Lecture 3 - Rotations and Symmetries

R. Hielscher
Faculty of Mathematics,
Chemnitz University of Technology, Germany

MTEX Workshop 2021

Active vs. Passive Rotations

Active Rotations

An active rotation is a mapping of the Euclidean space onto itself that keeps at least one point and all distances invariant and preserves orientation.

Passive Rotations

A passive rotation is a coordinate transform from one right handed, orthonormal coordinate system into another one.

Improper Rotations

An improper rotation is a rotation that switches between left handed and right handed coordinate systems.
the matrix $\mathbf{M}=\left(\begin{array}{ccc}\mid & \mid & \mid \\ \overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \overrightarrow{v_{3}} \\ \mid & \mid & \mid\end{array}\right)$
rotates
$\overrightarrow{e_{1}} \mapsto \overrightarrow{v_{1}}, \overrightarrow{e_{2}} \mapsto \overrightarrow{v_{2}}, \overrightarrow{e_{3}} \mapsto \overrightarrow{v_{3}}$

M transforms coordinates from the reference frame ($\left.\vec{v}_{1}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right)$ into the reference frame $\left(\vec{e}_{1}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}\right)$
$\tilde{\mathbf{M}}=-\mathbf{M}$ additionally mirrors all vectors at the origin

Defining Active Rotations

by axis angle
$\mathrm{v}=\mathrm{vector} 3 \mathbf{d}(1,0,0)$
$\mathrm{w}=90 *$ degree
$r=$ rotation . byAxisAngle ($v, w)$
$r=$ rotation
Bunge Euler angles in degree
$\begin{array}{rrrr}\text { phi1 } & \text { Phi } & \text { phi2 } & \text { Inv. } \\ 0 & 90 & 0 & 0\end{array}$

Defining Active Rotations

by axis angle

```
v = vector3d(1,0,0)
w = 90*degree
r = rotation.byAxisAngle(v,w)
```

by Euler angles

```
r = rotation.byEuler(0,0, pi/2)
```

$r=\underline{\text { rotation }}$

```
Bunge Euler angles in degree
phi1
```


Defining Active Rotations

by axis angle

v	$=$ vector $3 \mathbf{d}(1,0,0)$
w	$=90 *$ degree
r	$=$ rotation. by AxisAngle (v, w)

by Euler angles

```
|r= rotation.byEuler(0,0,pi/2)
```

by a rotation matrix
$\mathrm{M}=\left[\begin{array}{ccccccccc}1 & 0 & 0 ; & 0 & 0 & -1 ; & 0 & 1 & 0\end{array}\right]$
$r=$ rotation.byMatrix (M)
$r=\underline{\text { rotation }}$

```
Bunge Euler angles in degree
phi1
```


Defining Active Rotations

by axis angle

$$
\begin{aligned}
\mathrm{v} & =\text { vector } 3 \mathbf{d}(1,0,0) \\
\mathrm{w} & =90 * \text { degree } \\
\mathrm{r} & =\text { rotation } . \text { by AxisAngle }(\mathrm{v}, \mathrm{w})
\end{aligned}
$$

by Euler angles

$$
\|=\text { rotation byEuler }(0,0, \mathrm{pi} / 2)
$$

by a rotation matrix

$$
\mathrm{M}=\left[\begin{array}{ccccccccc}
1 & 0 & 0 ; & 0 & 0 & -1 ; & 0 & 1 & 0
\end{array}\right]
$$

$$
r=\text { rotation by Matrix }(M)
$$

by pairs of vectors

$$
u 1=\operatorname{vector} 3 d . Z ; v 1=u 1
$$

$$
u 2=\text { vector } 3 \mathbf{d} . X ; \quad v 2=\text { vector } 3 \mathbf{d} . Y
$$

$$
r=\text { rotation } \cdot \operatorname{map}(u 1, v 1, u 2, v 2)
$$

Defining Active Rotations

by axis angle

$$
\begin{aligned}
\mathrm{v} & =\text { vector } 3 \mathbf{d}(1,0,0) \\
\mathrm{w} & =90 * \text { degree } \\
\mathrm{r} & =\text { rotation } . \text { by AxisAngle }(\mathrm{v}, \mathrm{w})
\end{aligned}
$$

by Euler angles

$$
\| r=\text { rotation } \cdot \text { byEuler }(0,0, \mathrm{pi} / 2)
$$

by a rotation matrix

$$
\mathrm{M}=\left[\begin{array}{ccccccccc}
1 & 0 & 0 ; & 0 & 0 & -1 ; & 0 & 1 & 0
\end{array}\right]
$$

$$
r=\text { rotation by Matrix }(M)
$$

by pairs of vectors

$$
\begin{aligned}
u 1 & =\text { vector } 3 \mathbf{d} \cdot Z ; v 1=u 1 \\
u 2 & =\text { vector } 3 \mathbf{d} \cdot X ; v 2=\text { vector } 3 d . Y \\
r & =\text { rotation } \cdot \operatorname{map}(u 1, v 1, u 2, v 2)
\end{aligned}
$$

$$
\| r=\text { rotation } \cdot \mathbf{f i t}(u, v)
$$

Defining Active Rotations

by axis angle

$$
\begin{aligned}
\mathrm{v} & =\text { vector } 3 \mathbf{d}(1,0,0) \\
\mathrm{w} & =90 * \text { degree } \\
\mathrm{r} & =\text { rotation } . \text { byAxisAngle }(\mathrm{v}, \mathrm{w})
\end{aligned}
$$

by Euler angles
import rotations

```
r = rotation.load('file.txt' ,...
    'ColumnNames
    {'phi1','Phi','phi2'})
r = rotation 
```

$r=$ rotation $\operatorname{byEuler}(0,0, \mathrm{pi} / 2)$
by a rotation matrix
$\mathrm{M}=\left[\begin{array}{ccccccccc}1 & 0 & 0 ; & 0 & 0 & -1 ; & 0 & 1 & 0\end{array}\right]$
$r=$ rotation.byMatrix (M)
by pairs of vectors

```
u1 = vector3d.Z; v1 = u1
    u2 = vector3d.X; v2 = vector3d.Y
    r = rotation map(u1,v1,u2,v2)
```

 \(r=\) rotation.fit \((u, v)\)

