Meshing and Finite Element Analysis from EBSD data MTEX workshop – March 8th to 17th, 2021

Dorian Depriester¹

¹MSMP laboratory (EA 7350), École Nationale Supérieure d'Arts et Métiers, 2 cours des Arts et Métiers - 13617, Aix-en-Provence, France

Dorian Depriester — Meshing and Finite Element Analysis

¹ Th. Dessolier et al. (2018). In: *Microscopy analysis*

² F. Di Gioacchino and J. Q. Da Fonseca (2013). In: Experimental Mechanics

53.5

Th. Dessolier et al. (2018). In: *Microscopy analysis*

² F. Di Gioacchino and J. Q. Da Fonseca (2013). In: *Experimental Mechanics*

53.5

1

Fracture in steel

Intergranular fracture of Fe–0.35C–1.5Mn–0.1P³

³ A. Kovalev and D. L. Wainstein (2003). In: Modeling and Simulation for Material Selection and Mechanical Design

⁴ A. Lambert-Perlade et al. (2004). In: *Metallurgical and Materials Transactions A* 35.13

Fracture in steel

Intergranular fracture of Fe–0.35C–1.5Mn–0.1P³

 $\begin{array}{c} \text{Crack initiation in HSLA steel} \\ \text{after thermal cycle and fatigue} \\ \text{test}^4 \end{array}$

³ A. Kovalev and D. L. Wainstein (2003). In: *Modeling and Simulation for Material Selection and Mechanical Design*

⁴ A. Lambert-Perlade et al. (2004). In: *Metallurgical and Materials Transactions A* 35.13

Ceramics

C. Gandhi and M.F. Ashby (1983). In: Perspectives in Creep Fracture

- ⁶ J. Soulacroix (Oct. 2014). Thesis. Ecole Nationale Supérieure d'Arts et
- Métiers

Representative material

 $\mathsf{NEPER} + \mathsf{FEPX}$

- 🖌 Full 3D
- Require reduced informations about the material
- X Local fields cannot be compared with experiment

⁷ E. Héripré et al. (2007). In: International Journal of Plasticity 23.9

Representative material

NEPER + FEPX

🖌 Full 3D

7

- Require reduced informations about the material
- X Local fields cannot be compared with experiment

E. Héripré et al. (2007). In: International Journal of Plasticity 23.9

Objectives

Provide a tool for generating meshes from EBSD data leading to:

- high-fidelity grain shape,
- smooth description of GBs,
- customizable and flexible configuration.

Objectives

Provide a tool for generating meshes from EBSD data leading to:

- high-fidelity grain shape,
- smooth description of GBs,
- customizable and flexible configuration.
- The tool must also be:
- easy-to-use,
- robust against complex grain shapes.

Objectives

Provide a tool for generating meshes from EBSD data leading to:

- high-fidelity grain shape,
- smooth description of GBs,
- customizable and flexible configuration.
- The tool must also be:
- easy-to-use,
- robust against complex grain shapes.

EBSD ·

Mesh

Objectives

Provide a tool for generating meshes from EBSD data leading to:

- high-fidelity grain shape,
- smooth description of GBs,
- customizable and flexible configuration.
- The tool must also be:
- easy-to-use,

robust against complex grain shapes.

EBSD (MTEX) (MTEX)

Objectives

Provide a tool for generating meshes from EBSD data leading to:

- high-fidelity grain shape,
- smooth description of GBs,
- customizable and flexible configuration.
- The tool must also be:
- easy-to-use,

robust against complex grain shapes.

EBSD

Gmsh

- Open source software^a
- Works from command line or GUI
- Allows scripting

^a C. Geuzaine and J.-F. Remacle (2009). In: Int. j. num. meth. in eng. 79.11.

Mesh

Gmsh

Objectives

Provide a tool for generating meshes from EBSD data leading to:

- high-fidelity grain shape,
- smooth description of GBs,
- customizable and flexible configuration.
- The tool must also be:
- easy-to-use,

robust against complex grain shapes.

Gmsh

- Open source software^a
- Works from command line or GUI
- Allows scripting

^a C. Geuzaine and J.-F. Remacle (2009). In: Int. j. num. meth. in eng. 79.11.

