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Plan of this talk, is there a plan ? 
•  A brief resumé of what I do …sometimes 
•  Single crystal introduction tensor basics – starting with 2nd rank 

tensors 
•  Single crystal elasticity tensor basics – Young’s modulus to 

wave propagation   
•  Effective media : average properties for polycrystalline 

aggregates, Voigt, Reuss and Hill… 
•  Future developments 1;  Self-consistent (SC) and Differential 

Effective Media (DEM), FFT methods 
•  Future developments 2; Importing single crystal tensors from a 

database, advantages and pitfalls 
•  Future developments 3; What are we going to do this 

afternoon ?  



A brief resumé of what I do …sometimes 



What do I do ? 
Atomic Modelling & Experimentation at high P & T 

Seismology 

Geodynamics 

Plasticity 
Modelling 

Crystal 
Preferred 
Orientation 

Slip Systems 
CRSS 

Elastic 
Tensors 

Atomic 
Modelling * 

Experimentation 
EBSD * 

Paterson 
Press * 
0.3 GPa 

Multi-anvil 1400°C 16 GPa 

Sylvie Demouchy P<10-4 GPa 



Shear Wave Splitting 

http://garnero.asu.edu 



Mantle & Core : petrology & seismic anisotropy  

             Panning & Romanowicz 06     Ono & Oganov 05             Perrillat et al. 06            Irifune et al. 94 modif. by Poli & Schmidt 02 

Mainprice (2007) 

Bottom up science : starting at the innercore 



Innercore anisotropy 
from the group of Arwen Deuss in Cambridge  

Lythgoe et al. (2014) 



Early of days innercore experiments and 
ab initio models 

0° = c-axis                    90°=basal plane for ab initio models 



http://mtex-toolbox.github.io/documentation.html 



MTEX Reference papers on physical properties 
 
http://mtex-toolbox.github.io/publications.html 



Single crystal introduction tensor 
basics – starting with 2nd rank 

tensors 



Why are we interested in Single 
Crystals ? 

•  To understand the anisotropic physical properties of poly-
crystalline rocks caused by crystal preferred orientation (CPO) it 
is important to know the about the simplest case, the single 
crystal. 

•  The single orientation (single crystal), has a perfectly defined 
ODF (orientation distribution function), PFs (pole figure) or IPFs 
(inverse pole figure). 

•  To understand the how crystal symmetry, sample symmetry, 
CPO and single crystal properties combined to produce 
anisotropic rock properties … 



Physical properties of crystals
•  Thermal conductivity and diffusivity  ( 2th rank tensor) à can be 

calculated from CPO
•  Thermal expansion ( 2th rank tensor) à can be calculated from CPO
•  Electrical conductivity, electrical polarization and dielectric properties) 

à can be calculated from CPO, BUT may not be relevant if 
conductivity controlled by high conductivity phases in the grain 
boundaries (e.g. water or  carbon)

•  Piezoelectricity ( 3rd rank tensor) à can be calculated from CPO, if we 
can determine the CPO of the Left- and Right-handed crystals…

•  Elasticity ( 4th rank tensor) à seismic (elastic) properties, can be 
calculated from CPO

 



Anisotropic Properties 

Calcite optical properties : 2nd Rank Tensor 



Why are we interested in tensors of 
single Crystals ? 

•  To understand the anisotropic physical properties of poly-
crystalline materials caused by crystal preferred orientation 
(CPO) or Texture it is important to know the about the simplest 
case, the single crystal. 

•  The single orientation (single crystal), has a perfectly defined 
ODF (orientation distribution function), PFs (pole figure) or IPFs 
(inverse pole figure). 

