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Active vs. Passive Rotations

Active Rotations

An active rotation is a mapping of the Euclidean space
onto itself that keeps at least one point and all distances
invariant and preserves orientation.

Passive Rotations

A passive rotation is a coordinate transform from one
right handed, orthonormal coordinate system into
another one.

Improper Rotations

An improper rotation is a rotation that switches between
left handed and right handed coordinate systems.

the matrix M =

 | | |
~v1 ~v2 ~v3

| | |


rotates
~e1 7→ ~v1, ~e2 7→ ~v2, ~e3 7→ ~v3

M transforms coordinates from
the reference frame (~v1, ~v2, ~v3)
into the reference frame
(~e1, ~e2, ~e3)

M̃ = −M additionally mirrors all
vectors at the origin



Defining Active Rotations
by axis angle

v = vector3d ( 1 , 0 , 0 )
w = 90∗degree
r = ro tat ion . byAxisAngle ( v ,w)
r = rotation

Bunge Euler angles in degree

phi1 Phi phi2 Inv.

0 90 0 0
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v = vector3d ( 1 , 0 , 0 )
w = 90∗degree
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r = ro tat ion .map( u1 , v1 , u2 , v2 )
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w = 90∗degree
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w = 90∗degree
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size: 1 x 100



Defining Active Rotations
by axis angle

v = vector3d ( 1 , 0 , 0 )
w = 90∗degree
r = ro tat ion . byAxisAngle ( v ,w)

by Euler angles

r = ro tat ion . byEuler ( 0 , 0 , p i /2)

by a rotation matrix
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Defining Active Rotations
by axis angle

v = vector3d ( 1 , 0 , 0 )
w = 90∗degree
r = ro tat ion . byAxisAngle ( v ,w)

by Euler angles

r = ro tat ion . byEuler ( 0 , 0 , p i /2)

by a rotation matrix

M = [ 1 0 0 ; 0 0 −1; 0 1 0 ]
r = ro tat ion . byMatrix (M)

by pairs of vectors

u1 = vector3d . Z ; v1 = u1
u2 = vector3d . X ; v2 = vector3d . Y
r = ro tat ion .map( u1 , v1 , u2 , v2 )

r = ro tat ion . f i t ( u , v )

import rotations

r = ro tat ion . load ( ’ f i l e . t x t ’ , . . .
’ ColumnNames ’ , . . .
{ ’ ph i1 ’ , ’ Phi ’ , ’ ph i2 ’ })

random rotations

r = ro tat ion . rand ( 1 0 0 )

identity and inversion

r = ro tat ion . i d
r = ro tat ion . i n ve r s i on

a reflextion

r = r e f l e c t i o n ( vector3d . X)
r = rotation

Bunge Euler angles in degree

phi1 Phi phi2 Inv.

0 180 0 1



Euler Angles

Definition (Euler angles)

Let ϕ1, ϕ2 ∈ [0, 2π] and Φ ∈ [0, π]. Then ϕ1,Φ, ϕ2 are called the Euler angles of the rotation

R(ϕ1,Φ, ϕ2) = R~Z ,ϕ1
R~X ,Φ

R~Z ,ϕ2
.

r o t = ro tat ion . byEuler (10∗ degree , 2 0∗ degree , 3 0∗ degree )

I For every rotation R there are Euler angles ϕ1,Φ, ϕ2 such that R = R(ϕ1,Φ, ϕ2).

I For specific rotations R the Euler angles are not unique, e.g.

R~z,ω = R(ϕ1, 0, ω − ϕ1)

I Euler angles are the most common way to specify and visualize rotations in texture
analysis.

I The ambiguity makes visualization with respect to Euler angles hard to interpret.



