Matlab Basics and General Concepts of the MTEX Toolbox

R. Hielscher

Faculty of Mathematics,
Chemnitz University of Technology, Germany

2021

MTEX - A tool for calculating with orientation dependent properties

P crystal geometry

B (1010)
[(0001)
[(1011)
I (1012)
I (2021)
I (1122)
- (1121)
[(2131)
I (3141)
1 (2130)

MTEX - A tool for calculating with orientation dependent properties

> crystal geometry
> EBSD data

MTEX - A tool for calculating with orientation dependent properties

P crystal geometry
> EBSD data

> grains, grain boundaries

MTEX - A tool for calculating with orientation dependent properties

P crystal geometry

> EBSD data

> grains, grain boundaries
> XRD data

(0111)(1011)
Y,

N

MTEX - A tool for calculating with orientation dependent properties

30°
P crystal geometry

» EBSD data
> grains, grain boundaries
» XRD data

» orientation distribution function

<
I 3

60° 90°

") O

MTEX - A tool for calculating with orientation dependent properties

crystal geometry

EBSD data

grains, grain boundaries
XRD data

orientation distribution function

vVvyVvyVvyYyvyy

texture simulations

MTEX - A tool for calculating with orientation dependent properties

P crystal geometry

> EBSD data

> grains, grain boundaries

> XRD data

P orientation distribution function
>

texture simulations

MTEX - A tool for calculating with orientation dependent properties

P crystal geometry

> EBSD data

> grains, grain boundaries

> XRD data

P orientation distribution function
>

texture simulations

MTEX - A tool for calculating with orientation dependent properties

crystal geometry (}:{113)[)

>
> EBSD data

> grains, grain boundaries

> XRD data

P orientation distribution function
>

texture simulations

TD
[T am
1 2 3

MTEX - A tool for calculating with orientation dependent properties

S-wave anisotropy (%)

crystal geometry

EBSD data

grains, grain boundaries

XRD data

orientation distribution function

texture simulations

vVvVvyVvyVvyVvyYyvyy

tensorial properties

MTEX - A tool for calculating with orientation dependent properties

15
crystal geometry 0
EBSD data
grains, grain boundaries
XRD data
1014

orientation distribution function
texture simulations

tensorial properties

VVyVYyVvyVYVYYVYY

elastic / plastic deformation

U013

MTEX - A tool for calculating with orientation dependent properties

crystal geometry

EBSD data

grains, grain boundaries

XRD data

orientation distribution function
texture simulations

tensorial properties

elastic / plastic deformation

VVyVVVVVYYVYY

misorientations / twinning

MTEX - A tool for calculating with orientation dependent properties

crystal geometry

EBSD data

grains, grain boundaries

XRD data

orientation distribution function
texture simulations

tensorial properties

elastic / plastic deformation

misorientations / twinning

VVVYyVvVYVVVYVYyYVYY

phase transformations

MTEX - A tool for calculating with orientation dependent properties

crystal geometry

EBSD data

grains, grain boundaries

XRD data

orientation distribution function
texture simulations

tensorial properties

elastic / plastic deformation
misorientations / twinning

phase transformations

VVYVVVVVVVYYVYY

parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

crystal geometry

EBSD data

grains, grain boundaries

XRD data

orientation distribution function
texture simulations

tensorial properties

elastic / plastic deformation
misorientations / twinning

phase transformations

VVYVVVVVVVYYVYY

parent grain reconstruction

Focus: basics, generality, speed

MTEX an Open Source Toolbox

Large, well documented, tested
» 13 years of development » 1000 functions
» 40 000 lines of code, 33 percent comments P 14 reference paper, about 2000 references
» 2000 downloads per version » 1000 help pages
» add-ons: MTEX GUI, MTEX2Gmsh, Stabix, CrystalAligner, phaseSegmenter

A Teaching Tool
» everything can be visualized » everything can be manipulated

» everything can be combined with everything

Free and open software

> free to use > free to modify » very nice comunity

MTEX - A Matlab based scripting language

% load data
ebsd = EBSD.load('Emsland_plessite. ctf ')

% plot data
plot(ebsd('Fe’'),ebsd('Fe’').orientations)

% reconstruct grains
th = bxdegree;
grains = calcGrains(ebsd, "threshold ', th)

% find largest grain
[m,id] = max(grains.area)

% plot largest grain
plot(grains(id).boundary, '/inewidth ', 2)

MTEX - A Matlab based scripting language

% load data

Why scripts?

ebsd = EBSD.load('Emsland_plessite. ctf’) > reproducible results
» easy to document
% plot data » templates for common tasks
plot(ebsd('Fe’),ebsd('Fe’).orientations) > extensively customizable
% recomstroet Greins » batch processing of many
th = bxdegree; data sets
grains = calcGrains(ebsd, 'threshold ', th) > repeated calculations with
different parameters
% find largest grain Best practice