•  To understand the how crystal symmetry, sample symmetry, 
CPO or Texture and single crystal properties combined to 
produce anisotropic rock properties … 



Thermodynamically reversible changes 

For example, the elastic, thermal, electric and magnetic effects on strain (εij), 
to first order can be written as a function of the independent variables 
(stress σkl , electric field Ek, magnetic field Hl and temperature gradient ΔT)  
and their corresponding tensors as 
εij = Sijkl σkl + dkij Ek + qlij Hl + αij ΔT 
where Sijkl are the elastic compliance, dkij piezo-electric, qlij piezo-magnetic 
 and αij thermal expansion tensors. 
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A)  Heckmann (1925) introduced a triangular diagram 
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Tensor rank of physical properties

Physical Property (rank) Driving Force (rank) Response (rank) 
 

Density (0) Mass (0) Volume (0) 
Pyroelectricity (1) Temperature (0) Electric Field (1) 
Electric conductivity (2) Electric Field (1) Electric Current Density (1) 
Electric Permitivity (2) Electric Field (1) Dielectric Displacement (1) 
Dielectric Susceptibility (2) Electric Field (1)  Polarization (1) 
Chemical Diffusivity (2) Potential Gradient –ve (1) Chemical Flux (1) 
Thermal Conductivity (2) Temperature Gradient -ve (1) Heat Flux (1) 
Thermal Expansion (2) Temperature (0)  Strain (2) 
Magnetic Susceptibility (2) Magnetic Field (1) Magnetisation Intensity (1) 
Magnetic Permeability (2) Magnetic Field (1) Magnetic Induction (1) 
Piezolectricity (3) Electric Field (1) Strain (2) 
Elastic Compliance (4) Stress (2) Strain (2) 
Elastic Stiffness (4) Strain (2) Stress (2) 
 



Cartesian Tensors I 
•  We shall only discuss tensors defined in Cartesian orthogonal 

right-handed reference frame. 
•  Cartesian (orthonormal or orthogonal) reference frame 

comprising of 3 unit vectors, with axes that we label X1, X2 and 
X3 e.g. Nye’s book 1957 or x,y,z in MTEX.  

•  The use of an orthogonal reference frame avoids the 
complications of the metric associated with the crystal unit cell 
axes a,b,c  as a reference frame for tensors, in any case almost 
all measurements of single crystal properties use this 
convention. 

•  We will also restrict ourselves to linear physical properties that 
are properties than can be described by linear relation between 
cause and effect, such as stress and strain for linear elasticity, 
where derivatives of the property are restricted to first order of a 
Taylor expansion series. 

•   The definition of tensor requires that it obey the linear 
orthogonal transformation laws for Cartesian tensors describing 
physical properties of a crystal when it is rotated.  

18 



Typical choices for tensor 
reference frames 



Cartesian Tensors II 
•  Note it is a fundamental concept for tensors 

of physical properties that the magnitude 
physical property does not change (i.e. it is 
invariant) with the rotation of the co-ordinate 
frame, which is attached to the crystal.  

•  The crystal may rotate in the sample 
(external) reference frame, but the tensor 
reference frame is related to the crystal 
structure and rotates with the crystal, like a 
rigid body, in other words it is a co-ordinate 
transform.  20 



Table 1. Linear orthogonal transformation laws for Cartesian tensors 

Name Rank  New orientation in terms of old Old orientation in terms of new 

Scalar 0 S’ = S S = S’ 

Vector 1 V’i=RijVj Vi=RjiV’j 

2
nd

 rank Tensor 2 T’ij=RikRjlTkl Tij=RkiRljT’kl 

3
rd

 rank Tensor 3 T’ijk=RilRjmRknTlmn Tijk=RliRmjRnkT’lmn 

4
nd

 rank Tensor 4 T’ijkl=RimRjnRkoRipTmnop Tijkl=RmiRnjRokRpiT’mnop 

 

S = scalar, V=vector, T=tensor. T’ij is the new orientation of the tensor and Tij the old orientation. 

The rotation or transformation matrix Rij used to calculate the tensor in new orientation is 

replaced by its transpose Rji to calculate the old orientation.  