Operations with Rotations
vector rotation

v = r o t .∗ u

concatenation

r o t = r o t 1 .∗ r o t 2
v = r o t .∗ u
v = r o t 1 ∗ ( r o t 2 ∗ u )

inverse of a rotation / misrotation

inv ( r o t 1 )
inv ( r o t 1 ) .∗ r o t 2

basic statistics

mean( r o t )
mean( ro t , ’ we i gh t s ’ ,w)
std ( r o t )

unique ( r o t )

extract Euler angles

[ phi1 , Phi , p h i 2 ] = Euler ( r o t )

extract matrix

r o t . matrix

rotation vectors

r o t . Rodrigues
r o t . homochoric
r o t . cubochoric

axis / angle

r o t . ax is , r o t . angle
angle ( rot1 , r o t 2 )

quaternion

[ a , b , c , d ] = double ( r o t )
quaternion ( r o t )



Visualizing Rotations

Euler angle space

r o t = ro tat ion . rand
p lot ( r o t )

axis angle space

p lot ( ro t , ’ a x i sAng l e ’ )

Euler angle ϕ2 sections

plotSect ion ( ro t , ’ ph i2 ’ )

axis angle sections

plotSect ion ( ro t , ’ a x i sAng l e ’ )
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Summary of Rotation Representations

name notation space dimension

matrix R R3×3 9

Euler angles (ϕ1,Φ, ϕ2) [0, 2π]× [0, π]× [0, 2π] 3

quaternion (q1, q2, q3, q4) S4 4

Rodrigues - Frank tan ω
2 ~v R3 3

axis angle ω~v B3 3

Miller-Bravais Indices (hkl)[uvw ] S2 × S2 6



Symmetries

Definition

A symmetry is a transformation that keeps something invariant.



Affine Transformations

Definition

Affine transformations are transformations

S(~x) = R~x + ~t

that are compositions of a rotation R ∈ O(3) and a translation ~t ∈ R3.

The set of all affine transformations in the three dimensional space is called Euclidean motion
group and is denoted by SE(3).

Let S1(~x) = R1~x + ~t1 and S1(~x) = R1~x + ~t1 be two affine transformations. Then their
composition

S2 ◦ S1(~x) = S2(S1(~x)) = R2R1~x + R2~t1 + ~t2

is again an affine transformation.



Affine Transformations
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Affine transformations are transformations

S(~x) = R~x + ~t

that are compositions of a rotation R ∈ O(3) and a translation ~t ∈ R3.

The set of all affine transformations in the three dimensional space is called Euclidean motion
group and is denoted by SE(3).

Let S1(~x) = R1~x + ~t1 and S1(~x) = R1~x + ~t1 be two affine transformations. Then their
composition
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is again an affine transformation.



Crystal Symmetries

Definition

The subset E ⊂ SE(3) off all affine transformations that keep the atom lattice invariant is
called space group of the crystal.

The space group S together with the composition ◦ is a group, since for any two symmetries
S1,S2 ∈ E we have S1 ◦ S2 ∈ E .

Definition

Let S1, . . . ,Sn ∈ SE (3) arbitrary affine transformations. Then we denote by 〈S1, . . . ,Sn〉 the
smallest subgroup of SE (3) that contains the transformations S1, . . . ,Sn and call it the group
generated by S1, . . . ,Sn.

Example

The group generated by the rotation R~z,120◦ about 120◦ about the z-axis is〈
R~z,120◦

〉
= {R~z,120◦ ,R

2
~z,120◦ ,R

3
~z,120◦} = {R~z,0◦ ,R~z,120◦ ,R~z,240◦}
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Generate Point Groups in MTEX
Z = vector3d . Z
r o t = ro tat ion . byAxisAngle (Z , 120∗degree )
c s = crystalSymmetry . byElements ( r o t )
cs.rot = rotation

size: 3 x 1

Bunge Euler angles in degree

phi1 Phi phi2 Inv.

240 0 0 0

120 0 0 0

0 0 0 0



Generate Point Groups in MTEX
Z = vector3d . Z
r o t = ro tat ion . byAxisAngle (Z , 120∗degree )
c s = crystalSymmetry . byElements ( r o t )

add some mirroring

m = r e f l e c t i o n ( vector3d . X)
c s = crystalSymmetry . byElements ( [ ro t , m] )
cs.rot = rotation

size: 6 x 1

Bunge Euler angles in degree

phi1 Phi phi2 Inv.

