x′)O(x′))

≤
∑

x′∈N ε
r (x)

δ(E(x)O(x), E(x)O(x′)) + δ(E(x)O(x′), E(x′)O(x′))

=
∑

x′∈N r
ε (x)

δ(O(x),O(x′)) + δ(E(x),E(x′)) = KAMtrue(x) + KAMnoise(x).

This means that the kernel average misorientation of some noisy EBSD map is approximately
the kernel average misorientation of the noise-free map plus the mean angular deviation of the
noise. It should be noted that in the presence of an orientation gradient the kernel average
misorientation increases if the order r of neighbors is increased while the noise component
remains constant. This explains why higher order KAM is less sensitive to noise then first
order KAM.

Let us demonstrate these effects with the help of our synthetic example from Section 2. In
the noise free case the KAM is 0 degree in the uniform portion and 0.5 degree in the linear
portion, cf. Fig. 3.1 left. However, if we apply De la Vallée Poussin-distributed noise with
half-width σ = 1◦, then the KAM for the noisy data is about 2 degree everywhere on the
map, cf. Fig. 3.1 right. In particular, there is no distinction between the region with uniform
and linear texture gradient.

In Figure 3.2(a) we have plotted horizontal profiles of the KAM of our synthetic data
corrupted by DlVP noise with the half-width varying from σ = 0.1◦ to σ = 1◦. We observe
that in the presence of noise only a local gradient is observable which is four times as large
as the half-width of the noise distribution.

Next, we apply the total variation filter to the synthetic data corrupted with DlVP noise
with half-width σ = 1◦. We may expect that the KAM reduces if the regularization parameter
α is increased. This effect is illustrated in Fig. 3.2(b) and 3.3. The decrease of the KAM
with increasing α appears quite moderate. For all choices of α between 0.1 and 1 we obtain
a much better approximation of the true KAM then from the noisy data.
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0

1

2

no noise σ = 0.1◦ σ = 0.2◦

σ = 0.5◦ σ = 1◦

(a) no denoising, varying noise level σ

0

1

2

no noise α = 0.01 α = 0.04
α = 0.1 α = 0.4 α = 1

(b) after denoising, noise level σ = 0.1◦

Figure 3.2: Horizontal KAM profiles of the synthetic data corrupted by DlVP noise. In (a)
the noise level σ varies and no denoising is applied. In (b) noise level is σ =
1◦ and KAM is computed from data denoised by total variation using different
regularization parameters α.

(a) α = 0 (b) α = 0.01 (c) α = 0.04

(d) α = 0.1 (e) α = 0.4 (f) α = 1

Figure 3.3: KAM maps computed from data denoised by total variation using different regu-
larization parameters α.

3.2 Gradient and Curvature Tensor Estimation

The orientation gradient or curvature tensor describes the local change of orientation within
a specimen. Let us consider the local orientation O(x) as a smooth function of the spatial
variable x = (x1, x2, x3). Then, the partial derivative with respect to the a-th coordinate is
defined as

∂

∂xa
O(x) = lim

h→0

O(x+ h ea)−O(x)

h
. (3.1)

It is important to understand that the matrix ∂
∂xa
O(x) just like the orientation O(x) mixes

crystal and specimen coordinates. Representing ∂
∂xa
O(x) entirely with respect to the speci-

men reference frame leads to the skew-symmetric matrix

W a(x) =

(
∂

∂xa
O(x)

)
O(x)T, (3.2)

which is related to the lattice misorientation vector θa(x) per unit distance by the equation

θai (x) = 1
2 εijkW

a
jk(x), (3.3)
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where εijk is Levi-Civita’s permutation symbol and we have assumed summation over all in-
dices appearing twice. The vector θa(x) can be interpreted as the misorientation axis between
the orientations O(x+ h ea) and O(x) in specimen coordinates scaled by the misorientation
angle per distance h for the limiting process h→ 0, cf. [16].

Following the latter characterization, the vectors θx1(xm,n) and θx2(xm,n) can be deter-
mined approximately from discrete orientation data O(xm,n) at some two-dimensional regular
grid xm,n (m = 1, 2, . . . ;n = 1, 2, . . . ) by the products

θx1(xm,n) ≈
δ
(
O(xm,n),O(xm+1,n)

)
4x1

· η
(
O(xm,n),O(xm+1,n)

)
,

θx2(xm,n) ≈
δ
(
O(xm,n),O(xm,n+1)

)
4x2

· η
(
O(xm,n),O(xm,n+1)

)
,

where 4x1, 4x2 are the step sizes of the measurement grid, δ(O1,O2) is the misorientation
angle and η(O1,O2) is the misorientation axis between two orientations in specimen coordi-
nates (cf. Sec. 1.1).3 It should be noted that other approximations of θx1(xm,n) are possible,
e.g. symmetric misorientations between O(xm+1,n) and O(xm−1,n).

The lattice misorientation vectors per unit distance given by θx1 , θx2 , θx3 with respect to
the specimen directions x1, x2 and x3 define the lattice curvature

κ(x) =

θx11 (x) θx21 (x) θx31 (x)
θx12 (x) θx22 (x) θx32 (x)
θx13 (x) θx23 (x) θx33 (x)

 . (3.4)

In the case of orientation data measured on a two-dimensional grid θx3 remains unknown.
As an example we consider an EBSD data set of interstitial free (IF) steel as presented in

[12]. The orientations colorized by an inverse pole figure (IPF) map are displayed in Figure
3.4(a). The white pixels correspond to non- indexed orientations. Figure 3.4(b) displays the
same data but colorized according to the misorientation axis and the misorientation angle
with respect to the grain mean orientation as explained in [22]. The latter one clearly shows
that the orientation measurements are effected by some noise. Applying a total variation
based filter for noise removal we end up with the orientation map depicted in the Figures
3.4(c) and 3.4(d).