Cartesian tensors have orthogonal reference axes (labelled x, y and z in MTEX) 



Representing single crystal properties 





2nd Rank Tensors - important for geophysics 
•  Typically relates 2 vectors – for example thermal 

conductivity :  applied vector (negative) temperature 
gradient  and resulting vector heat flow density, exception 
thermal expansion relates temperature (0) and strain (2).

     

                                                                            9 components
•  The generic 2nd rank tensor T is the relation between an 

applied vector p and resultant vector q. We can write 
relation between p and q as a tensor equation

               p = T q  or  pi = Tij qj  (i=1,2,3 ; j=1,2,3)
•  In general the vectors p and q are not parallel.

� 

ijT =
11T 12T 13T
21T 22T 23T
31T 32T 33T

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
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Difference between a transformation matrix (Rij) 
and a 2nd rank tensor (Tij)

Rij  is an 3 by 3 matrix relating two (right-handed) reference frames 
[orthogonal matrix Rt.R=R.Rt = I , Rt=R-1 and Det(R)=+1 where 
the rows and columns are orthogonal (orthonormal) unit vectors.] 
(e.g. rotation or orientation matrix) N.B. when Rij is relating right-
handed to left-handed reference frames Det(R)=-1.

Tij is a physical quantity (e.g. 2nd rank tensor) that for a given set of 
reference axes is represented by 9 numbers (a 3 by 3 table). 
 



The representation quadric for 2nd Rank Tensors 

Geometrical representation of symmetrical second-rank tensors as a second-
degree surface (called a quadric). The quadric may be an ellipsoid or a 
hyperboloid. Most common second-rank tensors are symmetric (Tij = Tji) 
and when the 3 principal coefficients are all positive then the property is 
represented by an ellipsoid with axes 1/√T1, 1/√T2 and 1/√T3, which is 
the case for electric polarization, electrical and thermal conductivity and 

optical properties.  

 



The representation hyperboloid for 2nd Rank Tensors
      If one of the principal coefficients is negative then surface is a 

hyperboloid of one sheet (e.g. thermal expansion of plagioclase 
feldspar). If two of the principal coefficients are negative then surface 
is a hyperboloid of two sheets or caps, this the case for the thermal 
expansion of calcite with contraction the basal plane. If all three of the 
principal coefficients are negative then surface is an imaginary 
ellipsoid, this is the case for many susceptibilities of paramagnetic and 
diamagnetic minerals, such as quartz, calcite and aragonite.





The stimulus vector and response vectors for 2nd rank 
tensors 



Fundamental concept for tensors  
•  Physical properties are anisotropic 

when the applied tensor is not aligned 
with resultant tensor 

•  Physical properties are isotropic when 
the applied tensor is aligned with 
resultant tensor for all directions 

•   In specific directions in an anisotropic 
crystal the applied and resultant tensor 
may be aligned giving rise to local 
isotropic or pseudo-isotropic behaviour 



Effect of symmetry on Physical Properties : 
Neumann’s Principle ���

F.E. Neumann’s principle (1885) states that “symmetry elements 
of any physical property of a crystal must include ALL the symmetry 
elements of the point group of the crystal”. This implies that that a 
given physical property may possess a higher symmetry than that 
possessed by the crystal and it cannot be of a lower symmetry than 
that of the crystal. Some physical properties are inherently 
centrosymmetric (all symmetric second order tensors and elasticity) 
which will add a center of symmetry in many minerals  (e.g. quartz) 
and result in a higher symmetry than the possessed by the crystal.