240 180 0 1

0 180 240 1

120 180 120 1

240 0 0 0

120 0 0 0

0 0 0 0



Generate Point Groups in MTEX
Z = vector3d . Z
r o t = ro tat ion . byAxisAngle (Z , 120∗degree )
c s = crystalSymmetry . byElements ( r o t )

add some mirroring

m = r e f l e c t i o n ( vector3d . X)
c s = crystalSymmetry . byElements ( [ ro t , m] )

add the inversion

c s = c s . add ( ro tat ion . i n ve r s i on )
cs = crystalSymmetry

symmetry : -3m1

elements : 12

a, b, c : 1, 1, 1

reference frame: X||a, Y||b, Z||c



Generate Point Groups in MTEX
Z = vector3d . Z
r o t = ro tat ion . byAxisAngle (Z , 120∗degree )
c s = crystalSymmetry . byElements ( r o t )

add some mirroring

m = r e f l e c t i o n ( vector3d . X)
c s = crystalSymmetry . byElements ( [ ro t , m] )

add the inversion

c s = c s . add ( ro tat ion . i n ve r s i on )

some quasi symmetry

r2 = ro tat ion . byAxisAngle (Z , 180∗degree )
a5 = vector3d . byPolar ( 3 1 . 7 1 7 1∗ degree , 0)
r5 = ro tat ion . byAxisAngle ( a5 , 72∗degree )
c s = crystalSymmetry . byElements ( [ r2 , r 5 ] )



Point Groups

Definition

Let E = {(R1, ~t1), (R2, ~t2), . . .} be the space group of a crystal structure. Then
P = {R1,R2, . . .} is a subgroup of O(3) and called the point group of the crystal structure.

I The space group describes the symmetries of an infinite periodic crystal lattice.

I The point group describes the symmetries of the finite unit cell.

Goal:

Characterize and describe all possible space groups E and all possible point groups P.

Result:

There are exactly 230 different space groups and 32 different point groups.
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Symmetry Operations

name affine
transformation

Hermann–Mauguin
symbol

graphical
symbol

rotational axis R~d , 360◦
n

2, 3, 4 ,6

inversion −I 1

mirror plane −R~n,180 m = 2

rotoinversion axis −R~d , 360◦
n

3, 4, 6

translation ~t

screw axis R~d , 360◦
n

+ ~d 21, 31, 32, 41,42,43

61,62,63,64,65

glide plane −R~d , 180◦
n

+ ~d a, b, c , n, d



Cyclic Groups

I S ∈ P =⇒ Sn ∈ P, for all n ∈ Z
I R~d , 1

m
360◦ ∈ P =⇒ R~d , n

m
360◦ ∈ P, n = 0, . . . ,m − 1.

I Only rotational axes of order 2, 3, 4, 6 are compatible with periodic lattices

1 2 3 4 6
C1 C2 C3 C4 C6



Dieder Groups

Two two fold symmetry axis ~a, ~b at an angle generate a perpendicular symmetry axis

I R~a,π,R~b,π ∈ P, ](~a, ~b) = π
n =⇒ R~a×~b, 2π

n
∈ P

222 321 312 422 622
D2 D3 D3 D4 D6



Tetragonal and Cubic Symmetry

I ~a - m-fold symmetry axis, m > 2

I ~b - n-fold symmetry axis

I =⇒ R~a, k
m

2π
~b, k = 1, . . . ,m are n-fold symmetry axes

I =⇒ R~b, k
n

2π
~a, k = 1, . . . , n are m-fold symmetry axes

I =⇒ R~b, 2k+1
2n

2π
~a, k = 0, . . . , n are 2-fold symmetry axes

I assume ~a, ~b have minimum angle in P
I =⇒ R~a, k

m
2π
~b, k = 1, . . . ,m form a regular spherical polygon P~a

I applying all symmetry operations of P to P~a will cover the whole
sphere by disjoint copies of P~a

I =⇒ the copies of P~a form a Platonic solid

I =⇒ only tetrahedron and cube (octahedron) are relevant

23 (T )

432 (O)



All 11 Enantiomorphic Symmetry Groups

triclinic monoclinic trigonal tetragonal hexagonal cubic

1 (C1) 2 (C2) 3 (C3) 4 (C4) 6 (C6) 23 (T)

orthorhombic

222 (D2) 321 (D3) 422 (D4) 622 (D6) 432 (O)



