Matlab Basics and General Concepts of the MTEX Toolbox

R. Hielscher
Faculty of Mathematics,
Chemnitz University of Technology, Germany

2021

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
$>$ grains, grain boundaries
- VRD data
- orientation distribution function
- texture simulations
- tensorial properties
- lastic / plastic deformation
- misorientations / twinning
* phase transformations
- parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
- orientation distribution function
- texture simulations
- tensorial properiies
- elastic / plastic deformation
- misorientations / twinning
- phase transformations
- parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
- orientation distribution function
- texture simulations
- tensorial properties
- elastic / plastic deformation
- misorientations / twinning
- phase transformations
- parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
> orientation distribution function
- texture simulations

- tensorial properiies
- elastic / plastic deformation
- misorientations / twinning
- phase transformations
- parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
- orientation distribution function
- texture simulations
- tensorial properties
- elastic / plastic deformation
> misorientations / twinning
- phase transformations
- parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
- orientation distribution function
- texture simulations
- tensorial properties
- elastic / plastic deformation
- misorientations twinning
- phase transformations

- parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
- orientation distribution function
- texture simulations
- tensorial properties
- elastic / plastic deformation
- misorientations/tminning
- phase transformations
- parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
- orientation distribution function
- texture simulations
- tensorial properties
- elastic / plastic deformation
- misorientations/tminning
- phase transformations
- parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
- orientation distribution function
- texture simulations
- tensorial properties
- elastic / plastic deformation
- misorientations/tminning
- phase transformations

- parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
- orientation distribution function
- texture simulations
- tensorial properties
- elastic / plastic deformation
- misorientations / twinning
- phase transformations
- parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
- orientation distribution function
- texture simulations
- tensorial properties
- elastic / plastic deformation
- misorientations
twinning

- phase transformations
* parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
- orientation distribution function
- texture simulations
- tensorial properties
- elastic / plastic deformation
- misorientations / twinning
- phase transformations
- parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
- orientation distribution function
- texture simulations
- tensorial properties
- elastic / plastic deformation
- misorientations / twinning
- phase transformations
- parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
- orientation distribution function
- texture simulations
- tensorial properties
- elastic / plastic deformation
- misorientations / twinning
- phase transformations
- parent grain reconstruction

MTEX - A tool for calculating with orientation dependent properties

- crystal geometry
- EBSD data
- grains, grain boundaries
- XRD data
- orientation distribution function
- texture simulations
- tensorial properties
- elastic / plastic deformation
- misorientations / twinning
- phase transformations
- parent grain reconstruction

Focus: basics, generality, speed

MTEX an Open Source Toolbox

Large, well documented, tested

- 13 years of development
- 40000 lines of code, 33 percent comments
- 2000 downloads per version
- add-ons: MTEX GUI, MTEX2Gmsh, Stabix, CrystalAligner, phaseSegmenter

A Teaching Tool

- everything can be visualized
- everything can be manipulated
- everything can be combined with everything

Free and open software

- free to use
- free to modify
- very nice comunity

MTEX - A Matlab based scripting language

```
% load data
ebsd = EBSD.load('Emsland_plessite.ctf')
% plot data
plot(ebsd('Fe'), ebsd('Fe').orientations)
% reconstruct grains
th = 5*degree;
grains = calcGrains(ebsd, 'threshold',th)
% find largest grain
[m,id] = max(grains.area)
% plot largest grain
plot(grains(id).boundary,'linewidth',2)
```


MTEX - A Matlab based scripting language

```
% load data
ebsd = EBSD.load('Emsland_plessite.ctf')
% plot data
plot(ebsd('Fe'), ebsd('Fe').orientations)
% reconstruct grains
th = 5*degree;
grains = calcGrains(ebsd,'threshold',th)
% find largest grain
[m,id] = max(grains.area)
% plot largest grain
plot(grains(id).boundary,'linewidth',2)
```

Why scripts?

