Using grain boundary irregularity to quantify dynamic recrystallization in ice

Sheng Fan¹; David Prior¹; Andrew Cross^{2,3}; David Goldsby²; Travis Hager²; Marianne Nigrini¹; Chao Qi⁴

¹ University of Otago, New Zealand; ² University of Pennsylvania, USA; ³ Woods Hole Oceanographic Institution, USA; ⁴ Chinese Academy of Sciences, PRC

MARSDEN FUND

TE PŪTEA RANGAHAU A Marsden

This work is financially funded by a University of Otago doctoral scholarship and an Antarctica New Zealand doctoral scholarship to Sheng Fan; two Marsden funds to David Prior; a NASA grant to David Goldsby

Background: Mount Erebus, Antarctica. Photo by: S. Fan

Ice becomes mechanically weaker during deformation

The weakening (enhancement) of ice is tightly correlated with dynamic recrystallization processes

Dynamic recrystallization = formation/migration of grain boundaries

Intragranular boundaries: recovery of dislocations

Dynamic grain growth—grain boundary migration

Nucleation— subgrain rotation/bulging

Weikusat, Ilka, et al. "EBSD analysis of subgrain boundaries and dislocation slip systems in Antarctic and Greenland ice." Solid Earth 8.5 (2017): 883-898. Urai, J. L., W. D. Means, and G. S. Lister. "Dynamic recrystallization of minerals." Mineral and rock deformation: laboratory studies. Vol. 36. Washington, DC: AGU, 1986. 161-199. Halfpenny, Angela, David J. Prior, and John Wheeler. "Analysis of dynamic recrystallization and nucleation in a quartzite mylonite." Tectonophysics 427.1-4 (2006): 3-14.

We know DRX is active during high T deformation BUT, the quantification of DRX remains challenging

Fan, Sheng, et al. "Temperature and strain controls on ice deformation mechanisms: insights from the microstructures of samples deformed to progressively higher strains at – 10, – 20 and – 30° C." The Cryosphere 14.11 (2020): 3875-3905.

Ideal ways of segregating DRX grains at low T do not work at high T

Cross, A. J., et al. "The recrystallized grain size piezometer for quartz: An EBSD-based calibration." Geophysical Research Letters 44.13 (2017): 6667-6674. Cross, A. J., and P. Skemer. "Rates of dynamic recrystallization in geologic materials." Journal of Geophysical Research: Solid Earth 124.2 (2019): 1324-1342.

Grain boundary irregularity: segregate recrystallized grains from remnant grains

Urai, J. L., W. D. Means, and G. S. Lister. "Dynamic recrystallization of minerals." Mineral and rock deformation: laboratory studies. Vol. 36. Washington, DC: AGU, 1986. 161-199.

-20 °C

Sphericity vs. grain size: segregate recrystallized and remnant grains

GBM rate is similar at high and low temperature

Oversampling of highly irregular grains in 2-D sections

Test the sensitivity of EBSD step size

(c) Statistics of grain size and sphericity calculated from EBSD maps with different step sizes

0

5

10

15

20

25

Step size, µm

30

35

40

45

50

0.02

0

0.04 0.06 0.08 0.10 0.12 0.16 0.18 Strain since the estimated onset of dynamic recrystallization

0.14

0.20

Test the sensitivity of grain boundary smoothness

(d) Statistics of grain size and sphericity calculated from smoothed and unsmoothed data

(e) Azimuth of grain boundary segments for undeformed fine-grained ice (~300 μ m)

This work has just been accepted for publication:

Thank you!

Acta Materialia Available online 15 March 2021, 116810 In Press, Journal Pre-proof 3

Using grain boundary irregularity to quantify dynamic recrystallization in ice

Sheng Fan 1 $\stackrel{\circ}{\sim}$ $\stackrel{\boxtimes}{\sim}$, David J. Prior 1 $\stackrel{\boxtimes}{\sim}$, Andrew J. Cross 2,3 $\stackrel{\boxtimes}{\sim}$, David L. Goldsby 2 $\stackrel{\boxtimes}{\sim}$, Travis F. Hager 2 $\stackrel{\boxtimes}{\sim}$, Marianne Negrini 1 $\stackrel{\boxtimes}{\sim}$, Chao Qi 4 $\stackrel{\boxtimes}{\sim}$

Show more \checkmark

😪 Share 🌖 Cite

https://doi.org/10.1016/j.actamat.2021.116810

Get rights and content

For experimental and EBSD analyses details, please contact:

sheng.fan@otago.ac.nz