ADVANCING PATTERN ANALYSIS

Ben Britton

Department of Materials Engineering, University of British Columbia

MOTIVATION

- Conventional EBSD is inviable for characterisation
 - Fast
 - Information rich
 - 'Robust'
- Dynamical EBSD pattern simulation now available
- Can we improve existing approaches?

For a more broad introduction to EBSD, see - <u>https://www.youtube.com/playlist?list=PLo_ZiAxtCLkqaujdC4pnAF7_rmQ0bPiqT</u>

DIRECT ELECTRON DETECTION (DED)

Simulation from (reprojected) from Bruker Dynamics

Britton et al. (2019) <u>https://arxiv.org/abs/1908.04860</u>

'NEW' APPROACHES

Apply 24 symmetries

Single pattern on sphere

Britton et al. (2019) https://arxiv.org/abs/1908.04860

'NEW' APPROACHES

5

Application of symmetry and coverage of sphere

Single pattern on sphere

Apply 24 symmetries

CHALLENGE

- Can we utilise spherical projections [1] to understand Kikuchi patterns?
- Use dynamical patterns [2] to develop routines & apply to experiments
- Use the spherical harmonic functions in MTEX

[1] A. Day J. of Microscopy (2008)[2] A. Winkelmann et al. Ultramicroscopy (2007)

FFT APPROXIMATION

- Approximate the EBSD pattern on the surface of the sphere
- Use non equispaced fast Fourier transform (available in MTEX)

Increased approximation

RADON TRANSFORMS

- The Radon transform is related to the Fourier transform
- Transform the sFFT to the sRadon
 - Planes become spots
 - Structure of the spots
 = characteristic of
 each band

BAND PROFILE EXTRACTION

BAND PROFILE EXTRACTION

BAND PROFILE EXTRACTION

Small circle integrals from the original pattern, i.e. above and below the great circles, but performed in the Radon transform

ORIENTATION DETERMINATION

- Spherical Radon → find peaks for each band
- Convolve 'average' profile
 - Structured peak detects structured bands
- Once the peaks are found we can index with AstroEBSD [3]

[3] www.github.com/BenjaminBritton/AstroEBSD & Britton et al. IUCR (2018)

PATTERN INCOMPLETENESS

- Real patterns do not subtend the entire sphere
- Window and sFFT approximate
- Radon transform
- Normalise intensities in the Radon transform

Experimental pattern on sphere, with reduced angle subtended

Experimental pattern, on Radon sphere

SPHERICAL RADON - INDEXED PATTERN

Measuring true orientations

Expected Peaks

For orientation conventions, see: Britton et al. (2016) Materials Characterisation For AstroEBSD: see https://github.com/benjaminbritton/astroebsd & Britton et al (2018) Journal of Applied Crystallography

PATTERN MATCHING

Ultramicroscopy Volume 207, December 2019, 112836

Gazing at crystal balls: Electron backscatter diffraction pattern analysis and cross correlation on the sphere

Ralf Hielscher 으 ᅍ, Felix Bartel ^a, Thomas Benjamin Britton ^b 쯔

Ultramicroscopy Volume 207, December 2019, 112845

Indexing electron backscatter diffraction patterns with a refined template matching approach

A. Foden ^a $\stackrel{>}{\sim}$ 🖾 ⊕, D.M. Collins ^{b, c}, A.J. Wilkinson ^b, T.B. Britton ^a

Other variants are available (e.g. dictionary indexing)

2D CROSS CORRELATIONAL

$$\chi_{d} = \frac{\sum_{i} [(x[i] - \bar{x}) \cdot (y[i - d] - \bar{y})]}{\sqrt{\sum_{i} (x[i] - \bar{x})^{2}} \sqrt{\sum_{i} (y[i - d] - \bar{y})^{2}}}$$

[X = 1, Y = 1]

Reference

Test

3D SPHERICAL CROSS CORRELATION

- Experimental and simulated pattern are both in Fourier space
- Parameterise the sFFT for correlation peak correlated to components of the misorientation [i.e. SO(3)]
- Correlation precision prop. to sFFT bandwidth
 - Use hierarchical grid for final search

RESOLUTION AND TIME

- Cut off N = 64
- Points on M1 for 1.5° = 180,000
- Radius of upsample = 1.5°
- Points on M2 for 0.05° = 110,000
- Speed = 1/second (multicore)

MAP COMPARISON

SPHERICAL-ANGULAR DARK FIELD IMAGING & PHASE CLUSTERING WITH MACHINE LEARNING

Thomas P McAuliffe, David Dye, T Ben Britton

 γ - FCC

 γ' - primitive L1₂

ANALYSIS OF GAMMA/GAMMA'

Tom P. McAuliffe, unpublished data

γ - FCC

- Not much information in Band location information (IQ from Hough transform).
- Cluster the patterns into self-similar categories using EBSPs.

Dynamically simulated EBSP

Spherical radon transform

(c) Autoencoder

- Use three approaches for looking at latent features of a dataset.
- All give 'factors': the underlying base signals in the dataset form a basis for approximating data.
- All give 'scores': how well a latent factor represents a data point.

Principal Component Analysis

• Segmenting on these scores gives good phase discrimination

McAuliffe et al. https://arxiv.org/abs/2005.10581 & 10.1016/j.ultramic.2020.113132

- Use spherical harmonics to project an EBSP back onto the diffraction sphere
- Then quantitatively compare experimental or representative dataset factor patterns with simulations.

Average patterns from segmented regions

McAuliffe et al. https://arxiv.org/abs/2005.10581 & 10.1016/j.ultramic.2020.113132

SPHERICAL-ANGULAR DARK FIELD IMAGING

- Use virtual aperture (on each band) to create maps
- sum intensity between Bragg points (shown as dots)

McAuliffe et al. https://arxiv.org/abs/2005.10581 & 10.1016/j.ultramic.2020.113132

CODES ALL OPEN SOURCE

- Spherical pattern matching within MTEX
- Spherical radon within MTEX
- (Gnomonic) Pattern processing in AstroEBSD (<u>https://github.com/benjaminbritton/AstroEBSD</u>)
- Statistical clustering in AstroEBSD & python tools (amplify signal to noise)
- See:
 - Hielscher et al. (2019) Ultramicroscopy <u>https://arxiv.org/abs/1810.03211</u>
 - McAuliffe et al. (2020) Ultramicroscopy https://arxiv.org/abs/2005.10581
 - <u>https://tmcauliffe.medium.com/quantitative-microstructural-characterisation-with-astroebsd-2380650c1243</u>

ANY QUESTIONS?

www.expmicromech.com

Det