 

Physical property               Crystal 
 higher symmetry         lower symmetry 



Symmetric 2nd rank tensors for all crystal 
symmetries 
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MTEX script 
%************************************************************************** 
% Step 1 : Define the tensor reference frame for Calcite 
%************************************************************************** 
cs_tensor = crystalSymmetry('-3m1',[4.9896, 4.9896, 17.0610],... 
    [90, 90, 120]*degree,'mineral','calcite','x||a','z||c'); 
%************************************************************************** 
% Step 2 : Import 2nd rank tensor as 3 by 3 matrix M 
%************************************************************************** 
% Thermal expansion Tensor for Calcite given by Fei (1995) AGU Bookshelf 
% Series Mineral Physics vol.2 Chapter 6 Thermal expansion 
% in x 10-6 1/K units 
% 
%  a11=-3.20  a12=0.00   a13=0.00 
%  a21=0.00   a22=-3.20  a23=0.00 
%  a33=0.00   a32=0.00   a33=13.3 
% 
% Enter tensor as matrix,M, line by line. 
% 
M = [[ -3.20   0.00   0.00 ]; ... 
    [   0.00  -3.20   0.00 ]; ... 
    [   0.00   0.00  13.30 ]]; 
% Define tenor object with MTEX command tensor 
% for the alpha(ij) thermal expansion with units x10-6 1/K 
% 
alpha_calcite = tensor(M,'name','thermal expansion','unit','x10-6 
1/K',cs_tensor) 
%************************************************************************** 
% Step 3 : Plot thermal expansion tensor  of calcite 
%************************************************************************** 
% Create list of crystallographic directions 
List = [Miller(2,-1,-1,0,cs_tensor,'UVTW'),... 
        Miller(0,1,-1,0,cs_tensor,'UVTW'),... 
        Miller(0,0,0,1,cs_tensor,'UVTW')] 
% plot 2nd rank tensor 
plot(alpha_calcite,'complete') 
colorbar 
% annnotate with crystal directions 
hold on 
plot(List,'labeled') 
hold off 
% save plot as *.pdf file 
saveFigure('Plot_Calcite_Single_Crystal_alpha_tensor.pdf') 



Single crystal thermal expansion – effect of symmetry 
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Optical properties - olivine 

M.M. Raith , P. Raase, J. Reinhardt (2011) 
Guide To Thin Section Microscopy. 
e-book ISBN 978-3-00-033606-5 (PDF) – it is free !  



Olivine – refrective index and 
retardation in MTEX 

Refective index               Retardation (nm): Michel Levy colours 
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Single crystal elasticity tensor basics – 
Young’s modulus to wave propagation   
 



4th Rank Tensors - important for geophysics
•  In any crystalline material there is balance between Coulomb 

attractive forces between oppositely charge ions and Born repulsive 
forces due to the overlap of electron shells. At any given 
thermodynamic state the crystal will tend toward an equilibrium 
structure. 

•  For a change in hydrostatic or non-hydrostatic stress, the crystal 
structure will adjust at the atomic level to the new thermodynamic 
state.

•  The fundamental nature of atomic forces in the determination of elastic 
properties has been illustrated by the emergence of first principles 
atomic modeling to predict single crystal elastic tensors of 
geophysical importance at very high PT conditions of interior of 
planets.



Elastic (small linear) Strains 



Hooke’s Law 
                 σ  = c ε  and  ε = s  σ

                     where  c = stiffness coefficients (dimensions of stress)
                                 s = compliance coefficients (dimensions of 1/stress)
                                σ = stress tensor (second order symmetric tensor)
                                ε = deformation tensor (second order symmetric tensor)

                 or

                      i,j,k,l  can have the values 1,2 or 3
                    so 3 x 3 x 3 x 3 = 34 = 81  coefficients.
         But due to the symmetry of the deformation and stress tensors the 81 

coefficients are not independent. In addition thermodynamic considerations of 
the crystal energy also reduce the number of independent coefficients. In Voigt 
notation we can write the Cijkl tensor as 6 by 6 symmetric tensor Cij with 21 
independent values for a triclinic crystal.

ijσ  = ijklc  klε

ijε  = ijkls  klσ



81 elastic constants 9 x 9 

•  If stress and strain where NOT symmetric 
•  9 values of stress and strain 



Stress and Strain Tensors 

•  Both symmetric for small linear elastic 
strains 

•  6 Independent values ij = ji  
       (not 9 because ij≠ji) 



