Parent grain reconstruction in

Frank Niessen
Technical University of Denmark, Department of Mechanical Engineering, Kongens Lyngby, Denmark
Ralf Hielscher
Institute of Mathematics, TU Chemnitz, Germany

Parent grain reconstruction in MTEX

- Introduction
- to martensitic transformations
- to parent grain reconstruction
- MTEX implementation
- Example " $\gamma \rightarrow \alpha^{\prime}$ transformation in steel"
- Further application examples
- Conclusion

Introduction - Martensitic transformation

- The martensitic transformation is a technologically important diffusionless transformation from a metastable parent to a martensitic child phase
- γ-to- ε and γ-to- α^{\prime} transformations in steels -> TRIP
- $\boldsymbol{\beta}$-to- α^{\prime} and β-to- $\alpha^{\prime \prime}$ transformation in titanium alloys -> TRIP \& Shape Memory Effect

[http://www.phase-trans.msm.cam.ac.uk/2002/martensite.html Professor Toshihiko Koseki, Tokyo University]

[F. Niessen, A.A. Gazder, D.R.G. Mitchell, E. V. Pereloma, Mater. Sci. Eng. A 802 (2021).

Introduction - Martensitic transformations

- The orientation relationship is defined by a set of parallel planes and directions
- Kurdjumow-Sachs (K-S):
- Nishiyama-Wasserman (N-W):
- ...
- Shoji-Nishiyama (S-N):

Crystal symmetry leads to the forma
[S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. 51 (2003) 1789-1799.]

$\{111\}_{\gamma}\left\|\{110\}_{\alpha^{\prime}},\langle 1 \overline{1} 0\rangle_{\gamma}\right\|\langle 1 \overline{1} 1\rangle_{\alpha^{\prime}}$
$\{111\}_{\gamma}| |\{110\}_{\alpha^{\prime}},\langle 0 \overline{1} 1\rangle_{\gamma}| |\langle 001\rangle_{\alpha^{\prime}}$
$\{111\}_{\gamma}| |\{0001\}_{\varepsilon},\langle 1 \overline{1} 0\rangle_{\gamma}| |\langle 11 \overline{2} 0\rangle_{\varepsilon}$

- Crystal symmetry leads to the formation of several orientation variants

Orientation variants in steel

Introduction - Martensitic transformations

- The experimentally observed OR is generally close, but not identical to rational OR's - In lath martensite in steels it is about halfway between K-S and N-W
- This seemingly marginal difference becomes important in parent grain reconstruction

Rational OR

[G. Nolze, Zeitschrift Für Met. 95 (2004) 744-755.]

Experimentally observed OR
Parallel directions

Parallel planes

[G. Miyamoto, N. Iwata, N.
Takayama, T. Furuhara, Acta Mater.
58 (2010) 6393-6403]

Introduction - Parent grain reconstruction

- Parent grain reconstruction aims at calculating the parent microstructure from the orientations of the child phase
- One parent orientation can form several child orientation variants (up to 24 in steel) - Therefore one child orientation can have multiple potential parent orientations
- Goal: Find sufficient distinct child orientations of the same prior parent grain to calculate the parent orientation

DTU

Introduction - Parent grain reconstruction Why care?!?

- Parent grain reconstruction is more than an academic exercise - Two purposes:
- Optimizing high-temperature processing (hot-rolling,forging)

- Detailed analysis of the hierarchy of martensitic microstructures
- Variant and mechanical analysis

Martensitic microstructure

α^{\prime} orientations

Parent phase microstructure \longrightarrow Variant analysis \longrightarrow

Packet map

Local analysis

Variant polefigure

Introduction - Parent grain reconstruction

There are two types of methods for parent grain reconstruction:

- Operations on a weighted graph constructed from a grain map [1-7]

- Computationally efficient
- Operations on cropped sections of the orientation (EBSD) map that has been segmented into a square grid [8-10]
- Claimed to be more accurate on ambiguous orientations (i.e. twins)

C. Cayron, B. Artaud, L. Briottet, Mater. Charact. 57 (2006) 386-401.
L. Germain, N. Gey, R. Mercier, P. Blaineau, M. Humbert, Acta Mater. 60 (2012) 4551-4562.
E. Gomes, L.A.I. Kestens, in: 17th Int. Conf. Textures Mater. (ICOTOM 17), 2015.
T. Nyyssönen, P. Peura, V.T. Kuokkala, Metall. Mater. Trans. A 49 (2018) 6426-6441.
A.H. Pham, T. Ohba, S. Morito, T. Hayashi, Mater. Trans. 56 (2015) 1639-1647.
C. Y. Huang, H.C. Ni, H.W. Yen, Materialia 9 (2020).
S.K. Giri, A. Durgaprasad, K. V. Manikrishna, C.R. Anoop, S. Kundu, I. Samajdar, Philos. Mag. 99 (2019) 699-717.
G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, Acta Mater. 58 (2010) 6393-6403.
N. Bernier, L. Bracke, L. Malet, S. Godet, Mater. Charact. 89 (2014) 23-32.
D. Wang, J. Jin, Q. Li, X. Wang, Crystals 9 (2019).

