CALM down: Identifying unknown phases

Gert Nolze ${ }^{1}$ \& Tomasz Tokarski²

${ }^{1}$ BAM Berlin (gert.nolze@bam.de)
${ }^{2}$ AGH University of Science and Technology, Academic Center for Materials and Nanotechnology (ACMiN), Krakow (tokarski@agh.edu.pl)
unknown High-Entropy phase

Lattice parameters

Why do we need them? How accurate they have to be?

```
% crystal symmetry
CS_all = {...
    'notIndexed',...
    crystalSymmetry('m-3m', [2.866 2.866 2.866], 'mineral', 'Kamacite', 'color', 'light blue'),...
    crystalSymmetry('m-3m', [3.656 3.656 3.656], 'mineral', 'Taenite', 'color', 'light green'),...
    crystalSymmetry('l l 2/m', [10.4192 6.0186 4.7768], [90,90,90.952]*degree, 'mineral', 'Sarcopside', 'color', 'magenta'),...
    crystalSymmetry('-4', [9.04 9.04 4.462], 'min|ral', 'Schreibersite', 'color', 'yellow')};
CS=CS_all;
```

MTEX mainly works with angles to display pole figures of any kind.

Generally valid computations

[hkl]* (reciprocal lattice)

Angle	$\cos \varrho=\frac{\boldsymbol{R}_{1} \cdot \boldsymbol{R}_{2}}{\left\|\boldsymbol{R}_{1}\right\| \cdot\left\|\boldsymbol{R}_{2}\right\|}$	$\cos \varphi=\frac{\boldsymbol{R}_{1}^{*} \cdot \boldsymbol{R}_{2}^{*}}{\left\|\boldsymbol{R}_{1}^{*}\right\| \cdot\left\|\boldsymbol{R}_{2}^{*}\right\|}$
Length	$\left\|\boldsymbol{R}_{i}\right\|=\sqrt{\boldsymbol{R}_{i} \cdot \boldsymbol{R}_{i}}$	$\left\|\boldsymbol{R}_{i}^{*}\right\|=\sqrt{\boldsymbol{R}_{i}^{*} \cdot \boldsymbol{R}_{i}^{*}}$
Dot	$\boldsymbol{R}_{i} \cdot \boldsymbol{R}_{j}=[u v w]_{i} \cdot \mathbf{G} \cdot\left[\begin{array}{c}u \\ v \\ w\end{array}\right]_{j}$	$\boldsymbol{R}_{i} * \cdot \boldsymbol{R}_{j}^{*}=[h k l]_{i}^{*} \cdot \mathbf{G}^{*} \cdot\left[\begin{array}{c}h \\ k \\ l\end{array}\right]_{j}^{*}$

Metric tensor

From this follows:
For angle computations we only need the lattice parameter ratios

$$
\frac{a_{\mathrm{o}}}{b_{\mathrm{o}}}, \frac{c_{\mathrm{o}}}{b_{\mathrm{o}}} \quad \text { and } \quad \alpha, \beta, \gamma
$$

These data are available from a single EBSD pattern with similar accuracy to orientations.

How is that possible?

High correlation

between bands, intersections and widths

An EBSD pattern can be seen as visual representation of two coupled, highly overdetermined systems of equations.

- Only 12 numbers are unknown:
- In maximum (!) six lattice parameters: $a, b, c, \alpha, \beta, \gamma$
- the projection center: $\left(\mathrm{PC}_{x}, \mathrm{PC}_{y}, \mathrm{PC}_{z}\right)$ (assumed to be known!)
- the orientation: $\left(\varphi_{1}, \Phi, \varphi_{2}\right)$
- A single EBSD pattern delivers 50-200 bands described by distance, slope, and width, effectively providing 150-600 numerical values for the determination of only 9 unknowns.
- The high correlation results from

1. crystal and reciprocal lattice which are translation lattices:

$$
[u v w]_{k}=[u v w]_{i}+[u v w]_{j} \quad[h k l]_{k}^{*}=[h k l]_{i}^{*}+[h k l]_{j}^{*}
$$

2. simple relationships between crystal and reciprocal lattice:

$$
[u v w]_{r}=[h k l]_{s}^{*} \times[h k l]_{t}^{*} \quad[h k l]_{n}^{*}=[u v w]_{p} \times[u v w]_{q}
$$

Inherent constrains

Principle

Question: How well is a circle described by a point cloud when we know it is a circle?