σij =  Cijkl εkl  
•  Cijkl =(∂σij /∂εkl) and  Sijkl =(∂εij /∂σkl)  
•  Stress tensor σij = σji hence Cijkl = Cjikl 
•  Strain tensor εkl = εlk  hence Cijkl = Cijlk 
•  The elastic constants can be expressed as a 

function of the crystal energy per unit volume 
of crystal (U) as  

   Cijkl =(∂2U /∂εij∂εkl) where the strains ∂εij and 
∂εkl can be inter-changed, hence Cijkl = Cklij  

Life was not meant to be easy in elasticity ! 



21 independant elastic constants 
 6 x 6 symmetric tensor 

•  Stress and strain tensor are symmetric 
•  6 values of stress and strain 
•  The strains ∂εij and ∂εkl are inter-changable  



Young’s modulus & Poisson’s ratio 



Auxetic behaviour – negative Poission’s ratio 
 Poisson’s ratio +ve         Poisson’s ratio –ve                The case of cork ? 

 At low strain the Poisson’s ratio is 
0.2, nearly zero – ideal to pushing 
into the bottle, or even better drawing 
it out !  At high strains, beware the 
Poisson’s ratio can become negative 
-0.01 and the cork is impossible to 
pull out without braking it ! 

 M.A. Fortes , M. Teresa Nogueria (1989) The poisson effect in cork, Materials Science and Engineering: A 122, 227-232. 



The Voigt Notation 1 
          Voigt                                     Tensors
         p,q = 1 to 6                                 i,j,k,l = 1 to 3

      Matrix   (p,q)           1       2      3          4                5              6
      Tensor  (ij or kl)     11     22    33    23 or 32   31 or 13    12 or 21
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Life was not meant to be easy in elasticity ! 



The Voigt Notation 2 
In addition we need to introduce factors of 2 and 4 into the equations
relating compliance in tensor and matrix notations due the factor of 2 due
to shear strain tensor ε -> shear strain matrix ε/2.
Sijkl = Spq              for p=1,2,3 and q = 1,2,3
2Sijkl = Spq            for either p= or q = 4,5,6
4Sijkl = Spq            for either p= and q = 4,5,6
However 
Cijkl = Cpq  
for all i,j,k,l and all p and q (for i,j,k,l = 1,2,3 and p,q = 1 to 6)

Transformation law
p = δij.i +(1-δij)(9-i-j)
q = δkl.k +(1-δkl)(9-k-l)
with the Kronecker delta , δij = 0 when i≠j and δij = 1 when i=j

Life was not meant to be easy in elasticity !  



Crystal symmetry classes and their Elastic tensors 

50 



J.D.Bass (1995) 
C11 

Fo93 

C23 

Orthorhombic Crystals 
Elastic Stiffness Cij (Mg,Fe)2SiO4 

AGU Bookshelf Reference Books (free !) 
http://www.agu.org/reference/minphys.html 
 



Defining a single crystal  elastic tensor in MTEX 

%************************************************ 

% Define elastic stiffness tensor (GPa) 

%************************************************ 

% 

% Reference Elastic constants 

% Kumazawa, M., Anderson, O.L., 1969. Elastic moduli,  

% pressure derivatives, and temperature derivatives of 

% single-crystal olivine and single-crystal forsterite. 

% J. Geophys. Res., 74, 5961-5972. 

% 

% Reference Crystal Structure 

% San Carlos OLIVINE Fo93 room pressure d=3.311 g/cm3 

% 

% Define density (g/cm3) 

 rho= 3.311; 

% 

% Define Cartesian tensor crystal symmetry 

% tensor frame X and Z 

cs_Tensor = symmetry('mmm',[  4.7646 10.2296  5.9942],... 

 [  90.0000  90.0000  90.0000]*degree,'X||a','Z||c',... 

 'mineral','Olivine Fo93'); 

% 

% elastic Cij stiffness tensor (GPa) as matrix M 

 M =...  