Introduction - Parent grain reconstruction

- Most weighted graph approaches
- first calculate all possible parent orientations for all child orientations
- then group child grains that have a common parent orientation
- Method by Gomes et al. ${ }^{1}$ and Nyssönnen et al. ${ }^{2}$
- Apply Markov clustering algorithm to
- first group child grains and then calculate the common parent orientation
- Markov clustering discovers natural groups in graphs by simulating a random walk

MTEX implementation

- Only open and freely available parent reconstruction method -> released in MTEX 5.6
- Supports the analysis of transitions between arbitrary parent and child phases
- Different reconstruction models can be combined
- Boundary based vs. triple point based
- Graph clustering algorithms
- Nucleation based algorithms > Child grain reversion by vote of neighboring child grains
- Growth based algorithms
$>$ Growth of parent grains into child grains
- Straight forward local reversion of bad reconstructions
- Iterative reconstruction with increasing threshold

DTU Commercial break!

ORTools

- Add-on to MTEX focusing on phase transitions
- A function library for OR discovery, OR analysis and the plotting of publication-ready figures of martensitic transformations in MTEX
- The library contains
- Several automated and preformatted plotting functions
- Interactive exploration of several OR's in one EBSD map
- Transformation texture prediction
- Useful auxiliary functions
- More to follow soon ...

[^0]
Example 1 - Lath martensite $\boldsymbol{\gamma} \rightarrow \boldsymbol{\alpha}^{\prime}$

- We want to transfer the EBSD lath martensite microstructure on the left to an austenite microstructure on the right

Example 1 - Initial microstructure

- We have only martensite

Example 1 - Initial microstructure

- The prior austenite grain boundaries are not obvious everywhere
- We have 29\% unindexed points

DTU

 \longrightarrow
Example 1 - OR determination

Define and refine orientation relationship
job = parentGrainReconstructor (ebsd,grains);
job.p2c = orientation.KurdjumovSachs;
job.calcParent2Child; \%*

Automatic adaption of Morito convention job.variantMap
$=\left[\begin{array}{lllllllll}1 & 3 & 5 & 21 & 23 & 19 & 1179161418\end{array}\right.$ 24222042613151781210]
optimizing parent to child orientation relationship
($335.8^{\circ}, 10.5^{\circ}, 65.8^{\circ}$) 3.7
(345.4$\left.{ }^{\circ}, 10.3^{\circ}, 60.1^{\circ}\right) 2.7$
(356.4 ${ }^{\circ}$, $\left.9.6^{\circ}, 50^{\circ}\right) \quad 2.7$

Example 1 - OR inspection

job.parent2ChildInfo

-> OR info:

- OR misorientation angle $=44.9863^{\circ}$
-> Parallel planes
- Closest parent plane $=(1,-1,0)$
- Closest child plane $=(1,0,0)$
- Ang. dev. from parallel plane relationship from $O R=2.4033^{\circ}$
-> Parallel directions
- Closest parent direction $=[1,1,1]$
- Closest child direction $=[0,1,1]$
- Ang. dev. from parallel directions relationship from $O R=0.61727^{\circ}$
-> OR misorientation rotation axes
- Parent rot. axis $=[-0.0532,0.0363,0.2655]$
- child rot. axis = [-0.0679,0.0463,0.3391]
-> Angle \& rot. axes of unique variants
- 1: $0.00^{\circ} /[0.3489,-0.0000,-0.0000]$
- 2: 60.010 / [-0.1690,0.1747,0.2503]

$$
\begin{array}{lll}
\mathrm{K}-\mathrm{S}: & \{111\}_{\gamma} \|\{110\}_{\alpha^{\prime}} & \langle 1 \overline{1} 0\rangle_{\gamma}\langle 1 \overline{1} 1\rangle_{\alpha^{\prime}} \\
\mathrm{N}-\mathrm{W}:\{111\}_{\gamma} \|\{110\}_{\alpha^{\prime}} & \langle 0 \overline{1} 1\rangle_{\gamma}^{\gamma}\langle 001\rangle_{\alpha^{\prime}}
\end{array}
$$

Parallel directions

[G. Miyamoto, N. Iwata, N.
Takayama, T. Furuhara, Acta Mater.
58 (2010) 6393-6403]

[G. Nolze, Zeitschrift Für Met. 95 (2004) 744-755.]