Defining Active Rotations

by axis angle

$$
\begin{aligned}
\mathrm{v} & =\text { vector } 3 \mathbf{d}(1,0,0) \\
\mathrm{w} & =90 * \text { degree } \\
\mathrm{r} & =\text { rotation } . \text { by AxisAngle }(\mathrm{v}, \mathrm{w})
\end{aligned}
$$

by Euler angles
$\| r=$ rotation \cdot byEuler ($0,0, \mathrm{pi} / 2$)
by a rotation matrix
import rotations
$r=$ rotation.load('file.txt',. . 'ColumnNames ' , ... \{'phi1', 'Phi', 'phi2'\})
random rotations
$r=$ rotation rand (100)
$\mathrm{r}=\frac{\text { rotation }}{\text { size: } 1 \times 100}$
$\mathrm{M}=\left[\begin{array}{ccccccccc}1 & 0 & 0 ; & 0 & 0 & -1 ; & 0 & 1 & 0\end{array}\right]$
$r=$ rotation.byMatrix (M)
by pairs of vectors

```
u1 = vector3d.Z; v1 = u1
    u2 = vector3d.X; v2 = vector3d.Y
    r = rotation.map(u1,v1,u2,v2)
```

 \(r=\) rotation.fit \((u, v)\)

Defining Active Rotations

by axis angle

$$
\begin{aligned}
\mathrm{v} & =\text { vector } 3 \mathbf{d}(1,0,0) \\
\mathrm{w} & =90 * \text { degree } \\
\mathrm{r} & =\text { rotation } . \text { by AxisAngle }(\mathrm{v}, \mathrm{w})
\end{aligned}
$$

import rotations
$r=$ rotation.load('file.txt',. . 'ColumnNames ' , ... \{'phi1', 'Phi', 'phi2'\})
random rotations
$r=$ rotation \cdot rand (100)
identity and inversion

```
r = rotation.id
r = rotation.inversion
\(r=\) rotation.id
\(r=\) rotation.inversion
```

$r=\underline{\text { rotation }}$
$r=\underline{\text { rotation }}$

by a rotation matrix
$\left.\begin{array}{rl}M & =\left[\begin{array}{llllllll}1 & 0 & 0 ; & 0 & 0 & -1 ; & 0 & 1\end{array}\right. \\ r & =\text { rotation. by Matrix }(M)\end{array}\right]$
by pairs of vectors

$$
\begin{aligned}
u 1 & =\text { vector } 3 \mathbf{d} \cdot Z ; v 1=u 1 \\
u 2 & =\text { vector } 3 \mathbf{d} \cdot X ; v 2=\text { vector } 3 d . Y \\
r & =\text { rotation } \cdot \operatorname{map}(u 1, v 1, u 2, v 2)
\end{aligned}
$$

$r=$ rotation.fit (u, v)

Defining Active Rotations

by axis angle

$$
\begin{aligned}
\mathrm{v} & =\text { vector } 3 \mathbf{d}(1,0,0) \\
\mathrm{w} & =90 * \text { degree } \\
\mathrm{r} & =\text { rotation } . \text { by AxisAngle }(\mathrm{v}, \mathrm{w})
\end{aligned}
$$

import rotations
$r=$ rotation.load('file.txt', \ldots 'ColumnNames ' , ... \{'phi1', 'Phi', 'phi2'\})
random rotations
$r=$ rotation \cdot rand (100)
identity and inversion

```
r = rotation.id
r = rotation.inversion
```


a reflextion

```
r = reflection(vector3d.X)
r = rotation
```

 Bunge Euler angles in degree
 phi1 Phi phi2 Inv.
 \(\begin{array}{llll}0 & 180 & 0 & 1\end{array}\)
 by pairs of vectors

```
u1 = vector3d.Z; v1 = u1
    u2 = vector3d.X; v2 = vector3d.Y
    r = rotation.map(u1,v1,u2,v2)
```

 \(r=\) rotation.fit \((u, v)\)

Euler Angles

Definition (Euler angles)

Let $\varphi_{1}, \varphi_{2} \in[0,2 \pi]$ and $\Phi \in[0, \pi]$. Then $\varphi_{1}, \Phi, \varphi_{2}$ are called the Euler angles of the rotation

$$
\mathbf{R}\left(\varphi_{1}, \Phi, \varphi_{2}\right)=\mathbf{R}_{\vec{Z}, \varphi_{1}} \mathbf{R}_{\vec{X}, \Phi} \mathbf{R}_{\vec{Z}, \varphi_{2}}
$$

|rot $=$ rotation.byEuler ($10 *$ degree, $20 *$ degree, $30 *$ degree $)$

- For every rotation \mathbf{R} there are Euler angles $\varphi_{1}, \Phi, \varphi_{2}$ such that $\mathbf{R}=\mathbf{R}\left(\varphi_{1}, \Phi, \varphi_{2}\right)$.
- For specific rotations R the Euler angles are not unique, e.g.

$$
\mathbf{R}_{\vec{z}, \omega}=\mathbf{R}\left(\varphi_{1}, 0, \omega-\varphi_{1}\right)
$$

- Euler angles are the most common way to specify and visualize rotations in texture analysis.
- The ambiguity makes visualization with respect to Euler angles hard to interpret.

Operations with Rotations

$$
\begin{aligned}
& \text { vector rotation } \\
& \mathrm{v}=\operatorname{rot} \cdot * \mathrm{u} \\
& \text { concatenation } \\
& \operatorname{rot}=\operatorname{rot} 1 . * \operatorname{rot} 2 \\
& \mathrm{v}=\operatorname{rot} \cdot * \mathrm{u} \\
& \mathrm{v}=\operatorname{rot} 1 *(\operatorname{rot} 2 * u)
\end{aligned}
$$

inverse of a rotation / misrotation

```
inv(rot1)
inv(rot1) .* rot2
```

basic statistics

```
mean(rot)
mean(rot, 'weights',w)
std(rot)
unique(rot)
```

extract Euler angles
$\|$ [phi1, Phi, phi2] = Euler (rot)
extract matrix
|rot.matrix
rotation vectors
rot. Rodrigues
rot.homochoric
rot.cubochoric
axis / angle

```
rot.axis, rot.angle
angle(rot1, rot2)
```

quaternion

```
[a,b,c,d]= double(rot)
quaternion(rot)
```

Visualizing Rotations

Euler angle space
rot $=$ rotation. rand plot(rot)
axis angle space
plot (rot, 'axisAng/e')
Euler angle φ_{2} sections
plotSection(rot, 'phi2')
axis angle sections
plotSection (rot, 'axisAng/e')

Visualizing Rotations

Euler angle space

```
rot = rotation.rand
plot(rot)
```

axis angle space
|plot (rot, 'axisAngle')
Euler angle φ_{2} sections
plotSection(rot, 'phi2')
axis angle sections
plotSection(rot, 'axisAng/e')

Visualizing Rotations

Euler angle space

```
rot = rotation.rand
plot(rot)
```

axis angle space
plot (rot, 'axisAng/e')
Euler angle φ_{2} sections
plotSection(rot, 'phi2')

Visualizing Rotations

Euler angle space

```
rot = rotation.rand
plot(rot)
```

axis angle space
plot (rot, 'axisAng/e')
Euler angle φ_{2} sections
plotSection(rot, 'phi2')
axis angle sections
plotSection (rot, 'axisAngle')

Summary of Rotation Representations

name	notation	space	dimension
matrix	\mathbf{R}	$\mathbb{R}^{3 \times 3}$	9
Euler angles	$\left(\varphi_{1}, \Phi, \varphi_{2}\right)$	$[0,2 \pi] \times[0, \pi] \times[0,2 \pi]$	3
quaternion	$\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$	\mathbb{S}^{4}	4
Rodrigues - Frank	$\tan \frac{\omega}{2} \vec{v}$	\mathbb{R}^{3}	3
axis angle	$\omega \vec{v}$	\mathbb{B}^{3}	3
Miller-Bravais Indices	$(h k l)[u v w]$	$\mathbb{S}^{2} \times \mathbb{S}^{2}$	6

Symmetries

Definition

A symmetry is a transformation that keeps something invariant.