- reproducible results
- easy to document
- templates for common tasks
- extensively customizable
- batch processing of many data sets
- repeated calculations with different parameters
Best practice
- comment your scripts
- short scripts
- function for repeated tasks
- avoid loops

MTEX Resources

- documentation
- function reference
- examples
- user scripts
- discussion forum

Matlab

Three dimensional vectors

Three dimensional vectors are given by there coordinates with respect to a orthogonal coordinate system $\vec{X}, \vec{Y}, \vec{Z}$

$$
\vec{r}=x \cdot \vec{X}+y \cdot \vec{Y}+z \cdot \vec{Z}
$$

For general vectors, MTEX does not care about the coordinate system, but works only with the coordinates.
vector $3 \mathrm{~d}(1,2,3)$

Three dimensional vectors

Three dimensional vectors are given by there coordinates with respect to a orthogonal coordinate system $\vec{X}, \vec{Y}, \vec{Z}$

$$
\vec{r}=x \cdot \vec{X}+y \cdot \vec{Y}+z \cdot \vec{Z}
$$

For general vectors, MTEX does not care about the coordinate system, but works only with the coordinates.

```
r = vector3d(1,2,3)
r = vector3d (show methods, plot)
    size: 1 x 1
    x y z
    123
```


Three dimensional vectors

Three dimensional vectors are given by there coordinates with respect to a orthogonal coordinate system $\vec{X}, \vec{Y}, \vec{Z}$

$$
\vec{r}=x \cdot \vec{X}+y \cdot \vec{Y}+z \cdot \vec{Z}
$$

For general vectors, MTEX does not care about the coordinate system, but works only with the coordinates.

$$
r=\operatorname{vector} 3 \mathbf{d}(1,2,3)
$$

The alignment of the coordinate system is only important when plotting data

$$
\begin{aligned}
& \text { plotx2north, plotzOutOfPlane } \\
& \text { plot }(r)
\end{aligned}
$$

Three dimensional vectors

Three dimensional vectors are given by there coordinates with respect to a orthogonal coordinate system $\vec{X}, \vec{Y}, \vec{Z}$

$$
\vec{r}=x \cdot \vec{X}+y \cdot \vec{Y}+z \cdot \vec{Z}
$$

For general vectors, MTEX does not care about the coordinate system, but works only with the coordinates.

$$
r=\operatorname{vector} 3 \mathbf{d}(1,2,3)
$$

The alignment of the coordinate system is only important when plotting data

plotx2east, plotzOutOfPlane plot (r)

Only for directions relative to the crystal coordinate system the reference frame is considered.

Defining vectors

predefined vectors
vector3d. X , vector3d. Y , vector3d. Z
polar coordinates $\vec{r}=(\sin \theta \cos \rho, \sin \theta \sin \rho, \cos \theta)^{t}$
theta $=90 *$ degree; rho $=45 *$ degree
$r=$ vector3d.byPolar(theta, rho)
In MTEX all angles are in radiant!
combine vectors
$r=[$ vector3d.X, vector3d.Y, vector3d $(1,1,1)]$
importing vectors
vector3d.Ioad ('file', 'ColumnNames
random vectors
vector3d rand (100)

Defining vectors

predefined vectors

vector3d.X, vector3d.Y, vector3d.Z

polar coordinates $\vec{r}=(\sin \theta \cos \rho, \sin \theta \sin \rho, \cos \theta)^{t}$ theta $=90 *$ degree; rho $=45 *$ degree ; $r=$ vector3d.byPolar(theta, rho)

In MTEX all angles are in radiant!

combine vectors

$r=[$ vector3d.X, vector3d.Y, vector3d(1,1,1)]

importing vectors

vector3d Ioad ('file', 'ColumnNames

random vectors

Defining vectors

predefined vectors

vector3d. X , vector3d. Y , vector3d. Z

polar coordinates $\vec{r}=(\sin \theta \cos \rho, \sin \theta \sin \rho, \cos \theta)^{t}$ theta $=90 *$ degree; rho $=45 *$ degree ; $r=$ vector3d.byPolar (theta, rho)