Example 1 - OR inspection

job.parent2ChildInfo

-> Angle \& rot. axes of unique variants

- 1: 0.000 / [0.3489,-0.0000,-0.0000]
- 2: $60.01^{\circ} /[-0.1690,0.1747,0.2503]$
- 3: $60.01^{\circ} /[-0.1747,0.1690,0.2503]$
- 4: $20.38^{\circ} /[-0.0332,-0.0000,0.3473]$
- 5: $55.170 /[-0.2350,0.0818,0.2445]$
- 6: 51.550 / [-0.0705,0.2303,0.2524]
- 7: $14.62^{\circ} /[-0.1878,0.0223,0.2932]$
- 8: $49.96^{\circ} /[-0.2082,0.1871,0.2082]$
-9: $51.55^{\circ} /[-0.2303,0.0705,0.2524]$
- 10: $17.45^{\circ} /[-0.2426,0.0633,0.2426]$
- 11: $49.63^{\circ} /[-0.1977,0.1668,0.2342]$
-12: $50.62^{\circ} /[-0.0918,0.2312,0.2447]$
-13: $20.69^{\circ} /[-0.0746,-0.0000,0.3408]$
- 14: $50.62^{\circ} /[-0.2312,0.0918,0.2447]$
-15: $56.21^{\circ} /[-0.0631,0.2302,0.2545]$
-16: $4.81^{\circ} /[-0.1940,-0.0000,0.2900]$
- 17: 60.270 / [-0.1910,0.1810,0.2292]
-18: $55.290 /[-0.2467,0.0015,0.2467]$
- 19: $14.62^{\circ} /[-0.0223,0.1878,0.2932]$
- 20: 55.170 / [-0.0818,0.2350,0.2445]
-21: $49.45^{\circ} /[-0.2240,0.1463,0.2240]$
- 22: $11.56^{\circ} /[-0.2448,0.0437,0.2448]$
- 23: $56.21^{\circ} /[-0.2302,0.0631,0.2545]$
- 24: 49.630/[-0.1668,0.1977,0.2342]

No OR-misorientations between 21 and 49°

ORTools plotMap_gB_c2c

Example 1 - Disorientation

Plot disorientation on boundaries
[fit,c2cPairs] = job.calcGBFit;
[gB,pairId] = job.grains.boundary.selectByGrainId(c2cPairs); plot(gB, fit);

Example 1 - Graph of OR probability

Reconstruct parent orientations from graph
\% compute parent orientations

1) job.calcGraph
2)

Markov Clustering - https://micans.org/mcl/

1) Probability that a boundary is an OR boundary (and the associated grains share the same parent grain)

Example 1 - Clustering of the graph

Reconstruct parent orientations from graph

\% compute parent orientations
1) job.calcGraph
2) job.clusterGraph \%*

.. graph: 19470 grains in 2615 clusters +2127 single grain clusters
1)

Markov Clustering - https://micans.org/mcl/
2) Clusters formed by Markovian clustering algorithm [0011]

Example 1 - Parent reconstruction from clusters

Reconstruct parent orientations from graph

\% compute parent orientations
1) job.calcGraph
2) job.clusterGraph \%*
3) job.calcParentFromGraph

1)

Markov Clustering - https://micans.org/mcl/
3) Reconstructed clusters

DTU

ミ

Example 1 - Reverting bad reconstructions

Reconstruct parent orientations from graph
\% plot fit and revert bad fits
plot(job.grains, job.grains.fit./degree)
job.revert(job.grains.fit > 5)
job.revert(job.grains.clusterSize < 15)
job.calcParentFromGraph
job.calcParentFromGraph
Fit of child grains to assigned parent orientation via the OR

job.revert

3) Reconstructed clusters after removal of bad fits

Example 1 - Growth-based reconstruction

Fill in empty regions with calcParentFromVote

for	$\mathrm{k}=1: 3 \%$ do this three times
	job.calcGBVotes('noC2C');
	job.calcParentFromVote('minFit', $7.5 *$ degree $)$

job.calcGBVotes('noC2C')

Calculate all parent orientations from a child orientation by applying the $O R$ and find the best fitting parent orientation with the neighboring parent grains

Parent neighbors	Fit
	1.8°
	5.7°

- By iteration ($\mathbf{k}=1: 3$), the parent phase grows into the child phase
- This can also be applied in cases when a lot of parent phase is retained

Reconstructed parent grains after application of growth based algorithm

Example 1 - Cleaning of the microstructure

Clean up the map

o merge grains with similar orientation and absorb inclusions
job.mergeSimilar('threshold', 7.5*degree);
job.mergeInclusions('maxSize',50);