Affine Transformations

Definition

Affine transformations are transformations

$$
\mathbf{S}(\vec{x})=\mathbf{R} \vec{x}+\vec{t}
$$

that are compositions of a rotation $\mathbf{R} \in O(3)$ and a translation $\vec{t} \in \mathbb{R}^{3}$.
The set of all affine transformations in the three dimensional space is called Euclidean motion group and is denoted by $\mathrm{SE}(3)$.

Let $\mathbf{S}_{1}(\vec{x})=\mathbf{R}_{1} \vec{x}+\vec{t}_{1}$ and $\mathbf{S}_{1}(\vec{x})=\mathbf{R}_{1} \vec{x}+\vec{t}_{1}$ be two affine transformations. Then their composition

$$
\mathrm{S}_{2} \circ \mathrm{~S}_{1}(\vec{x})=\mathrm{S}_{2}\left(\mathrm{~S}_{1}(\vec{x})\right)=\mathrm{R}_{2} \mathbb{R}_{1} \vec{x}+\mathbb{R}_{2} \overrightarrow{t_{1}}+\overrightarrow{t_{2}}
$$

is again an affine transformation.

Affine Transformations

Definition

Affine transformations are transformations

$$
\mathbf{S}(\vec{x})=\mathbf{R} \vec{x}+\vec{t}
$$

that are compositions of a rotation $\mathbf{R} \in O(3)$ and a translation $\vec{t} \in \mathbb{R}^{3}$.
The set of all affine transformations in the three dimensional space is called Euclidean motion group and is denoted by $\mathrm{SE}(3)$.

Let $\mathbf{S}_{1}(\vec{x})=\mathbf{R}_{1} \vec{x}+\overrightarrow{t_{1}}$ and $\mathbf{S}_{1}(\vec{x})=\mathbf{R}_{1} \vec{x}+\overrightarrow{t_{1}}$ be two affine transformations. Then their composition

$$
\mathbf{S}_{2} \circ \mathbf{S}_{1}(\vec{x})=\mathbf{S}_{2}\left(\mathbf{S}_{1}(\vec{x})\right)=\mathbf{R}_{2} \mathbf{R}_{1} \vec{x}+\mathbf{R}_{2} \vec{t}_{1}+\vec{t}_{2}
$$

is again an affine transformation.

Crystal Symmetries

Definition

The subset $\mathcal{E} \subset \mathrm{SE}(3)$ off all affine transformations that keep the atom lattice invariant is called space group of the crystal.

The space group \mathcal{S} together with the composition \circ is a group, since for any two symmetries $\mathbf{S}_{1}, \mathbf{S}_{2} \in \mathcal{E}$ we have $\mathbf{S}_{1} \circ \mathbf{S}_{2} \in \mathcal{E}$.

Definition

Let $\mathbf{S}_{1}, \ldots, \mathbf{S}_{n} \in S E(3)$ arbitrary affine transformations. Then we denote by $\left\langle\mathbf{S}_{1}, \ldots, \mathbf{S}_{n}\right\rangle$ the smallest subgroup of $S E(3)$ that contains the transformations $\mathbf{S}_{1}, \ldots, \mathbf{S}_{n}$ and call it the group generated by S_{1},

Example
The groun generated by the rotation $\mathbb{R}_{\bar{z}, 120^{\circ}}$ about 120° about the z-axis is

$$
\left\langle\mathbf{R}_{\vec{z}, 120^{\circ}}\right\rangle=\left\{\mathbf{R}_{\vec{z}, 120^{\circ}}, \mathbf{R}_{\vec{z}, 120^{\circ}}^{2}, \mathbf{R}_{\vec{z}, 120^{\circ}}^{3}\right\}=\left\{\mathbf{R}_{\vec{z}, 0^{\circ}}, \mathbf{R}_{\vec{z}, 120^{\circ}}, \mathbf{R}_{\vec{z}, 240^{\circ}}\right\}
$$

Crystal Symmetries

Definition

The subset $\mathcal{E} \subset \mathrm{SE}(3)$ off all affine transformations that keep the atom lattice invariant is called space group of the crystal.

The space group \mathcal{S} together with the composition \circ is a group, since for any two symmetries $\mathbf{S}_{1}, \mathbf{S}_{2} \in \mathcal{E}$ we have $\mathbf{S}_{1} \circ \mathbf{S}_{2} \in \mathcal{E}$.

Definition

Let $\mathbf{S}_{1}, \ldots, \mathbf{S}_{n} \in S E(3)$ arbitrary affine transformations. Then we denote by $\left\langle\mathbf{S}_{1}, \ldots, \mathbf{S}_{n}\right\rangle$ the smallest subgroup of $S E(3)$ that contains the transformations $\mathbf{S}_{1}, \ldots, \mathbf{S}_{n}$ and call it the group generated by $\mathbf{S}_{1}, \ldots, \mathbf{S}_{n}$.