[m,id] = max(grains.area)

% plot largest grain

plot(grains(id).boundary, "/inewidth’

P> comment your scripts

» short scripts

2) » function for repeated tasks

» avoid loops

MTEX Resources

» documentation

» function reference
P examples

P user scripts

» discussion forum

Matlab

centered around matrices

Three dimensional vectors
Three dimensional vectors are given by there coordinates with respect to a orthogonal
coordinate system)?, \7, Z

F=x-X+y-Y4+z-Z

Three dimensional vectors
Three dimensional vectors are given by there coordinates with respect to a orthogonal

coordinate system X, Y, Z
Fr=x-X+y-Y+z-Z

For general vectors, MTEX does not care about the coordinate system, but works only with
the coordinates.

r = vector3d(1,2,3)

r = vector3d (show methods, plot)
size: 1 x 1
Xy z
123

Three dimensional vectors

Three dimensional vectors are given by there coordinates with respect to a orthogonal
coordinate system X, Y, Z

F’zx-)?—&—y-?—i—z-f

For general vectors, MTEX does not care about the coordinate system, but works only with
the coordinates.

r = vector3d(1,2,3)
The alignment of the coordinate system is only
important when plotting data

plotx2north , plotzOutOfPlane
plot(r)

Three dimensional vectors

Three dimensional vectors are given by there coordinates with respect to a orthogonal
coordinate system X, Y, Z

F’zx-)?—}—y-?—i—z-f

For general vectors, MTEX does not care about the coordinate system, but works only with
the coordinates.

r = vector3d(1,2,3)
The alignment of the coordinate system is only
important when plotting data

plotx2east, plotzOutOfPlane
plot(r)

Only for directions relative to the crystal coordinate system the reference frame is considered.

Defining vectors

predefined vectors
vector3d . X, vector3d.Y, vector3d.Z

Defining vectors

predefined vectors
vector3d . X, vector3d.Y, vector3d.Z

polar coordinates 7= (sin cos p, sin fsin p, cos §)*
theta = 90 * degree; rho = 45 x degree;
r = vector3d.byPolar(theta ,h rho)

In MTEX all angles are in radiant!

Defining vectors

predefined vectors
vector3d . X, vector3d.Y, vector3d.Z

polar coordinates 7= (sin cos p, sin fsin p, cos §)*
theta = 90 * degree; rho = 45 x degree;
r = vector3d.byPolar(theta ,h rho)

In MTEX all angles are in radiant!
combine vectors
r = [vector3d.X, vector3d.Y, vector3d(1,1,1)]

vector3d (show methods, plot)
ize: 1 x 3

b

= = OoO%

= O P X n |l
= O ON

Defining vectors

predefined vectors
vector3d . X, vector3d.Y, vector3d.Z

polar coordinates 7= (sin cos p, sin fsin p, cos §)*
theta = 90 * degree; rho = 45 x degree;
r = vector3d.byPolar(theta ,h rho)

In MTEX all angles are in radiant!

combine vectors
r = [vector3d.X, vector3d.Y, vector3d(1,1,1)]

importing vectors
r = vector3d.load('file ', "ColumnNames ', { 'x’', 'y, 'z"})

r = vector3d (show methods, plot)
size: 200 x 1

Defining vectors

predefined vectors
vector3d . X, vector3d.Y, vector3d.Z

polar coordinates 7= (sin cos p, sin fsin p, cos §)*
theta = 90 * degree; rho = 45 x degree;
r = vector3d.byPolar(theta ,h rho)

In MTEX all angles are in radiant!

combine vectors
r = [vector3d.X, vector3d.Y, vector3d(1,1,1)]

importing vectors
r = vector3d.load('file ', "ColumnNames ', { 'x’', 'y, 'z"})

random vectors
r = vector3d.rand(100)

Vector Calculations

simple algebra
r = 2xvector3d.X — vector3d.Y;

Vector Calculations

simple algebra
r = 2xvector3d.X — vector3d.Y;

basic operations
dot(vl,K v2)
cross(vl, K v2)
angle(vl,v2)
normalize(v)
orth(v)

dot product

cross product

angle between two vectors
scale to norm 1

arbitrary orthogonal vector

ISNENEPSNININN

Vector Calculations

simple algebra
r = 2xvector3d.X — vector3d.Y;

basic operations

dot(vl,v2) % dot product

cross(vl,v2) % cross product

angle(vl,v2) % angle between two vectors
normalize(v) % scale to norm 1

orth(v) % arbitrary orthogonal vector
extract properties

r.theta % polar angle in radiant
r.rho % azimuth angle in radiant

r.x, r.y, r.z

Indexing of Vectors

consider a list of vectors
|r = vector3d ([0 0 1 1],[1 0 1 1],[1 1 1 0]);