Comment on computational performance

MTEX is written in MATLAB

- MATLAB is often said to be slow - not generally true!
- Fortran and C++ are of course faster, but MATLAB uses external libraries
- This is not true when code is properly vectorized (MATrixLABoratory)

Lath martensite example: 486×707 EBSD map with 21,600 grains

- Reconstruction of lath martensite in 2 stages: 1 min 16 s (conventional office laptop)
- Graph construction, clustering, parent calculation, filtering, voting algorithm
- Entire script: 3 min 35 s (https://github.com/frankNiessen/ORTools\#example-1)
- Grain reconstruction, OR refinement, Parent grain reconstruction (2 stages), Microstructure cleaning, Variant and packet indexing, Plotting of 13 publication ready figures

Example 1 - Reconstructing the parent EBSD data

Reconstruct the parent EBSD data

$\stackrel{\text { DTU }}{\Xi}$

Example 1 - Evaluation

- Generally the agreement looks quite well
- Some grains look unnatural

Example 1 - Variant analysis

Calculating orientation variant and packet Id's

ORTools plotMap_variants

Example 1 - Variant analysis

Calculating orientation variant and packet Id's

job.calcVariants;
plotMap_packets (job, ' linewidth' , 3); \%ORTools

ORTools plotMap_packets

DTU

き

Example 1 - Interactive variant analysis

- Interactive grain specific variant analysis

DTU ORTools

Example 1 - Interactive variant analysis

- Interactive grain specific variant analysis

DTU

 $\#$
Example 2 - Annealed Ti-10V-2AI-3Fe - $\boldsymbol{\beta} \rightarrow \boldsymbol{\alpha}^{\prime \prime}$

- $\boldsymbol{\alpha}(\mathrm{hcp})+\boldsymbol{\beta}(\mathrm{bcc})$ titanium alloy with athermal $\boldsymbol{\alpha}^{\prime \prime}$ (orthorhombic) martensite
- The implemented parent grain reconstruction
- generally works with any combination of parent and child phase
- ignores presence of additional phases (here $\boldsymbol{\alpha}$)

Initial phase map: $\alpha+\beta+\alpha^{\prime \prime}$

Reconstructed: $\alpha+\beta$

Reconstructed: Individually colored $\alpha^{\prime \prime}$ variants

Example $3-\boldsymbol{\beta} \rightarrow \boldsymbol{\alpha}$ phase transition in Ti-alloys

- Low symmetry of α leads to distinct misorientation axes between α grains
- Therefore triple points between α grains can be used for reconstruction of β
- Remaining regions are reconstructed by the growth-based algorithm

Initial phase map: 99.7\% α

Reconstructed β phase

$\stackrel{\text { DTU }}{\Xi}$

Example 4 - Cold rolled High-Mn steel $\boldsymbol{-} \boldsymbol{\gamma} \rightarrow \boldsymbol{\varepsilon} \rightarrow \boldsymbol{\alpha}^{\prime}$

- In 10\% cold rolled high Mn steel two martensitic transformations are observed
- $\boldsymbol{\gamma} \boldsymbol{\boldsymbol { \varepsilon }}$ (fcc $\rightarrow \mathrm{hcp}$): Partially athermal and partially strain-induced
- $\boldsymbol{\varepsilon} \rightarrow \boldsymbol{\alpha}^{\prime}$ (hcp \rightarrow bct): Entirely strain-induced

With courtesy to [S. Pramanik, A.A. Gazder, A.A. Saleh, E. V. Pereloma, Mater. Sci. Eng. A 731 (2018) 506-519.]

Example 4 - Cold rolled High-Mn steel $\boldsymbol{-} \boldsymbol{\gamma} \rightarrow \boldsymbol{\varepsilon} \rightarrow \boldsymbol{\alpha}^{\prime}$

- The implemented algorithm can deal with multiple orders of transformation

DTU

ミ

Example 5 -
 Intercritically annealed martensitic stainless steel

- Growth-based reconstruction from reverted austenite

for $\mathbf{k}=1: 3 \%$ do this three times
job.calcGBVotes('noC2C');
job.calcParentFromVote('minFit', 7.5*degree)

Conclusion

- A versatile framework for analysing phase transitions has been implemented into MTEX 5.6
- The implementation is implemented in a class with modular methods and properties
- Depending on the microstructure, different reconstruction strategies can be chosen
- The reconstruction is automated as much as possible, while maintaining full user control over the reconstruction process
- ORTools is an add-on to MTEX with some additional capabilities for analysis of martensitic microstructures

To-do

- Improving reconstruction accuracy for martensitic microstructures in steel
- Considering local grain boundary misorientation
- Experimenting with different clustering algorithms
- Implementation of transformation texture prediction
- Available work and variant selection analysis
- What do you think needs to be done?

[^0]: *Dr. Azdiar Gazder, University of Wollongong