Example

The group generated by the rotation $\mathbf{R}_{\vec{z}, 120^{\circ}}$ about 120° about the \mathbf{z}-axis is

$$
\left\langle\mathbf{R}_{\vec{z}, 120^{\circ}}\right\rangle=\left\{\mathbf{R}_{\vec{z}, 120^{\circ}}, \mathbf{R}_{\vec{z}, 120^{\circ}}^{2}, \mathbf{R}_{\vec{z}, 120^{\circ}}^{3}\right\}=\left\{\mathbf{R}_{\vec{z}, 0^{\circ}}, \mathbf{R}_{\vec{z}, 120^{\circ}}, \mathbf{R}_{\vec{z}, 240^{\circ}}\right\}
$$

```
Generate Point Groups in MTEX
Z = vector3d.Z
rot = rotation.byAxisAngle(Z, 120*degree)
cs = crystalSymmetry.byElements(rot)
cs.rot = rotation
    #unge Euler angles in degree
    phi1 Phi phi2 Inv.
    240 0 0 0
    120 0 0 0
        0 0 0
```


Generate Point Groups in MTEX

```
Z = vector3d.Z
rot = rotation.byAxisAngle(Z, 120*degree)
cs = crystalSymmetry.byElements(rot)
```

add some mirroring
$\mathrm{m}=$ reflection (vector $3 \mathrm{~d} . \mathrm{X}$)
cs = crystalSymmetry.byElements ([rot, m])

```
CS.rot = rotation
    size: 6 x 1
```

 Bunge Euler angles in degree
 phi1 Phi phi2 Inv
 \(\begin{array}{llll}240 & 180 & 0 & 1\end{array}\)
 \(\begin{array}{llll}0 & 180 & 240 & 1\end{array}\)
 \(\begin{array}{llll}120 & 180 & 120 & 1\end{array}\)
 \(240 \quad 0 \quad 0 \quad 0\)
 \(\begin{array}{rrrr}120 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\)

Generate Point Groups in MTEX

```
Z = vector3d.Z
rot = rotation.byAxisAngle(Z, 120*degree)
cs = crystalSymmetry.byElements(rot)
```

add some mirroring

```
m = reflection(vector3d.X)
cs = crystalSymmetry.byElements([rot, m])
```

add the inversion

```
cs = cs.add(rotation.inversion)
cs = crystalSymmetry
```

```
symmetry : -3m1
elements
    : 12
a, b, c : 1, 1, 1
reference frame: X||a, Y||b, Z||c
```


Generate Point Groups in MTEX

```
Z = vector3d.Z
rot = rotation.byAxisAngle(Z, 120*degree)
cs = crystalSymmetry.byElements(rot)
```


add some mirroring

```
m = reflection(vector3d.X)
cs = crystalSymmetry.byElements([rot, m])
```

add the inversion
cs = cs.add(rotation.inversion)
some quasi symmetry
r2 $=$ rotation.byAxisAngle ($Z, \quad 180 *$ degree $)$
a5 $=$ vector3d.byPolar(31.7171*degree, 0)
r5 $=$ rotation.byAxisAngle (a5, $72 *$ degree)
$\mathrm{cs}=$ crystalSymmetry.byElements ([r2, r5])

Point Groups

Definition

Let $\mathcal{E}=\left\{\left(\mathbf{R}_{1}, \vec{t}_{1}\right),\left(\mathbf{R}_{2}, \vec{t}_{2}\right), \ldots\right\}$ be the space group of a crystal structure. Then $\mathcal{P}=\left\{\mathbf{R}_{1}, \mathbf{R}_{2}, \ldots\right\}$ is a subgroup of $O(3)$ and called the point group of the crystal structure.

- The space group describes the symmetries of an infinite periodic crystal lattice.
- The point group describes the symmetries of the finite unit cell.

Goal
Characterize and describe all possible space groups \mathcal{E} and all possible point groups \mathcal{P}
Result
There are exactly 230 different space groups and 32 different point groups.

Point Groups

Definition

Let $\mathcal{E}=\left\{\left(\mathbf{R}_{1}, \vec{t}_{1}\right),\left(\mathbf{R}_{2}, \vec{t}_{2}\right), \ldots\right\}$ be the space group of a crystal structure. Then $\mathcal{P}=\left\{\mathbf{R}_{1}, \mathbf{R}_{2}, \ldots\right\}$ is a subgroup of $O(3)$ and called the point group of the crystal structure.

- The space group describes the symmetries of an infinite periodic crystal lattice.
- The point group describes the symmetries of the finite unit cell.

Goal:

Characterize and describe all possible space groups \mathcal{E} and all possible point groups \mathcal{P}.

There are exactly 230 different space groups and 32 different point groups.

Point Groups

Definition

Let $\mathcal{E}=\left\{\left(\mathbf{R}_{1}, \vec{t}_{1}\right),\left(\mathbf{R}_{2}, \vec{t}_{2}\right), \ldots\right\}$ be the space group of a crystal structure. Then $\mathcal{P}=\left\{\mathbf{R}_{1}, \mathbf{R}_{2}, \ldots\right\}$ is a subgroup of $O(3)$ and called the point group of the crystal structure.

- The space group describes the symmetries of an infinite periodic crystal lattice.
- The point group describes the symmetries of the finite unit cell.

Goal:

Characterize and describe all possible space groups \mathcal{E} and all possible point groups \mathcal{P}.

Result:

There are exactly 230 different space groups and 32 different point groups.

Symmetry Operations

name	affine transformation	Hermann－Mauguin symbol	graphical symbol
rotational axis	$\mathbf{R}_{\vec{d}, \underline{360}}$	2，3，4，6	$1 \pm \square$
inversion	${ }_{-}^{n}$	$\overline{1}$	－
mirror plane	$-\mathbf{R}_{\vec{n}, 180}$	$m=\overline{2}$	
rotoinversion axis	$-\mathbf{R}_{\vec{d}, \frac{360^{\circ}}{}}$	$\overline{3}, \overline{4}, \overline{6}$	$\Delta ⿴ 囗 大$
translation	t		
screw axis	$\mathbf{R}_{\vec{d}, \frac{360^{\circ}}{}}+\vec{d}$	$2{ }_{1}, 3_{1}, 3_{2}, 4_{1}, 4_{2}, 4_{3}$	
		$6_{1}, 6_{2}, 6_{3}, 6_{4}, 6_{5}$	
glide plane	$-\mathbf{R}_{\vec{d}, \frac{180^{\circ}}{n}}+\vec{d}$	a, b, c, n, d	

Cyclic Groups

- $\mathbf{S} \in \mathcal{P} \Longrightarrow \mathbf{S}^{n} \in \mathcal{P}$, for all $n \in \mathbb{Z}$
- $\mathbf{R}_{\vec{d}, \frac{1}{m} 360^{\circ}} \in \mathcal{P} \Longrightarrow \mathbf{R}_{\vec{d}, \frac{n}{m} 360^{\circ}} \in \mathcal{P}, n=0, \ldots, m-1$.
- Only rotational axes of order 2, 3, 4, 6 are compatible with periodic lattices

Dieder Groups

Two two fold symmetry axis \vec{a}, \vec{b} at an angle generate a perpendicular symmetry axis
$-\mathbf{R}_{\vec{a}, \pi}, \mathbf{R}_{\vec{b}, \pi} \in \mathcal{P}, \measuredangle(\vec{a}, \vec{b})=\frac{\pi}{n} \Longrightarrow \mathbf{R}_{\vec{a} \times \vec{b}, \frac{2 \pi}{n}} \in \mathcal{P}$