Although the raw data appears to be acceptable, cf. Fig. 3.4(a), it is still too noisy to
compute meaningful values for the curvature as shown in Figure 3.5(a). The reason is that
taking the orientation gradient significantly amplifies the noise in the data. However, when the
curvature is computed from the denoised data it may allow for interpretation, cf. Fig. 3.5(b).

3.3 Dislocation Density Estimation

The dislocation density tensor characterizes the dislocation state of the crystal lattice. To
be precise, α how big the local closure failure of the crystal is and how much dislocations
are geometrically necessary in order to preserve the compatibility. Under the assumptions of
small plastic deformations and negligible lattice strain gradients the lattice curvature tensor
κ(x) at a position x can be related to the dislocation tensity tensor α(x) by

α = κT − tr(κ)I ⇔ κ = αT − 1
2 tr(α)I (3.5)

3We prefer this definition of a discrete gradient as equ. (3.2) together with a finite difference approximation
of equ. (3.1) does not lead to a skew symmetric matrix.
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(a) IPF-colored raw data (b) axis angle-colored raw data

(c) IPF-colored denoised data (d) axis angle-colored denoised data

Figure 3.4: Orientation map of interstitial free steel [12] before and after denoising.

(a) before denoising (b) after denoising

Figure 3.5: First coefficient κ11 (unit 1/µm) of the lattice curvature tensor of the EBSD data
depicted in Fig. 3.4(a) (left) and in Fig. 3.4(c) (right).
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(a) (b) (c)

Figure 3.6: GND density computed (a) from the raw (Hough based) EBSD map, (b) after
denoising and (c) using high resolution EBSD data [12].

cf. [17]. Given that only the first two columns of the lattice curvature tensor κ are known the
following coefficients of the dislocation density tensor can be computed: α12, α13, α21, α23, α33

as well as the difference α11 − α22.
One approach to determine the missing coefficients in the lattice curvature tensor is to

represent the dislocation density tensor as the weighted sum

α(x) =
K∑
k=1

ρk(x) bk ⊗ lk (3.6)

of screw and edge dislocations at preferred slip systems described by its Burgers vectors bk
and line tangent vectors lk.

4 Using the relationship (3.5) we obtain for the lattice curvature
tensor the representation

κ(x) =
K∑
k=1

ρk(x)

(
lk ⊗ bk −

1

2
tr(bk ⊗ lk) I

)
. (3.7)

However, even in the case of complete knowledge of the lattice curvature tensor κ the decom-
position (3.7) can not be uniquely recovered, given that sufficiently many slip systems are
considered. For this reason one imposes as an additional condition that some measure of the
total energy of dislocations, e.g.

U(x) =

K∑
k=1

ρk(x)uk.

should be minimized at each position x, cf. [17, 24], where uk denote the energy of the k-th
dislocation type (measured per dislocation density).

Applying this approach to the curvatures computed in the previous section we obtain
the GND densities depicted in Figure 3.6. The GND densities computed before denoising
are completely corrupt while the GND densities computed after denoising seem physically
reasonable and, in the first place, interpretable.

In [12] the Kikuchi pattern of the sample discussed above have also been analyzed by
a cross-correlation method. The resulting high resolution EBSD data has then been used

4From the physical point of view, we seek for an equivalent composition of elementary dislocation segments
such that the same dislocation state is obtained.
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to compute the GND densities depicted in Figure 3.6(c). Although the latter ones offers
much more detail they still compare well with the GND densities computed from the Hough
transform-based EBSD data after denoising. We also observe that blank regions in Figure
3.6(c) which correspond to non-indexed orientations correspond to regions of high GND in
3.6(b), which is reasonable as those regions are hard to index.

3.4 Denoising High Resolution EBSD Data

High angular resolution EBSD data originate from improved methods for interpreting Kikuchi
pattern and most commonly from correlation or dictionary based methods. In those methods
the orientation O(x) of a Kikuchi pattern P (x) at position x is determined as the solution
of the maximization problem

C(P (x),M(O(x)))→ max

where M(O(x)) denotes a simulated master pattern rotated in orientation O(x) and C(P,M)
denotes the cross-correlation between a measured pattern P with a master pattern M . Such
methods have been proven to be much more accurate then traditional Hough transform based
indexing methods and, hence, denoising methods have not been considered yet. However, it
happens quite often that the maximization problem leads to multiple peaks and the indexing
algorithm has to decide for one particular maximum. In those cases a combination with the
denoising methods presented in this paper could serve as an additional criteria for choosing
the right orientation and increase the accuracy of the methods.

More precisely, we suggest to combine the cross-correlation term with a regularization term
in the following form

∑
x

C(P (x),M(O(x)))− λ ‖∇O(x)‖2 → max ,

which is essentially the minimization problem (2.8) but with the correlation term replacing
the misorientation to a orientation determined by another indexing method. According to
this approach orientations are chosen such that the simulated pattern have a high correlation
with the measured pattern and simultaneously minimize the total variation functional, i.e.
vary smoothly in spatial domain.

The disadvantage of this approach is that it is computational very expensive. It is subject
to future research to find algorithms that manage to solve this optimization problem in
reasonable time.
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