- Non-convex grain shapes
- Some nested grains
- Serrated grain boundaries

- Non-convex grain shapes
- Some nested grains
- Serrated grain boundaries

Get enclosing GB

Get enclosing GB
Track triple points (TP)

- Get enclosing GB
- **2** Track triple points (TP)
- **3** Split GB into TP-to-TP segments

- 1 Get enclosing GB
- **2** Track triple points (TP)
- **3** Split GB into TP-to-TP segments
- 4 Approximate each segment with B-Spline

- 1 Get enclosing GB
- **2** Track triple points (TP)
- **3** Split GB into TP-to-TP segments
- 4 Approximate each segment with B-Spline
- 5 Mesh enclosed surfaces

- 1 Get enclosing GB
- 2 Track triple points (TP)
- **3** Split GB into TP-to-TP segments
- 4 Approximate each segment with B-Spline
- 5 Mesh enclosed surfaces

Cubic B-Splines

Properties:

- Variation diminishing (no extraneous undulations)
- C² continuity
- End knots belong to the curve

Gmsh

Mesh properties

- Grain boundaries are well-defined
- Singular points at their exact location
- Each grain is mesh independently

Gmsh

Meshing strategy

- **OD** Nodes at singular points
- 1D Nodes at GBs
- 2D Populate grain area

Mesh properties

- Grain boundaries are well-defined
- Singular points at their exact location
- Each grain is mesh independently

Default

Default

Size gradient

Default

Size gradient

Hexahedrons

Default

Size from curvature

Size gradient

Hexahedrons

Default

Size gradient

Hexahedrons

Size from curvature

Embedded in a medium

Material

Pure copper (248 grains)

Crystal plasticity

Material

Pure copper (248 grains)

Crystal plasticity

Constitutive laws

Deformation gradient tensor $F = F_e F_p$ PKII stress tensor $S = C : \left[\frac{1}{2} \left(F_e^T F_e - I\right)\right]$

CPFEM simulation

Code PRISMS-Plasticity⁸

Mesh 37k hex elements 75k nodes

Comp. 87 hours on 8 cores

⁸ M. Yaghoobi et al. (2019). In: Computational Materials Science 169

CPFEM simulation

Code PRISMS-Plasticity⁸

Mesh 37k hex elements 75k nodes

Comp. 87 hours on 8 cores

⁸ M. Yaghoobi et al. (2019). In: Computational Materials Science 169

 $\Delta odf = odf - odf_0$ (tensile direction: out-of-plane)

Material

Uranium dioxide (610 grains)

Material

Uranium dioxide (610 grains)

eXtended FEM (XFEM)

Elastic-brittle behaviour

Material

Uranium dioxide (610 grains)

eXtended FEM (XFEM)

Elastic-brittle behaviour

Elasticity

$$\sigma_{ij} = C_{ijk\ell} \varepsilon_{k\ell}$$

Material

Uranium dioxide (610 grains)

eXtended FEM (XFEM)

Elastic-brittle behaviour

Elasticity

$$\sigma_{ij} = C_{ijk\ell} \varepsilon_{k\ell}$$

Material

Uranium dioxide (610 grains)

eXtended FEM (XFEM)

Elastic-brittle behaviour

Elasticity

$$\sigma_{ij} = C_{ijk\ell} \varepsilon_{k\ell}$$

Material

Uranium dioxide (610 grains)

eXtended FEM (XFEM)

Elastic-brittle behaviour

Elasticity

$$\sigma_{ij} = C_{ijk\ell} \varepsilon_{k\ell}$$

Material

Uranium dioxide (610 grains)

eXtended FEM (XFEM)

Elastic-brittle behaviour

Elasticity

$$\sigma_{ij} = C_{ijk\ell} \varepsilon_{k\ell}$$

Zener ratio: $\frac{C_{11}-C_{12}}{2C_{44}} = 2.15$

3-point bending test

Notched sample

FEM code

Abaqus 2019 implicit

Mesh

378k hex elements, 766k nodes

Results

- Stress concentration at crack tip
- Changes of crack propagation direction depending on the grains

Abilities of MTEX2Gmsh

- ✓ High-fidelity description of GBs
- ✓ Smooth approximation of GBs
- ✓ Works on multi-phased materials even with complex grain shapes
- Flexible integration (element types, surrounding medium...)

Abilities of MTEX2Gmsh

- High-fidelity description of GBs
- ✓ Smooth approximation of GBs
- ✓ Works on multi-phased materials even with complex grain shapes
- Flexible integration (element types, surrounding medium...)

Disabilities of MTEX2Gmsh

- ✗ Does not work on 3D
- X Out-of-plane constraints cannot be modelled

Abilities of MTEX2Gmsh

- ✓ High-fidelity description of GBs
- ✓ Smooth approximation of GBs
- ✓ Works on multi-phased materials even with complex grain shapes
- Flexible integration (element types, surrounding medium...)

Disabilities of MTEX2Gmsh

- ✗ Does not work on 3D
- X Out-of-plane constraints cannot be modelled

Data availability

https://doriandepriester.github.io/MTEX2Gmsh/a

^a Dorian Depriester and Régis Kubler (2020). In: *Journal of Open Source Software* 5.52.