Tetragonal and Cubic Symmetry

- \vec{a} - m-fold symmetry axis, $m>2$
- \vec{b} - n-fold symmetry axis
$\downarrow \Longrightarrow \mathbf{R}_{\vec{a}, \frac{k}{m} 2 \pi} \vec{b}, k=1, \ldots, m$ are n-fold symmetry axes
$-\Longrightarrow \mathbf{R}_{\vec{b}, \frac{k}{n} 2 \pi} \vec{a}, k=1, \ldots, n$ are m-fold symmetry axes
$\triangleright \Longrightarrow \mathbf{R}_{\vec{b}, \frac{2 k+1}{2 n} 2 \pi} \vec{a}, k=0, \ldots, n$ are 2 -fold symmetry axes

$23(T)$
- assume \vec{a}, \vec{b} have minimum angle in \mathcal{P}
- $\Longrightarrow \mathbf{R}_{\vec{a}, \frac{k}{m} 2 \pi} \vec{b}, k=1, \ldots, m$ form a regular spherical polygon $P_{\vec{a}}$
- applying all symmetry operations of \mathcal{P} to $P_{\vec{a}}$ will cover the whole sphere by disjoint copies of $P_{\vec{a}}$
- \Longrightarrow the copies of $P_{\vec{a}}$ form a Platonic solid
- \Longrightarrow only tetrahedron and cube (octahedron) are relevant

All 11 Enantiomorphic Symmetry Groups

All 11 Laue Symmetry Groups

10 mixed groups

Summary Symmetry Groups

- 11 purely rotational (enatiomorphic) groups:
- used in most software,
- only proper rotations are considered
- 11 Laue groups (with inversion center, centrosymmetric groups):
- correct models for most diffraction experiments, e.g. X-ray diffraction, EBSD
- only few physical properties are not centrosysmmetric e.g., piezoelectricity
- 10 mixed groups
- without inversion center
- each with equally many proper and improper symmetry elements
- 32 different point groups
- do not represent actual symmetries of the atom lattice - only modulu translation
> 230 different point groups
- The translation vectors always coincide with the screw axes.
- completely described in International Tables for Crystallography, 2016

Summary Symmetry Groups

- 11 purely rotational (enatiomorphic) groups:
- used in most software,
- only proper rotations are considered
- 11 Laue groups (with inversion center, centrosymmetric groups):
- correct models for most diffraction experiments, e.g. X-ray diffraction, EBSD
- only few physical properties are not centrosysmmetric e.g., piezoelectricity
> 10 mixed groups
- without inversion center
- each with equally many proper and improper symmetry elements
- 32 different point groups
- do not represent actual symmetries of the atom lattice - only modulu translation
- 230 different point groups
- The translation vectors always coincide with the screw axes.
- completely described in International Tables for Crystallography, 2016

Summary Symmetry Groups

- 11 purely rotational (enatiomorphic) groups:
- used in most software,
- only proper rotations are considered
- 11 Laue groups (with inversion center, centrosymmetric groups):
- correct models for most diffraction experiments, e.g. X-ray diffraction, EBSD
- only few physical properties are not centrosysmmetric e.g., piezoelectricity
- 10 mixed groups
- without inversion center
- each with equally many proper and improper symmetry elements
- 32 different point groups
- do not represent actual symmetries of the atom lattice - only modulu translation
- 230 different point groups
- The translation vectors always coincide with the screw axes.
- completely described in International Tables for Crystallography, 2016

Summary Symmetry Groups

- 11 purely rotational (enatiomorphic) groups:
- used in most software,
- only proper rotations are considered
- 11 Laue groups (with inversion center, centrosymmetric groups):
- correct models for most diffraction experiments, e.g. X-ray diffraction, EBSD
- only few physical properties are not centrosysmmetric e.g., piezoelectricity
- 10 mixed groups
- without inversion center
- each with equally many proper and improper symmetry elements
- 32 different point groups
- do not represent actual symmetries of the atom lattice - only modulu translation
- 230 different point groups
- The translation vectors always coincide with the screw axes.
- completely described in International Tables for Crystallography, 2016

Summary Symmetry Groups

- 11 purely rotational (enatiomorphic) groups:
- used in most software,
- only proper rotations are considered
- 11 Laue groups (with inversion center, centrosymmetric groups):
- correct models for most diffraction experiments, e.g. X-ray diffraction, EBSD
- only few physical properties are not centrosysmmetric e.g., piezoelectricity
- 10 mixed groups
- without inversion center
- each with equally many proper and improper symmetry elements
- 32 different point groups
- do not represent actual symmetries of the atom lattice - only modulu translation
- 230 different point groups
- The translation vectors always coincide with the screw axes.
- completely described in International Tables for Crystallography, 2016

Defining Crystal Symmetries in MTEX

```
cs = crystalSymmetry('m-3m') % by international symbol
cs = crystalSymmetry('Oh') % by Schoenflies notation
cs = crystalSymmetry('Fm-3m') % by space group
% import CIF file
cs = crystalSymmetry.load('quartz.cif')
% download from Crystallography Open Database
cs = crystalSymmetry.load('5000036')
```

cs . properGroup
cs. Laue
cs.rot

```
plotb2east
plot(cs)
```


The 14 Bravais lattices

Question: Which lattices are compatible with the symmetry groups?

The 14 Bravais lattices

Question: Which lattices are compatible with the symmetry groups?
Compatibility with the points groups leads to the 7 crystal systems:
-triclinic •monoclinic •orthorhombic •trigonal •tetragonal •hexagonal •cubic

The 14 Bravais lattices

Question: Which lattices are compatible with the symmetry groups?
Compatibility with the points groups leads to the 7 crystal systems:
-triclinic •monoclinic •orthorhombic •trigonal •tetragonal •hexagonal •cubic

Compatibility with the space groups leads to the the 14 Bravais lattices which additionally separates how the atoms are aligned with the lattice points:

- primitive
- base centered
- body centered
- face centered

triclinic

$a \neq b \neq c$,
$\alpha \neq \beta \neq \gamma$

mononclinic

$a \neq b \neq c$,
$\alpha=\gamma=90^{\circ}$
$\beta>90^{\circ}$

$$
\beta \neq 90^{\circ}
$$

orthorhombic
$a \neq b \neq c$,
$\alpha=\beta=90^{\circ}$
$\gamma=90^{\circ}$

tetragonal

$a=b \neq c$,
$\alpha=\beta=90^{\circ}$
$\gamma=90^{\circ}$

trigonal

$a=b \neq c$,
$\alpha=\beta=90^{\circ}$
$\gamma=120^{\circ}$

hexagonal
$a=b \neq c$,
$\alpha=\beta=90^{\circ}$
$\gamma=120^{\circ}$

cubic
$a=b=c$,
$\alpha=\beta=90^{\circ}$
$\gamma=90^{\circ}$

A Practical Example

- checkout https://materialsproject.org/materials/mp-2657/\#
- download cif file

The Ambiguity of the Crystal Coordinate System

the axes of the crystal coordinate system $\vec{a}, \vec{b}, \vec{c}$ are always chosen such that