All 11 Laue Symmetry Groups

triclinic monoclinic trigonal tetragonal hexagonal cubic

1 (Ci)
2
m (C2h) 3 (C3i)

4
m (C4h) 6

m (C6h) m3 = 2
m3 (Th)

orthorhombic

mmm (D2h) 3m = 3 2
m (D3d) 4/mmm (D2h) 6/mmm (D6h) m3m (Oh)



10 mixed groups

monoclinic orthorhombic trigonal tetragonal hexagonal cubic

2 = m (Cs) mm2 (C2v) 3m (C3v) 4 (S4) 6 (C3h) 43m (Td)

42m (D2d) 4mm (C4v) 6mm (C6v) 6m2 (D3h)



Summary Symmetry Groups

I 11 purely rotational (enatiomorphic) groups:

used in most software,
only proper rotations are considered

I 11 Laue groups (with inversion center, centrosymmetric groups):

correct models for most diffraction experiments, e.g. X-ray diffraction, EBSD
only few physical properties are not centrosysmmetric e.g., piezoelectricity

I 10 mixed groups

without inversion center
each with equally many proper and improper symmetry elements

I 32 different point groups

do not represent actual symmetries of the atom lattice - only modulu translation

I 230 different point groups

The translation vectors always coincide with the screw axes.
completely described in International Tables for Crystallography, 2016
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Defining Crystal Symmetries in MTEX

c s = crystalSymmetry ( ’m−3m’ ) % by i n t e r n a t i o n a l symbol
c s = crystalSymmetry ( ’Oh ’ ) % by S c h o e n f l i e s n o t a t i o n
c s = crystalSymmetry ( ’Fm−3m’ ) % by space group

% impor t CIF f i l e
c s = crystalSymmetry . load ( ’ qua r t z . c i f ’ )

% download from C r y s t a l l o g r a p h y Open Database
c s = crystalSymmetry . load ( ’ 5000036 ’ )

c s . properGroup
c s . Laue
c s . r o t

plotb2east
p lot ( c s )



The 14 Bravais lattices

Question: Which lattices are compatible with the symmetry groups?
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The 14 Bravais lattices

Question: Which lattices are compatible with the symmetry groups?

Compatibility with the points groups leads to the 7 crystal systems:

triclinic monoclinic orthorhombic trigonal tetragonal hexagonal cubic

Compatibility with the space groups leads to the the 14 Bravais lattices which additionally
separates how the atoms are aligned with the lattice points:

I primitive

I base centered

I body centered

I face centered



system P (primitive) C (base centered) I (body centered) F (face centered)

triclinic
a 6= b 6= c,

α 6= β 6= γ

mononclinic
a 6= b 6= c,

α = γ = 90◦

β > 90◦

orthorhombic
a 6= b 6= c,

α = β = 90◦

γ = 90◦



system P (primitive) C (base centered) I (body centered) F (face centered)

tetragonal
a = b 6= c,

α = β = 90◦

γ = 90◦

trigonal
a = b 6= c,

α = β = 90◦

γ = 120◦

hexagonal
a = b 6= c,

α = β = 90◦

γ = 120◦

cubic
a = b = c,

α = β = 90◦

γ = 90◦



A Practical Example

I checkout https://materialsproject.org/materials/mp-2657/#

I download cif file

https://materialsproject.org/materials/mp-2657/#


The Ambiguity of the Crystal Coordinate System

the axes of the crystal coordinate system ~a, ~b, ~c are always chosen such that

I the translations T~a, T~b, T~c are symmetry elements of the space group

I ~c is the axis of highest symmetry (except for monoclinic and 23)

I ~a or ~b are aligned with the symmetry axes perpendicular to ~c

critical symmetries

monoclinic alignment of the two fold axis: 211, 121, 112, m11, 1m1, 11m,

orthorhombic alignment of the two fold axis: 2mm, m2m, mm2

trigonal alignment of the two fold axis: 321, 312
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monoclinic alignment of the two fold axis: 211, 121, 112, m11, 1m1, 11m,

orthorhombic alignment of the two fold axis: 2mm, m2m, mm2

trigonal alignment of the two fold axis: 321, 312
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Symmetrically Equivalent Lattice Directions
The crystal axes ~a, ~b, ~c can be well defined modulo actions of the symmetry group S.