r vector3d (show methods, plot)

ize: 1 x 4

S
Xy
01
0
1
1

= O
O - = = N

[y

Indexing of Vectors

consider a list of vectors
r = vector3d([0 O 1 1],[1 01 1],[1 1 1 0]);

single out the second vector

r(2)

r = vector3d (show methods, plot)
size: 1 x 1
Xy z
001

Indexing of Vectors

consider a list of vectors
r = vector3d([0 O 1 1],[1 01 1],[1 1 1 0]);

single out the second vector

r(2)

single out the second and the fourth vector

r([2 4])

r ector3d (show methods, plot)
e: 1 x 2

v
iz
y
0
1

= O X ®n |
=
O = N

Indexing of Vectors

consider a list of vectors
r = vector3d([0 O 1 1],[1 01 1],[1 1 1 0]);

single out the second vector

r(2)

single out the second and the fourth vector

r([2 4])

single out vectors by a logical condition
r(r.x>0)

vector3d (show methods, plot)
e: 1 x 2

Indexing of Vectors

consider a list of vectors
|r = vector3d ([0 0 1 1],[1 0 1 1],[1 1 1 0]);

single out the second vector

[r(2)

single out the second and the fourth vector

[r([2 4])

single out vectors by a logical condition
Ir(r.x>0)

The above techniques applies also to lists of rotations, orientations, tensors, EBSD data,
grains, boundary segments, triple points, etc.

Changing Vectors

consider again the list of vectors
|r = vector3d ([0 0 1 1],[1 0 1 1],[1 1 1 0]);

r vector3d (show methods, plot)

ize: 1 x 4

S
Xy
01
0
1
1

= O
O - = = N

[y

Changing Vectors

consider again the list of vectors
r = vector3d([0 O 1 1],[1 01 1],[1 1 1 0]);

replace the second vector by another vector
r(2) = vector3d.Y

r vector3d (show methods, plot)

ize: 1 x 4

S
Xy
01
0
1
1

=
O O r N

e

Changing Vectors

consider again the list of vectors
r = vector3d([0 O 1 1],[1 01 1],[1 1 1 0]);

replace the second vector by another vector
r(2) = vector3d.Y

remove the second vector completely

r(2) = [l
vector3d (show methods, plot)
e: 1 x 3

Changing Vectors

consider again the list of vectors
r = vector3d([0 O 1 1],[1 01 1],[1 1 1 0]);

replace the second vector by another vector
r(2) = vector3d.Y

remove the second vector completely

r(2) = [l

change the x coordinate of all vectors
r.x =20

vector3d (show methods, plot)
e: 1 x 3

Changing Vectors

consider again the list of vectors
r = vector3d([0 O 1 1],[1 01 1],[1 1 1 0]);

replace the second vector by another vector
r(2) = vector3d.Y

remove the second vector completely

r(2) = [l

change the x coordinate of all vectors
r.x =20

The above techniques applies also to pole figure data, orientations, EBSD data, grains, etc.

Spherical Projections

spherical polar coordinates

(x,y,z) = (cos psinf,sin psinf, cos)

polar coordinates in the plane
(x,y) = (rcos p, rsin p)

105° 90° 75°

o W °
120 (11, 60
135° /
8 A\

S

g

255° 270° 285°

Spherical Projections

name formula schema
orthographic r=sinf 1 l
equal angle
q g . r = tan g
(stereographic) (t010)
[T\ (1121) (1011) ~(2111)
gnonomic r=tané (0110)® ©(1100)
(0111) (1101)
° °
equal area (1211) (0001) (1211)
(Schmidt) 2(1 — cos0) \\ ‘/
_@(1101) (0111)g
(1100) (0110)
equal distant r==60 AN (]

[]
(2111)_ (T011) (1121)

(1010)

Spherical Projections

name formula schema
orthographic r=sinf
equal angle
q g . r =tan g
(stereographic)
gnonomic r=tané
°
equal area (1211) (0001) (1211)
(Schmidt) 2(1 — cosf) (1101) (0111)
o
equal distant r==0 N (ﬁ.ﬂ) o

(1010)

Spherical Projections

name formula

schema

orthographic r=sinf

equal angle

- 0
(stereographic) r=tan;
gnonomic r=tané
equal area
(Schmidt) 2(1 — cos0)
equal distant r==60

(1121) (2111)
[T\ (1011)
[] {]

(0111) (1101)

[]
(1211) (0001) (1211)

(1101) (0111)

[]