- the translations $\mathbf{T}_{\vec{a}}, \mathbf{T}_{\vec{b}}, \mathbf{T}_{\vec{c}}$ are symmetry elements of the space group
- \vec{c} is the axis of highest symmetry (except for monoclinic and 23)
- \vec{a} or \vec{b} are aligned with the symmetry axes perpendicular to \vec{c}

The Ambiguity of the Crystal Coordinate System

the axes of the crystal coordinate system $\vec{a}, \vec{b}, \vec{c}$ are always chosen such that

- the translations $\mathbf{T}_{\vec{a}}, \mathbf{T}_{\vec{b}}, \mathbf{T}_{\vec{c}}$ are symmetry elements of the space group
- \vec{c} is the axis of highest symmetry (except for monoclinic and 23)
- \vec{a} or \vec{b} are aligned with the symmetry axes perpendicular to \vec{c}

critical symmetries

monoclinic alignment of the two fold axis: $211,121,112, m 11,1 m 1,11 m$,

orthorhombic alignment of the two fold axis: $2 m m, m 2 m, m m 2$

trigonal alignment of the two fold axis: 321,312

The Ambiguity of the Crystal Coordinate System

the axes of the crystal coordinate system $\vec{a}, \vec{b}, \vec{c}$ are always chosen such that

- the translations $\mathbf{T}_{\vec{a}}, \mathbf{T}_{\vec{b}}, \mathbf{T}_{\vec{c}}$ are symmetry elements of the space group
- \vec{c} is the axis of highest symmetry (except for monoclinic and 23)
- \vec{a} or \vec{b} are aligned with the symmetry axes perpendicular to \vec{c}

critical symmetries

monoclinic alignment of the two fold axis: $211,121,112, m 11,1 m 1,11 m$, orthorhombic alignment of the two fold axis: $2 \mathrm{~mm}, \mathrm{~m} 2 \mathrm{~m}, \mathrm{~mm} 2$
trigonal alignment of the two fold axis: 321, 312

The Ambiguity of the Crystal Coordinate System

the axes of the crystal coordinate system $\vec{a}, \vec{b}, \vec{c}$ are always chosen such that

- the translations $\mathbf{T}_{\vec{a}}, \mathbf{T}_{\vec{b}}, \mathbf{T}_{\vec{c}}$ are symmetry elements of the space group
- \vec{c} is the axis of highest symmetry (except for monoclinic and 23)
- \vec{a} or \vec{b} are aligned with the symmetry axes perpendicular to \vec{c}

critical symmetries

monoclinic alignment of the two fold axis: $211,121,112, m 11,1 m 1,11 m$, orthorhombic alignment of the two fold axis: $2 m m, m 2 m, m m 2$
trigonal alignment of the two fold axis: 321, 312

Symmetrically Equivalent Lattice Directions

The crystal axes $\vec{a}, \vec{b}, \vec{c}$ can be well defined modulo actions of the symmetry group \mathcal{S}.
The axes $(\vec{a}, \vec{b}, \vec{c})$ and ($\mathbf{S} \vec{a}, \mathbf{S} \vec{b}, \mathbf{S} \vec{c}$) are physically indistinguishable for all $\mathbf{S} \in \mathcal{S}$
Two lattice directions

$$
\vec{d}_{1}=u_{1} \vec{a}+v_{1} \vec{b}+w_{1} \vec{c}=\left[u_{1} v_{1} w_{1}\right] \text { and } \vec{d}_{2}=u_{2} \vec{a}+v_{2} \vec{b}+w_{2} \vec{c}=\left[u_{2} v_{2} w_{2}\right]
$$

are called symmetrically equivalent if there is a symmetry operations $\mathbf{S} \in \mathcal{S}$ such that

$$
\vec{d}_{2}=\mathbf{S} \vec{d}_{1} .
$$

- $\langle u v w\rangle$ denotes the set of all lattice directions symmetrically equivalent to [uvw]
- $\langle u v w\rangle$ may contain at maximum $|\mathcal{S}|$ different lattice directions
- rotational axes have fewer symmetrically equivalent crystal directions, e.g.
- the quotient between the total number of symmetry elements $|\mathcal{S}|$ and the number of directions in $\langle u v w\rangle$ is called multiplicity of $\langle u v w\rangle$

Symmetrically Equivalent Lattice Directions

The crystal axes $\vec{a}, \vec{b}, \vec{c}$ can be well defined modulo actions of the symmetry group \mathcal{S}.
The axes $(\vec{a}, \vec{b}, \vec{c})$ and ($\mathbf{S} \vec{a}, \mathbf{S} \vec{b}, \mathbf{S} \vec{c}$) are physically indistinguishable for all $\mathbf{S} \in \mathcal{S}$
Two lattice directions

$$
\vec{d}_{1}=u_{1} \vec{a}+v_{1} \vec{b}+w_{1} \vec{c}=\left[u_{1} v_{1} w_{1}\right] \text { and } \vec{d}_{2}=u_{2} \vec{a}+v_{2} \vec{b}+w_{2} \vec{c}=\left[u_{2} v_{2} w_{2}\right]
$$

are called symmetrically equivalent if there is a symmetry operations $\mathbf{S} \in \mathcal{S}$ such that

$$
\vec{d}_{2}=\mathbf{S} \vec{d}_{1} .
$$

- $\langle u v w\rangle$ denotes the set of all lattice directions symmetrically equivalent to [uvw]
- $\langle u v w\rangle$ may contain at maximum $|\mathcal{S}|$ different lattice directions
- rotational axes have fewer symmetrically equivalent crystal directions, e.g.
- the quotient between the total number of symmetry elements $|S|$ and the number of directions in $\langle u v w\rangle$ is called multiplicity of $\langle u v w\rangle$