The axes (~a, ~b, ~c) and (S~a,S~b,S~c) are physically indistinguishable for all S ∈ S

Two lattice directions

~d1 = u1~a + v1
~b + w1~c = [u1v1w1] and ~d2 = u2~a + v2

~b + w2~c = [u2v2w2]

are called symmetrically equivalent if there is a symmetry operations S ∈ S such that

~d2 = S~d1.

I 〈uvw〉 denotes the set of all lattice directions symmetrically equivalent to [uvw ]

I 〈uvw〉 may contain at maximum |S| different lattice directions

I rotational axes have fewer symmetrically equivalent crystal directions, e.g. 〈001〉 = [001]

I the quotient between the total number of symmetry elements |S| and the number of
directions in 〈uvw〉 is called multiplicity of 〈uvw〉
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Symmetrically Equivalent Lattice Planes
For most symmetries the symmetrically equivalent directions comes as permutations of the
Miller indices

monoclinic: 〈uvw〉 = 〈uvw〉
orthorhombic: 〈uvw〉 = 〈uvw〉 = 〈uvw〉 = 〈uvw〉

tetragonal: 〈uvw〉 = 〈vuw〉 = 〈u vw〉 = 〈vuw〉
cubic: 〈uvw〉 = 〈vwu〉 = 〈wuv〉 = 〈uvw〉 = 〈vwu〉 = 〈wuv〉 =

〈uvw〉 = 〈vwu〉 = 〈wuv〉 = 〈uvw〉 = 〈vwu〉 = 〈wuv〉
Analogously the class of symmetrically equivalent lattice planes {hk`} is defined as the set of
all lattice planes (h2k2`2) such that there is a symmetry operation S ∈ S with

(h2k2`2) = h2~a
∗ + k2

~b∗ + `2~c
∗ = S(h~a∗ + k~b∗ + `~c∗)

reference system single symmetrically equivalent

lattice point ·uvw · :uvw :
lattice direction [uvw ] 〈uvw〉
lattice plane (hk`) {hkl}
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Miller Indices for Trigonal and Hexagonal Symmetries

For trigonal and hexagonal symmetries
symmetrically equivalent directions can not be
determined by permuting the three digit Miller
indies.
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MTEX

% de f i n e some c r y s t a l d i r e c t i o n
c s = crystalSymmetry ( ’ 321 ’ , [ 4 . 9 4 . 9 5 . 4 ] , ’ m i n e r a l ’ , ’ qua r t z ’ )
h = Mi l l e r ({1 , 0 , −1 ,0} ,{0 , 0 ,0 ,1} , cs , ’UVTW’ )

% de f i n e some c r y s t a l p l ane
h = Mi l l e r ({1 , 0 , −1 ,0} ,{0 , 0 ,0 ,1} , cs , ’HKIL ’ )

% f i n d a l l s ymme t r i c a l l y e q u i v a l e n t
hSym = h . symmetrise
unique ( h . symmetrise , ’ noSymmetry ’ )

h . mu l t i p l i c i t y

angle ( hSym ( 1 ) , hSym ( 2 ) )

angle ( hSym ( 1 ) , hSym ( 2 ) , ’ noSymmetry ’ )



The Fundamental Sector

Definition

The fundamental sector is a spherical region which contains from each class of symmetrically
equivalent vectors exactly one.



MTEX

% the fundamenta l s e c t o r f o r a g i v en symmetry
sR = c s . fundamentalSector
p lot ( sR )

% check whether we a r e i n s i d e the fundamenta l r e g i o n
sR . checkIns ide ( h )

% de f i n e some c r y s t a l p l ane
h = Mi l l e r ({1 , 0 , −1 ,0} ,{0 , 0 ,0 ,1} , cs , ’HKIL ’ )
h = h . project2FundamentalRegion

% gene r a t e v e c t o r s w i t h i n a s p h e r i c a l r e g i o n
r = vector3d . rand ( sR )
r = equispacedS2Grid ( sR )


