Active Slip Systems in Plagioclase at a Slow-Spreading Oceanic Ridge

> Maël Allard mael.allard@umontpellier.fr Geosciences Montpellier

MTEX Workshop 2021

Université des Antilles

Mid-ocean ridges

- Divergent tectonic plate boundary
- Create ocean crust by accretion

Studied area

Location map of the Atlantis Bank, background map from GEBCO database

Formation of an Oceanic Core Complex

-> Develops at slow spreading ridges

Cross section cartoons depicting steps of oceanic core complex formation (Lagabrielle et al., 2015)

Plutonic stage : emplacement of gabbros within the mantle rocks at depth and initiation of detachment fault

Tectonic stage : exhumation of the gabbros bodies and surrounding sementinized mantle rocks. Deposition of ophiolitic breccias in response to sedimentary rework ng of cataclastic products

Location map of the Atlantis Bank, background map from GEBCO database

Objectives

temperatures

Petrography & Microstructure

Studied rocks: olivine gabbros

Microstructural observations

Deformation intensity / Index of fabric

Microstructural observations

Plastic deformation

- \sim 800 m of gabbroic rocks
- 115 samples analyzed at the EBSD
 - Variably deformed textures
 - Similar mineralogic assemblage
- Focus on plagioclase (~60% of rock's volume)

Crystal-plastic fabric (CPF) intensity along the depth in Hole U1473A (Dick et al., 2017)

EBSD analyses

EBSD - CPO

EBSD - CPO

12

EBSD - Recrystallization

Automatic selection of grains

- Parameters used:
 - Grain average KAM (< 0.6°)
 - Boundary irregularity (convexity < 1.4)
 - Equivalent diameter (< 700µm)

EBSD - Recrystallization

Plagioclase Clinopyroxene Olivine Orthopyroxene Ilmenite Not indexed

Phase map with location of the subset.

Orientation difference between a parent grain and its recrystallized mantle in plagioclase. Porphyroclast subgrain boundaries are indicated in white.

Progressive Subgrain Rotation recrystallization (**SGR**)

Histogram of misorientations at parent grain boundary.

EBSD - Recrystallization & Misorientations

Representative misorientations characteristics in plagioclase. (a) Misorientation angle distribution histogram, all grains are considered. (b) inverse pole Figures (IPF, antipodal, equal area projection) showing the misorientation axes distributions at subgrain boundaries.

EBSD - Recrystallization & Misorientations

Representative misorientations characteristics in plagioclase. (a) Misorientation angle distribution histogram, all grains are considered. (b) inverse pole Figures (IPF, antipodal, equal area projection) showing the misorientation axes distributions at subgrain boundaries.

EBSD - Misorientations & slip systems

Conclusion

Identified slip systems:

> Dislocation creep active from \sim 900°C to 700-600°C

ip systems	[100](010)	[001](010)	[100](001)	½[110](001)	½[110](001)
T (°C)	> 900 - ~ 600	800 - 600	750 - ~ 600	700 - 650	700 - ~ 600
Decreasing temperature					
Oceanic Core Complex development axis of the spreading ridge axis of the spreading ridge					
Tormer en serp lithosphere	entinized mantle	screes x x x x	hanging wal	Cartoons depicting th	ne evolution of the
Plutonic stage : emplacement of gabbros within the		e Tectonic stage : exhu	Tectonic stage : exhumation of the gabbros bodies		sement using the

Plutonic stage : emplacement of gabbros within the mantle rocks at depth and initiation of detachment fault

Tectonic stage : exhumation of the gabbros bodie and surrounding serpentinized mantle rocks. Deposition of ophiolitic breccias in response to sedimentary reworking of cataclastic products Cartoons depicting the evolution of the Tethyan oceanic basement using the model of OCC development (Lagabrielle 18 et al., 2015)

Thank you

Christmas balls ornaments in ilmenite pole figures