Symmetrically Equivalent Lattice Directions

The crystal axes $\vec{a}, \vec{b}, \vec{c}$ can be well defined modulo actions of the symmetry group \mathcal{S}.
The axes $(\vec{a}, \vec{b}, \vec{c})$ and ($\mathbf{S} \vec{a}, \mathbf{S} \vec{b}, \mathbf{S} \vec{c}$) are physically indistinguishable for all $\mathbf{S} \in \mathcal{S}$
Two lattice directions

$$
\vec{d}_{1}=u_{1} \vec{a}+v_{1} \vec{b}+w_{1} \vec{c}=\left[u_{1} v_{1} w_{1}\right] \text { and } \vec{d}_{2}=u_{2} \vec{a}+v_{2} \vec{b}+w_{2} \vec{c}=\left[u_{2} v_{2} w_{2}\right]
$$

are called symmetrically equivalent if there is a symmetry operations $\mathbf{S} \in \mathcal{S}$ such that

$$
\vec{d}_{2}=\mathbf{S} \vec{d}_{1} .
$$

- $\langle u v w\rangle$ denotes the set of all lattice directions symmetrically equivalent to [uvw]
- $\langle u v w\rangle$ may contain at maximum $|\mathcal{S}|$ different lattice directions
- rotational axes have fewer symmetrically equivalent crystal directions, e.g. $\langle 001\rangle=[001]$
- the quotient between the total number of symmetry elements $|\mathcal{S}|$ and the number of directions in $\langle u v w\rangle$ is called multiplicity of $\langle u v w\rangle$

Symmetrically Equivalent Lattice Directions

The crystal axes $\vec{a}, \vec{b}, \vec{c}$ can be well defined modulo actions of the symmetry group \mathcal{S}.
The axes $(\vec{a}, \vec{b}, \vec{c})$ and ($\mathbf{S} \vec{a}, \mathbf{S} \vec{b}, \mathbf{S} \vec{c}$) are physically indistinguishable for all $\mathbf{S} \in \mathcal{S}$
Two lattice directions

$$
\vec{d}_{1}=u_{1} \vec{a}+v_{1} \vec{b}+w_{1} \vec{c}=\left[u_{1} v_{1} w_{1}\right] \text { and } \vec{d}_{2}=u_{2} \vec{a}+v_{2} \vec{b}+w_{2} \vec{c}=\left[u_{2} v_{2} w_{2}\right]
$$

are called symmetrically equivalent if there is a symmetry operations $\mathbf{S} \in \mathcal{S}$ such that

$$
\vec{d}_{2}=\mathbf{S} \vec{d}_{1} .
$$

- $\langle u v w\rangle$ denotes the set of all lattice directions symmetrically equivalent to [uvw]
- $\langle u v w\rangle$ may contain at maximum $|\mathcal{S}|$ different lattice directions
- rotational axes have fewer symmetrically equivalent crystal directions, e.g. $\langle 001\rangle=[001]$
- the quotient between the total number of symmetry elements $|\mathcal{S}|$ and the number of directions in $\langle u v w\rangle$ is called multiplicity of $\langle u v w\rangle$

Symmetrically Equivalent Lattice Planes

For most symmetries the symmetrically equivalent directions comes as permutations of the Miller indices

$$
\text { monoclinic: }\langle u v w\rangle=\langle\bar{u} v \bar{w}\rangle
$$

Analogously the class of symmetrically equivalent lattice planes $\{h k \ell\}$ is defined as the set of all lattice planes $\left(h_{2} k_{2} \ell_{2}\right)$ such that there is a symmetry operation $\mathrm{S} \in \mathcal{S}$ with

$\left(h_{2} k_{2} \ell_{2}\right)=h_{2} \vec{a}^{*}+k_{2} \vec{b}^{*}+\ell_{2} \vec{c}^{*}=\mathrm{S}\left(h \vec{a}^{*}+k \vec{b}^{*}+\ell \vec{c}^{*}\right)$		
reference system	single	symmetrically equivalent
lattice point	$\cdot u V W$.	$: u V w:$
lattice direction	$[u V W]$	$\langle u V W\rangle$
lattice plane	$(h k \ell)$	$\{h k l\}$

Symmetrically Equivalent Lattice Planes

For most symmetries the symmetrically equivalent directions comes as permutations of the Miller indices
monoclinic: $\langle u v w\rangle=\langle\bar{u} v \bar{w}\rangle$
orthorhombic: $\langle u v w\rangle=\langle\bar{u} v w\rangle=\langle u \bar{v} w\rangle=\langle u v \bar{w}\rangle$
tetragonal: $\langle u v w\rangle=\langle\bar{v} u w\rangle=\langle\bar{u} \bar{v} w\rangle=\langle v \bar{u} w\rangle$
cubic: $\langle u v w\rangle=\langle v w u\rangle=\langle w u v\rangle=\langle u \overline{v w}\rangle=\langle v \overline{w u}\rangle=\langle w \overline{u v}\rangle=$ $\langle\bar{u} v \bar{w}\rangle=\langle\bar{v} w \bar{u}\rangle=\langle\bar{w} u \bar{v}\rangle=\langle\overline{u v} w\rangle=\langle\overline{v w} u\rangle=\langle\overline{w u} v\rangle$

Analogously the class of symmetrically equivalent lattice planes $\{h k \ell\}$ is defined as the set of all lattice planes $\left(h_{2} k_{2} \ell_{2}\right)$ such that there is a symmetry operation $\mathrm{S} \in \mathcal{S}$ with
$\left(h_{2} k_{2} l_{2}\right)=h_{2} \vec{a}^{*}+k_{2} \vec{b}^{*}+l_{2} \vec{c}^{*}-\mathrm{S}\left(h \vec{a}^{*}+k \vec{b}^{*}+l \vec{c}^{*}\right)$

Symmetrically Equivalent Lattice Planes

For most symmetries the symmetrically equivalent directions comes as permutations of the Miller indices
monoclinic: $\langle u v w\rangle=\langle\bar{u} v \bar{w}\rangle$
orthorhombic: $\langle u v w\rangle=\langle\bar{u} v w\rangle=\langle u \bar{v} w\rangle=\langle u v \bar{w}\rangle$
tetragonal: $\langle u v w\rangle=\langle\bar{v} u w\rangle=\langle\bar{u} \bar{v} w\rangle=\langle v \bar{u} w\rangle$
$\langle u v w\rangle=\langle v w u\rangle=\langle w u v\rangle=\langle u \overline{v w}\rangle=\langle v \overline{w u}\rangle=\langle w \overline{u v}\rangle=$
$\langle\bar{u} v \bar{w}\rangle=\langle\bar{v} w \bar{u}\rangle=\langle\bar{w} u \bar{v}\rangle=\langle\overline{u v} w\rangle=\langle\overline{v w} u\rangle=\langle\bar{w} v\rangle\rangle$

Analogously the class of symmetrically equivalent lattice planes $\{h k \ell\}$ is defined as the set of all lattice planes $\left(h_{2} k_{2} \ell_{2}\right)$ such that there is a symmetry operation $\mathrm{S} \in \mathcal{S}$ with