In MTEX all angles are in radiant!
combine vectors

```
r = vector3d (show methods, plot)
    x y z
    10}
    0 1 0
    1 1 1
```

$r=[v e c t o r 3 d . X, ~ v e c t o r 3 d . Y, ~ v e c t o r 3 d(1,1,1)]$

Defining vectors

predefined vectors
vector3d. X , vector3d. Y , vector3d. Z
polar coordinates $\vec{r}=(\sin \theta \cos \rho, \sin \theta \sin \rho, \cos \theta)^{t}$ theta $=90 *$ degree; rho $=45 *$ degree ; $r=$ vector3d.byPolar(theta, rho)

In MTEX all angles are in radiant!
combine vectors

```
r = [vector3d.X, vector3d.Y, vector3d(1,1,1)]
```

importing vectors

```
r = vector3d.load('file','ColumnNames',{ 'x','y','z'})
```

```
r = vector3d (show methods, plot)
```


Defining vectors

predefined vectors
vector3d. X, vector3d. Y, vector3d. Z
polar coordinates $\vec{r}=(\sin \theta \cos \rho, \sin \theta \sin \rho, \cos \theta)^{t}$ theta $=90 *$ degree; rho $=45 *$ degree ; $r=$ vector3d.byPolar(theta, rho)

In MTEX all angles are in radiant!
combine vectors
$r=[v e c t o r 3 d . X$, vector3d.Y, vector3d(1,1,1)]
importing vectors

random vectors
$r=v e c t o r 3 d . r a n d(100)$

Vector Calculations

simple algebra
$r=2 *$ vector3d. $X-$ vector3d. Y;
basic operations
$\boldsymbol{\operatorname { d o t }}(\mathrm{v} 1, \mathrm{v} 2) \quad \%$ dot product
cross(v1,v2) \% cross product
angle(v1,v2) \% angle between two vectors
normalize (v)
orth (v)
extract properties
\% polar angle in radiant
\% azimuth angle in radiant

Vector Calculations

simple algebra
$r=2 *$ vector $3 d . X-$ vector3d. Y;
basic operations

```
dot(v1,v2) % dot product
cross(v1,v2) % cross product
angle(v1,v2) % angle between two vectors
normalize(v) % scale to norm 1
orth(v) % arbitrary orthogonal vector
```


extract properties

Vector Calculations

simple algebra
$r=2 *$ vector $3 d . X-$ vector $3 d . Y$;
basic operations

```
dot(v1,v2) % dot product
cross(v1,v2) % cross product
angle(v1,v2) % angle between two vectors
normalize(v) % scale to norm 1
orth(v) % arbitrary orthogonal vector
```

extract properties

```
r.theta % polar angle in radiant
r.rho % azimuth angle in radiant
r.x, r.y, r.z
```


Indexing of Vectors

consider a list of vectors

```
r = vector3d([0 0 0 1 1],[[1 0 1 1 1],[[1 1 1 1 0]);
r = vector3d (show methods, plot)
    size: 1 x 4
    x y z
    0}11
    0}00
    1 1 1
    1 0
```

single out the second vector
single out the second and the fourth vector

Indexing of Vectors

consider a list of vectors
$r=\operatorname{vector} 3 \mathbf{d}\left(\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]\right)$;
single out the second vector
r (2)

```
r = vector3d (show methods, plot)
    size: 1 x 1
    x y z
    0}0
```

single out the second and the fourth vector
$\left.r\left(\begin{array}{ll}{[2} & 4\end{array}\right]\right)$
single out vectors by a logical condition
$x>0$)

Indexing of Vectors

consider a list of vectors
$r=\operatorname{vector} 3 \mathbf{d}\left(\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]\right)$;
single out the second vector
$r(2)$
single out the second and the fourth vector
$\left.r\left(\begin{array}{ll}2 & 4\end{array}\right]\right)$

```
r = vector3d (show methods, plot)
    size: 1 x 2
    x y z
    0 0 1
    1 0
```


