

Sicherheit in Technik und Chemie

17.03.2021

# **CALM down: Identifying unknown phases**

### Gert Nolze<sup>1</sup> & Tomasz Tokarski<sup>2</sup>

<sup>1</sup>BAM Berlin (gert.nolze@bam.de)

<sup>2</sup>AGH University of Science and Technology, Academic Center for Materials and Nanotechnology (ACMiN), Krakow (tokarski@agh.edu.pl)

unknown High-Entropy phase





Electron Diffraction Tomography of Tylenol (acetaminophen) exposure per frame: 5 ms total: 3s R. dos Reis,

Northwestern University (US)



### **Lattice parameters**



Why do we need them? How accurate they have to be?

```
% crystal symmetry
CS_all = {...
    'notIndexed',...
    crystalSymmetry('m-3m', [2.866 2.866 2.866], 'mineral', 'Kamacite', 'color', 'light blue'),...
    crystalSymmetry('m-3m', [3.656 3.656 3.656], 'mineral', 'Taenite', 'color', 'light green'),...
    crystalSymmetry('1 1 2/m', [10.4192 6.0186 4.7768], [90,90,90.952]*degree, 'mineral', 'Sarcopside', 'color', 'magenta'),...
    crystalSymmetry('-4', [9.04 9.04 4.462], 'mineral', 'Schreibersite', 'color', 'yellow')};
CS=CS_all;
```

MTEX mainly works with angles to display pole figures of any kind.

Generally valid computations

|                | [uvw] (lattice)                                                                                                      | [hkl]* (reciprocal lattice)                                                                                                                                                                                                |
|----------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Angle          | $\cos \varrho = \frac{\boldsymbol{R}_1 \cdot \boldsymbol{R}_2}{ \boldsymbol{R}_1  \cdot  \boldsymbol{R}_2 }$         | $\cos arphi = rac{oldsymbol{R}_1^* \cdot oldsymbol{R}_2^*}{ oldsymbol{R}_1^*  \cdot  oldsymbol{R}_2^* }$                                                                                                                  |
| Length         | $ oldsymbol{R}_i  = \sqrt{oldsymbol{R}_i \cdot oldsymbol{R}_i}$                                                      | $ oldsymbol{R}^*_i  = \sqrt{oldsymbol{R}^*_i \cdot oldsymbol{R}^*_i}$                                                                                                                                                      |
| Dot<br>product | $oldsymbol{R}_i \cdot oldsymbol{R}_j = [u  v  w]_i \cdot oldsymbol{G} \cdot egin{bmatrix} u \ v \ w \end{bmatrix}_j$ | $\begin{aligned} \boldsymbol{R}_{i} * \cdot \boldsymbol{R}_{j}^{*} &= [h  k  l]_{i}^{*} \cdot \boldsymbol{G}^{*} \cdot \begin{bmatrix} h \\ k \\ l \end{bmatrix}_{j}^{*} \\ & [h  k  l]^{*} \perp (h  k  l) \end{aligned}$ |

#### **Metric tensor**



$$\mathbf{G} = \begin{pmatrix} a_{\mathrm{o}}^{2} & a_{\mathrm{o}} \cdot b_{\mathrm{o}} \cos \gamma & a_{\mathrm{o}} \cdot c_{\mathrm{o}} \cos \beta \\ g_{12} & b_{\mathrm{o}}^{2} & b_{\mathrm{o}} \cdot c_{\mathrm{o}} \cos \alpha \\ g_{13} & g_{23} & c_{\mathrm{o}}^{2} \end{pmatrix} = b_{\mathrm{o}}^{2} \cdot \begin{pmatrix} \left(\frac{a_{\mathrm{o}}}{b_{\mathrm{o}}}\right)^{2} & \left(\frac{a_{\mathrm{o}}}{b_{\mathrm{o}}}\right) \cos \gamma & \left(\frac{a_{\mathrm{o}}}{b_{\mathrm{o}}}\right) \cdot \left(\frac{c_{\mathrm{o}}}{b_{\mathrm{o}}}\right) \cos \beta \\ g_{12} & 1 & \left(\frac{c_{\mathrm{o}}}{b_{\mathrm{o}}}\right) \cos \alpha \\ g_{13} & g_{23} & \left(\frac{c_{\mathrm{o}}}{b_{\mathrm{o}}}\right)^{2} \end{pmatrix} = b_{\mathrm{o}}^{2} \cdot \mathbf{G}_{r}$$

#### From this follows:

For angle computations we only need the lattice parameter ratios  $\frac{a_o}{b_o}, \frac{c_o}{b_o}$  and  $\alpha, \beta, \gamma$ .