 [[  323.70   66.40   71.60    0.00    0.00    0.00];... 

 [    66.40  197.60   75.60    0.00    0.00    0.00];... 

 [    71.60   75.60  235.10    0.00    0.00    0.00];... 

 [     0.00    0.00    0.00   64.60    0.00    0.00];... 

 [     0.00    0.00    0.00    0.00   78.10    0.00];... 

 [     0.00    0.00    0.00    0.00    0.00   79.00]]; 

% 

% M as stiffness tensor C with MTEX tensor command 

C = tensor(M,cs_Tensor,'rank',4,'propertyname',... 

 'Olivine Fo93 Stiffness tensor 1969','unit','GPa') 

% 

Command Window 

Editor Window 

1.  cs_Tensor with frame ‘x||a’ & 
‘z||c’ 

2.  Tensor in Voigt matrix form M 
3.  C = tensor(M,cs_tensor…) 

Cartesian Tensor 
frame x,y,z 
 



Single crystal velocity calculation 



Plot and rotate a tensor of any rank 
%% Plot elastic tensor property Vp in km/s with density rho 

plot(C,'density',rho,'PlotType','velocity','vp','complete','contourf

') 

annotate([xvector,yvector,zvector],'label',{'[100] ','[010] ','[001] 

'}... 

    ,'BackgroundColor','w'); 

colorbar 

savefigure('/MatLab_Programs/Plot_Olivine_Single_Crystal_Vp_Label.pdf’);

%  

%% rotate and plot 

r = rotation('Euler',45*degree,30*degree,60*degree) 

% rotate elastic tensor 

C_rotated = rotate(C,r) 

% rotate specimen frame vectors 

x_rotated = rotate(xvector,r) 

y_rotated = rotate(yvector,r) 

z_rotated = rotate(zvector,r) 

% plot tensor 

plot(C_rotated,'density',rho,'PlotType','velocity','vp',... 

    'complete','contourf') 

annotate([x_rotated,y_rotated,z_rotated],'label',... 

    {'[100] ','[010] ','[001] '},'BackgroundColor','w'); 

colorbar 

savefigure(... 

    '/MatLab_Programs/Plot_Olivine_Single_Crystal_Vp_rotated.pdf');
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Plot(C,’density’,rho,’PlotType’,’velocity’,’vp’,’complete’,’contourf’) 
r=rotation(’Euler’,45*degree,30*degree,60*degree) 
C_rotated = rotate(C,r)         x_rotated = rotate(xvector,r) 

Rotate a 4th rank tensor 
C’ijkl = rimrjnrkorlp Cmnop 



In MTEX the reference frames are defined 

The command to define the crystal reference of the Euler frame is 
 
CS = crystalSymmetry('triclinic',[5.2957,9.1810,9.4228]... 
   ,[90.372,98.880,90.110]*degree,'xIIa*','zIIc','mineral','Talc’)

The command to define the crystal reference of the Tensor frame is 

CS_tensor = crystalSymmetry('triclinic',[5.2957,9.1810,9.4228]... 
   ,[90.372,98.880,90.110]*degree,'xIIa','zIIc*','mineral','Talc') 

 N.B. in Euler frame 'xIIa*','zIIc and in the Tensor frame  'xIIa','zIIc*’ 

MTEX  knows  the  orientation  of  each  reference  frame  and  automatically 
applies all corrections for the orientation difference between Euler  and Tensor  
frames.
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What can we do with elastic constants ? 

•  Volume compressiblity 
•  Linear compressiblity 
•  Young’s modulus 
•  Shear modulus 
•  Poission’s ratio 
•  Christoffel Tensor 
•   Etc… 

Life was not meant to be easy in elasticity! But there is MTEX! 