- The black circle between the blue ones (deviation range) is the one we are looking for.
- The blue dots are randomly shifted from the black circle.
- The red circle is drawn using the average diameter derived from the blue dots.

Insight: If the shape of an object is known, detection is easier and much more accurate.
(cf. car license plate recognition from a few pixels only)

For EBSD patterns follows, mainly from projective geometry:

- In a pattern lattice plane traces are straight lines.
- Intersections of traces describe lattice directions: two (hkI) \Rightarrow [uvw].
- But also two [uvw] \Rightarrow (hkl).
- The indices $\mathbf{h}, \mathbf{k}, \mathbf{l}$ as well as $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are small integers.

Pattern analysis in CALM

Crystallographic Analysis of the Lattice Metric

1. The projection center (pattern center + DD): 4-direction approach.
2. The trace positions of lattice planes: 4-line approach.
3. The bandwidth definition / selection.

Please note:
High resolution patterns are beneficial but not absolutely necessary!

Edge filtered Funk transform

Spherical Radon transform of great circles

- Stereographic projection of the reciprocal lattice.
- (uvw)* are great circles.

$$
[u v w] \perp(u v w)^{*}
$$

Edge filtered Funk transform

Spherical Radon transform of great circles

In the red zone 33 bands can be discovered.

- Stereographic projection of the reciprocal lattice.
- (uvw)* are great circles.
- [hkl]* are the (blue) centered points in ring-shaped features.
- The bars are tiny misalignments of the traces.

$$
[u v w] \perp(u v w)^{*}
$$

Band profiles

- For each band its profile (light gray curve) can be displayed.
- The extrema - left: minima, right: maxima - of the $1^{\text {st }}$ derivative (red curve) indicate possible interference orders.
- The bars at the blue dots display θ asym, the asymmetric position of the extrema (green lines) in [${ }^{\circ}$].

Lattice parameters and ratio

Corundum (rhombohedral)

72 experimental patterns of different orientation and resolution show:

The lattice parameter ratios have a deviation <0.6\%.

The lattice parameters also scatter only $\pm \mathbf{1 . 5 \%}$ around a value which is, however, shifted by -3.0\%.

Possible applications

Main focus

- Lattice parameter and Bravais lattice extraction
- Symmetry approximation
- Lattice parameter ratio mapping

But secondarily other alternative applications

- (Pseudo)symmetry evaluation
- Phase confirmation (superstructures)
- Pattern overlapping
- Projection center confirmation
- Indexing of EBSD patterns
- Charging (local pattern distortions; landing energy)
- Excess deficiency impact
- and of course: TEACHING

CALM: Crystallographic Analysis of the Lattice Metric

 $\begin{array}{lll}\mathrm{c}=4.322 & \beta=90.6 & \mathrm{a} / \mathrm{b}=0.61 \\ \mathrm{c}=5.788 & \mathrm{y}=89.9 & \mathrm{c} / \mathrm{b}=1.339\end{array}$
 $\begin{array}{lll}\mathrm{a}=6.474 & \mathrm{c}=89.9 & \mathrm{Vol}=72.6 \\ \mathrm{~b}=2.902 & \beta=90.6 \\ \mathrm{c}=4.322 & \mathrm{y} / \mathrm{b}=2.231 \\ \mathrm{y}=63.4 & \mathrm{c} / \mathrm{b}=1.489\end{array}$

Triclinic, ap
$=2.902$
$\alpha=90.1 \quad$ Vol $=72.6$ $\begin{array}{lll}\begin{array}{lll}a=2.902 & & \alpha=90.1\end{array} & \text { Vol=72.6 } \\ \mathrm{b}=4.322 & \beta=90.8 & \mathrm{a} / \mathrm{b}=0.671 \\ c=5.788 & y=89.9 & c / b=1.339\end{array}$