These data are **available** from a single EBSD pattern **with similar accuracy to orientations**.

How is that possible?

## **High correlation**



between bands, intersections and widths

An **EBSD pattern** can be seen as **visual representation of two coupled**, highly **overdetermined systems of equations**.

- Only **12 numbers** are unknown:
  - In maximum (!) six lattice parameters: a, b, c,  $\alpha$ ,  $\beta$ ,  $\gamma$
  - the projection center:  $(PC_x, PC_y, PC_z)$  (assumed to be known!)
  - the orientation:  $(\phi_1, \Phi, \phi_2)$
- A single EBSD pattern delivers 50-200 bands described by distance, slope, and width, effectively providing 150-600 numerical values for the determination of only 9 unknowns.
- The high correlation results from
  - 1. crystal and reciprocal lattice which are translation lattices:  $[u v w]_k = [u v w]_i + [u v w]_j$   $[h k l]_k^* = [h k l]_i^* + [h k l]_i^*$
  - 2. simple **relationships** between **crystal** and **reciprocal** lattice:

 $[u v w]_r = [h k l]_s^* \times [h k l]_t^* \qquad [h k l]_n^* = [u v w]_p \times [u v w]_q$ 

## **Inherent constrains** *Principle*





# Question: How well is a circle described by a point cloud when we know it is a circle?

- **The black circle** between the blue ones (deviation range) is the one **we are looking for**.
- The blue dots are randomly shifted from the black circle.
- The **red circle** is drawn using the average **diameter derived from the blue dots**.

# Insight: If the shape of an object is known, detection is easier and much more accurate.

(cf. car license plate recognition from a few pixels only)

#### For EBSD patterns follows, mainly from projective geometry:

- In a pattern lattice plane traces are straight lines.
- Intersections of traces describe lattice directions: two (hkl) ⇒ [uvw].
- But also **two [uvw]** ⇒ (hkl).
- The indices **h,k,l** as well as **u,v,w** are **small integers**.

# **Pattern analysis in CALM**

Crystallographic Analysis of the Lattice Metric



- The projection center (pattern center + DD): 4-direction approach.
- 2. The **trace positions** of lattice planes: 4-line approach.
- 3. The **bandwidth** definition / selection.

#### Please note:

High resolution patterns are beneficial but not absolutely necessary!



# **Edge filtered Funk transform**



Spherical Radon transform of great circles



- Stereographic projection of the reciprocal lattice.
- (uvw)\* are great circles.



 $[u\,v\,w]\perp(u\,v\,w)^*$ 

# **Edge filtered Funk transform**



Spherical Radon transform of great circles



- Stereographic projection of the reciprocal lattice.
- (uvw)\* are great circles.
- [hkl]\* are the (blue) centered points in ring-shaped features.
- The **bars** are **tiny misalignments** of the traces.

$$u\,v\,w]\perp(u\,v\,w)^*$$



In the red zone 33 bands can be discovered.

### **Band profiles**



- For each **band** its **profile** (*light gray curve*) can be displayed.
- The extrema left: minima, right: maxima – of the 1<sup>st</sup> derivative (red curve) indicate possible interference orders.
- The bars at the blue dots display θasym, the asymmetric position of the extrema (green lines) in [°].





## Lattice parameters and ratio Corundum (rhombohedral)



72 experimental patterns of different orientation and resolution show:



The lattice parameter **ratios** have a deviation **<0.6%**.

The lattice parameters also **scatter only ±1.5%** around a value which is, however, shifted by **-3.0%**.

### **Possible applications**



#### Main focus

- Lattice parameter and Bravais lattice extraction
- Symmetry approximation
- Lattice parameter ratio mapping

#### But secondarily other alternative applications

- (Pseudo)symmetry evaluation
- Phase confirmation (superstructures)
- Pattern overlapping
- Projection center confirmation
- Indexing of EBSD patterns
- Charging (local pattern distortions; landing energy)
- Excess deficiency impact
- and of course: TEACHING

# **CALM: Crystallographic Analysis of the Lattice Metric**

Scrystallometric Kikuchi Pattern Analysis of: TiB\_04 (800x576)