Spherical Projections

name formula schema
orthographic r=sinf
equal angle
q g . r =tan g
(stereographic)
gnonomic r=tané
[]
equal area (1211) (0001) (1211)
(Schmidt) 2(1 — cos0) L
(1101) (0111)
(1100) @ ® (0110)
equal distant r=20 @111) (1011 (1121)

Spherical Projections

name formula schema

orthographic r=sinf

equal angle

0
. =tan 3
stereographic r anz
grap
gnonomic r=tané
® o
(0111) (1101)
° °
equal area (1211) (0001) (1211)
Schmidt 2(1 — cos)) y
(Schmidt) (i101) (0111)
(1100) o o (0110)

equal distant r==0 @i11) 11 (1191

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d

spherical region: upper, lower, complete, fundamentalRegion

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d
spherical region: upper, lower, complete, fundamentalRegion

plot alignment: plotx2east, plotx2north, plotzIntoPlane, plotzOutOfPlane

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d

spherical region: upper, lower, complete, fundamentalRegion

plot alignment: plotx2east, plotx2north, plotzIntoPlane, plotzOutOfPlane
marker: s, d, o, V

markerSize, markerEdgeColor, markerFaceColor, linewidth, MarkerEdgeAlpha,
MarkerFaceAlpha

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d

spherical region: upper, lower, complete, fundamentalRegion

plot alignment: plotx2east, plotx2north, plotzIntoPlane, plotzOutOfPlane
marker: s, d, o, V

markerSize, markerEdgeColor, markerFaceColor, linewidth, MarkerEdgeAlpha,

MarkerFaceAlpha

combined plots: hold on, hold off, add2all

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d

spherical region: upper, lower, complete, fundamentalRegion

plot alignment: plotx2east, plotx2north, plotzIntoPlane, plotzOutOfPlane
marker: s, d, o, V

markerSize, markerEdgeColor, markerFaceColor, linewidth, MarkerEdgeAlpha,
MarkerFaceAlpha

combined plots: hold on, hold off, add2all

multiple plots: nextAxis, newMTEXFigure, gcm

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d

spherical region: upper, lower, complete, fundamentalRegion

plot alignment: plotx2east, plotx2north, plotzIntoPlane, plotzOutOfPlane
marker: s, d, o, V

markerSize, markerEdgeColor, markerFaceColor, linewidth, MarkerEdgeAlpha,
MarkerFaceAlpha

combined plots: hold on, hold off, add2all

multiple plots: nextAxis, newMTEXFigure, gcm

labels: label, fontSize, backgroundcolor,

Data Plots

colorize vectors by value

v = vector3d.rand(100)
scatter(v,v.rho./degree)
mtexColorbar southoutside
mtexColorMap hsv

-100 0 100

Data Plots

colorize vectors by value

v = vector3d.rand(100)
scatter(v,v.rho./degree)
mtexColorbar southoutside
mtexColorMap hsv

colorize by RGB triples
key = HSVDirectionKey
scatter (v, key.direction2color(v))

Data Plots

colorize vectors by value

v = vector3d.rand(100)
scatter(v,v.rho./degree)
mtexColorbar southoutside
mtexColorMap hsv

colorize by RGB triples

key = HSVDirectionKey
scatter (v, key.direction2color(v))

visualize directions
quiver(v,orth(v)) % a vector field

Axes
Axes are three dimensional vectors where we do not care about

length and direction, e.g. plane normals.

r = vector3d(1,1,1, "antipodal’)

r = vector3d (show methods, plot)
size: 1 x 1

antipodal: true

Xy z

111

lower

|

111

Axes
Axes are three dimensional vectors where we do not care about
length and direction, e.g. plane normals.

r = vector3d(1,1,1, "antipodal’)

Then r and -r represent the same axis

eq(r, —r)
|

lower

|

111

Axes
Axes are three dimensional vectors where we do not care about
length and direction, e.g. plane normals.

r = vector3d(1,1,1, "antipodal’)

Then r and -r represent the same axis

eq(r, —r)

The angle to an axis is always less then 90°

lower

angle(r,—vector3d .X) / degree
| s54.7

|

111

Axes
Axes are three dimensional vectors where we do not care about
length and direction, e.g. plane normals.

r = vector3d(1,1,1, "antipodal’)

Then r and -r represent the same axis
eq(r, —r)

The angle to an axis is always less then 90°

angle(r,—vector3d .X) / degree

Changing option antipodal

r = vector3d.rand(100)
o = v.orth;
quiver(v,o0)

Axes
Axes are three dimensional vectors where we do not care about
length and direction, e.g. plane normals.

r = vector3d(1,1,1, "antipodal’)

Then r and -r represent the same axis
eq(r, —r)

The angle to an axis is always less then 90°

angle(r,—vector3d.X) / degree

Changing option antipodal

r = vector3d.rand(100)
o = v.orth;
o.antipodal = true;
quiver(v,o0)