Symmetrically Equivalent Lattice Planes

For most symmetries the symmetrically equivalent directions comes as permutations of the Miller indices
monoclinic: $\langle u v w\rangle=\langle\bar{u} v \bar{w}\rangle$
orthorhombic: $\langle u v w\rangle=\langle\bar{u} v w\rangle=\langle u \bar{v} w\rangle=\langle u v \bar{w}\rangle$
tetragonal: $\langle u v w\rangle=\langle\bar{v} u w\rangle=\langle\bar{u} \bar{v} w\rangle=\langle v \bar{u} w\rangle$
cubic: $\langle u v w\rangle=\langle v w u\rangle=\langle w u v\rangle=\langle u \overline{v w}\rangle=\langle v \overline{w u}\rangle=\langle w \overline{u v}\rangle=$
$\langle\bar{u} v \bar{w}\rangle=\langle\bar{v} w \bar{u}\rangle=\langle\bar{w} u \bar{v}\rangle=\langle\overline{u v} w\rangle=\langle\bar{v} w\rangle=\langle\bar{w} v v\rangle$
Analogously the class of symmetrically equivalent lattice planes $\{h k l\}$ is defined as the set of all lattice planes $\left(h_{2} k_{2} \ell_{2}\right)$ such that there is a symmetry operation $\mathrm{S} \in \mathcal{S}$ with
$\left(h_{2} k_{2} l_{2}\right)=h_{2} \vec{a}^{*}+k_{2} \vec{b}^{*}+l_{2} \vec{c}^{*}-\mathbf{S}\left(h \vec{a}^{*}+k \vec{b}^{*}+l \vec{c}^{*}\right)$

Symmetrically Equivalent Lattice Planes

For most symmetries the symmetrically equivalent directions comes as permutations of the Miller indices
monoclinic: $\langle u v w\rangle=\langle\bar{u} v \bar{w}\rangle$
orthorhombic: $\langle u v w\rangle=\langle\bar{u} v w\rangle=\langle u \bar{v} w\rangle=\langle u v \bar{w}\rangle$
tetragonal: $\langle u v w\rangle=\langle\bar{v} u w\rangle=\langle\bar{u} \bar{v} w\rangle=\langle v \bar{u} w\rangle$
cubic: $\langle u v w\rangle=\langle v w u\rangle=\langle w u v\rangle=\langle u \overline{v w}\rangle=\langle v \overline{w u}\rangle=\langle w \overline{u v}\rangle=$
$\langle\bar{u} v \bar{w}\rangle=\langle\bar{v} w \bar{u}\rangle=\langle\bar{w} u \bar{v}\rangle=\langle\overline{u v} w\rangle=\langle\bar{v} w\rangle=\langle\bar{w} v v\rangle$
Analogously the class of symmetrically equivalent lattice planes $\{h k \ell\}$ is defined as the set of all lattice planes $\left(h_{2} k_{2} \ell_{2}\right)$ such that there is a symmetry operation $\mathbf{S} \in \mathcal{S}$ with

$\left(h_{2} k_{2} \ell_{2}\right)=h_{2} \vec{a}^{*}+k_{2} \vec{b}^{*}+\ell_{2} \vec{c}^{*}=\mathbf{S}\left(h \vec{a}^{*}+k \vec{b}^{*}+\ell \vec{c}^{*}\right)$		
reference system	single	symmetrically equivalent
lattice point	$\cdot u v w$.	$: u v w:$
lattice direction	$[u \mathrm{VW}]$	$\langle u \mathrm{VW}\rangle$
lattice plane	$(h k \ell)$	$\{h k l\}$

Miller Indices for Trigonal and Hexagonal Symmetries

For trigonal and hexagonal symmetries symmetrically equivalent directions can not be determined by permuting the three digit Miller indies.

Miller Indices for Trigonal and Hexagonal Symmetries

For trigonal and hexagonal symmetries symmetrically equivalent directions can not be determined by permuting the three digit Miller indies.

Solution: 4 digit Miller indices

$$
\begin{aligned}
(H K I L) & H
\end{aligned}=h, K=k, i=-h-k, L=\ell,
$$

Miller Indices for Trigonal and Hexagonal Symmetries

For trigonal and hexagonal symmetries symmetrically equivalent directions can not be determined by permuting the three digit Miller indies.

Solution: 4 digit Miller indices

$$
\begin{aligned}
(H K I L) H & =h, K=k, i=-h-k, L=\ell \\
{[U V T W] } & =2 u-v, V=2 v-u \\
T & =-u-v, W=3 w
\end{aligned}
$$

symmetric planes:

$$
\text { trigonal: }\{H K I L\}=\{K I H L\}=\{I H K L\}
$$

hexagonal:

Miller Indices for Trigonal and Hexagonal Symmetries

For trigonal and hexagonal symmetries symmetrically equivalent directions can not be determined by permuting the three digit Miller indies.

Solution: 4 digit Miller indices

$$
\begin{aligned}
& \text { (HKIL) } H=h, K=k, i=-h-k, L=\ell \\
& \text { [UVTW] } U=2 u-v, V=2 v-u \text {, } \\
& T=-u-v, W=3 w
\end{aligned}
$$

symmetric planes:
trigonal: $\{H K I L\}=\{K I H L\}=\{I H K L\}$
hexagonal: $\{H K I L\}=\{K I H L\}=\{I H K L\}=$

$$
\{\overline{H K I} L\}=\{\overline{K I H} L\}=\{\overline{I H K} L\}
$$

MTEX

\% define some crystal direction

cs $=$ crystalSymmetry ('321', $\left[\begin{array}{lll}4.9 & 4.9 & 5.4\end{array}\right]$,'mineral', 'quartz')
$\mathrm{h}=\operatorname{Miller}(\{1,0,-1,0\},\{0,0,0,1\}, \mathrm{cs}, \quad$ 'UNTW')
\% define some crystal plane
$\mathrm{h}=\mathrm{Miller}\left(\{1,0,-1,0\},\{0,0,0,1\}, \mathrm{cs},{ }^{\prime} \mathrm{HKIL}\right.$ ')
\% find all symmetrically equivalent
hSym $=$ h.symmetrise
unique (h.symmetrise, 'noSymmetry')
h.multiplicity
angle (hSym (1) , hSym (2))
angle (hSym (1), hSym (2), 'noSymmetry')

The Fundamental Sector

Definition

The fundamental sector is a spherical region which contains from each class of symmetrically equivalent vectors exactly one.

MTEX

```
% the fundamental sector for a given symmetry
sR = cs.fundamentalSector
plot(sR)
% check whether we are inside the fundamental region
sR.checkInside(h)
% define some crystal plane
h = Miller ({1,0, -1,0},{0,0,0,1},cs ,'HKIL')
h}=\textrm{h}.\mathrm{ project2FundamentalRegion
% generate vectors within a spherical region
r = vector3d.rand(sR)
r = equispacedS2Grid(sR)
```