MTEX commands 



Define Elastic tensor in MTEX 
Editor window m-file 

Command window 



MTEX: calculate Young’s modulus in a 
specific crystallographic direction 



MTEX: calculate Young’s modulus in a 
specific crystallographic direction 



MTEX : Plotting Young’s modulus 



MTEX : Plotting Young’s modulus 

setMTEXpref('defaultColorMap',WhiteJetColorMap) 
setMTEXpref('defaultColorMap',white2blackColorMap) 



MTEX – calculate velocities (plotx2north) 

pp polarization vp 

ps1 polarization vs1 

ps2 polarization vs2 

plot 

show methods 

Velocities in km/s 



Sample co-ordinates for plotting 
in MTEX 

Default 
plotx2north 
 
Defined in 
upper hemisphere 
 
N.B. only rotates 
Plots, does not  
affect numerical 
results 



MTEX – plot velocities 



MTEX : Plot seismic velocities 

setMTEXpref('defaultColorMap',blue2redColorMap) 
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Effective media : average 
properties for polycrystalline 

aggregates, Voigt, Reuss and 
Hill… 

 2 Germans & 1 Englishman 



Microscopic and Macroscopic 

Homogeneous 
Effective 
Media 
(H.E.M.) 



Simple volume averages 
Constant 
strain Constant 

stress 



Voigt & Reuss micro-structural models 

Voigt-Reuss-Hill (VRH) or Hill = (V+R)/2 
 
No microstructural or theoretical 
basis, but in practice it is close to 
the experimentally measued values 



Macromodel composite 
laminates 

Aligned metal rods(black) in  polyurethane matrix grey 
where lighter greys - larger shear strains



Vp Polycrystal Averages 

MAINPRICE, D. and HUMBERT M. (1994) Surveys in Geophysics 15, 575-592. 



Oklahoma Gabbro 
 Stereo & Vp YZ profile 

Confining pressure = 800 MPa
SERONT, B., MAINPRICE, D. AND CHRISTENSEN, N.I. (1993) 
 J. Geophy. Res. 98: 2209-2221. 





Interaction between inclusions 



Ellipsoidal inclusion - 
 special properties  

Uniform stress and strain field within the inclusion



Ellipsoid and Cylinder 

homogeneous stress & strain fields

heterogeneous stress & strain fields



Self Consistent (SC) Method 



DEM Method 



Velocity Cube – with melt inclusions 



VpX and VpZ Gabbro - Basalt : Effect of Aspect Ratio 
CPO dominated anisotropy 

Basalt dominated anisotropy 
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MAINPRICE, D. (1997) Tectonophysics 279,161-179.  





Cluster method 

MAINPRICE, D. (2000) Physics and Chemistry of the Earth, 25,155-161. 



EBSD maps in  MTEX 
microstructure at the pixel level 

•  Orientations – variations with position, gradients … 
•  Grains, sub-grains and twins and their boundaries 
•  Phases 
•  Properties : indexing quality 
•  Properties : diffraction contrast (band contrast) 
•  Properties : 2nd rank tensors e.g. chemical diffusivity 
•  Properties : 3rd rank tensors e.g. piezoelectricity 
•  Properties : 4th rank tensors e.g. Young’s modulus 
•  Schmid factors for slip systems 
•  Superposed maps with transparency 
•  Select individual grains and line profiles interactively 
•  Select  complex sub-regions interactively 
•  Chose from an extensive range of color options or make you 

own color scales 
•  And any thing else you care to add ! 



Ca-­‐diffusion	
  in	
  olivine	
  







MTEX – 3D plots of longitudinal surface (d111) 
Lithium Niobate  

a-axis (red)    m-axis (green)    c-axis(blue) 

positive 

negative 

c-axis 

m-axis 

m-axis 

a-axis 



Future developments 1;   
Self-consistent (SC) and Differential 
Effective Media (DEM), FFT methods 

 •  SC and DEM already developed in FORTRAN – 
algorithms require Green’s tenor integration for 
Eshelby inclusion. Allows grain interaction and grain 
shape. New 2014 optimised Gauss-Legendre 
Quadrature functions available for MATLAB. But could 
it  more efficient in Fourier space. 

•  FFT method introduced in 1994 by Moulinec H. and 
Suquet P. Allows variation of stress/strain fields 
within the grains.  Free complied application available 
“CraFT” some test using EBSD data can be done with 
“CraFT” , need to develop an export file from MTEX of 
map structure. 





Future developments 2; 
Importing single crystal tensors from 
a database, advantages and pitfalls 

 •  Over a hundred files for the elasticity in MTEX format for copy and 
pasting into MTEX M-files. 

•  It was envisaged to use the Materials Open Database “MPOD” 
initiated by Daniel Chateigner (http:/materialproperties.org). 
However no provision for the tensor frame in this database that is 
supervised by International Union of Crystallography (IUC). 

•  Need to agree on the MTEX file format that includes the the tensor 
frame. 

•  Problems with minerals using a different unit cell parameters in 
tensor file and imported EBSD Euler frame can lead error 
messages from MTEX 

•  Some times need to substitute a tensor from mineral of different 
composition and unit cell parameters. 

•  Need to substitute the cell parameters used by EBSD into 
cs_tensor 



Future developments 3; 
 What are we going to do this 

afternoon ?  
 •  Exercise – from the thermal expansion measurements 

(α) in  4 directions determine the α11, α22, α33 and α13 
for a monoclinic mineral with b as the two-fold axis. 

•  Run scripts of 2nd and 4th rank single crystal  tensors 
•  Run a full analysis of a multi-phase aggregate 
•  Run a general EBSD script 



ESF-MicroDice conference and training workshop 
'Microstructural evolution during HT deformation: advances in the 

characterization techniques and consequences to physical properties' 

 
•  Montpellier, France 
•  30 March 1 April 2015  3-day Conference 
•  2-3 April 2015 : 2-day MTEX open source & free texture analysis training workshop 
•  Conference web site : http://lgge.osug.fr/article920.html 

•  Registration for the conference (30th March-1st April) must be done online (
https://www.azur-colloque.fr/DR13/AzurInscription) 

•  Deadline for registration and submission of abstracts: 15 February, 2015 
•  Registration Fees : Senior researchers 100 € PhD & Post-docs 50 €  

Day 1: Microstructure, Texture and Evolution  
Evolution of microstructures and textures during deformation and recrystallization. 
Martyn Drury (Univ. Utrecht, Nederlands) 
In-situ micro-macro tracking of the deformation field. Michel Bornert (Univ. Paris-Est, France) 
Modelling evolving  microstructures. Albert Griera (Univ. Autonoma de Barcelona, Spain) 
  
Day 2: High resolution study of microstructures 
High Resolution EBSD. Claire Maurice (Ecole de Mines de St. Etienne, France) 
Characterization of the dislocation content of EBSD maps. John Wheeler (Univ. Liverpool, UK) 
  
Day 3: Rheology: consequences of microstructure and texture evolution to large-scale flow  
Non-stationary rheology and changing microstructure. Brian Evans (MIT, USA) 
Impact of texture-induced anisotropy on glaciers flow. Fabien Gillet-Chaulet (Grenoble, France)  



Thank	
  you	
  
•  I	
  thank	
  Ralf	
  for	
  invi9ng	
  me	
  to	
  this	
  workshop.	
  
•  I	
  thank	
  you	
  all	
  for	
  listening.	
  
•  Most	
  things	
  I	
  talked	
  about	
  (programs,	
  pdf	
  of	
  
publica9ons,	
  MTEX	
  examples	
  and	
  link	
  to	
  the	
  MTEX	
  
site)	
  can	
  accessed	
  via	
  my	
  webpage	
  
hHp://www.gm.univ-­‐montp2.fr/PERSO/mainprice/	
  

•  Also	
  look	
  at	
  MTEX	
  website	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hHp://mtex-­‐toolbox.github.io	
  