Indexing of Vectors

consider a list of vectors
$r=\operatorname{vector} 3 \mathbf{d}\left(\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]\right)$;
single out the second vector
$r(2)$
single out the second and the fourth vector
r ([$\left.\begin{array}{ll}2 & 4\end{array}\right]$)
single out vectors by a logical condition
$r(r . x>0)$

```
r = vector3d (show methods, plot)
    size: 1 x 2
    x y z
    1 1 1
    1 0
```


Indexing of Vectors

consider a list of vectors
$r=\operatorname{vector} 3 \mathbf{d}\left(\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]\right)$;
single out the second vector
$r(2)$
single out the second and the fourth vector
r([lll $\left.\left.\begin{array}{ll}2 & 4\end{array}\right]\right)$
single out vectors by a logical condition
$r(r . x>0)$
The above techniques applies also to lists of rotations, orientations, tensors, EBSD data, grains, boundary segments, triple points, etc.

Changing Vectors

consider again the list of vectors
$r=\operatorname{vector} 3 d\left(\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]\right)$;
$r=$ vector3d (show methods, plot)
size: 1 x 4
x y z
$\begin{array}{lll}0 & 1 & 1\end{array}$
$0 \quad 0 \quad 1$
$\begin{array}{lll}1 & 1 & 1\end{array}$
110
replace the second vector by another vector
$r(2)=$ vector3d Y
remove the second vector completely
$r(2)=[1$
change the x coordinate of all vectors

Changing Vectors

consider again the list of vectors
$r=\operatorname{vector} 3 \mathbf{d}\left(\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]\right)$;
replace the second vector by another vector

```
r(2) = vector3d.Y
r = vector3d (show methods, plot)
    size: 1 x 4
    x y z
    0}11
    0}11
    1}11
    1 0
```

remove the second vector completely

Changing Vectors

consider again the list of vectors
$r=\operatorname{vector} 3 \mathbf{d}\left(\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]\right)$;
replace the second vector by another vector
$r(2)=\operatorname{vector} 3 d . Y$
remove the second vector completely
$r(2)=[]$

```
r = vector3d (show methods, plot)
    size: 1 x 3
    0 1 1
    1 1 1
    1 1 0
```


Changing Vectors

consider again the list of vectors
$r=\operatorname{vector} 3 \mathbf{d}\left(\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]\right)$;
replace the second vector by another vector
$r(2)=\operatorname{vector} 3 d . Y$
remove the second vector completely
$r(2)=[]$
change the \times coordinate of all vectors
$r . x=0$

```
r = vector3d (show methods, plot)
    size: 1 x 3
    0 1 1
    0}11
    0}1
```


Changing Vectors

consider again the list of vectors
$r=\operatorname{vector} 3 d\left(\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]\right)$;
replace the second vector by another vector
$r(2)=$ vector3d.Y
remove the second vector completely
$r(2)=[]$
change the \times coordinate of all vectors
$r . x=0$
The above techniques applies also to pole figure data, orientations, EBSD data, grains, etc.

Spherical Projections

spherical polar coordinates
$(x, y, z)=(\cos \rho \sin \theta, \sin \rho \sin \theta, \cos \theta)$
polar coordinates in the plane

$$
(x, y)=(r \cos \rho, r \sin \rho)
$$

Spherical Projections

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d
spherical region: upper, lower, complete, fundamentalRegion
plot alignment: plotx2east, plotx2north, plotzIntoPlane, plotzOutOfPlane
marker: s, d, o, v
markerSize, markerEdgeColor, markerFaceColor, linewidth, MarkerEdgeAlpha, MarkerFaceAlpha
combined plots: hold on, hold off, add2all
multiple plots: nextAxis, newMTEXFigure, gcm
labels: label, fontSize, backgroundcolor,

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d
spherical region: upper, lower, complete, fundamentalRegion
plot alignment: plotx2east, plotx2north, plotzIntoPlane, plotzOutOfPlane
marker: s, d, o, v
markerSize, markerEdgeColor, markerFaceColor, linewidth, MarkerEdgeAlpha, MarkerFaceAlpha
combined plots: hold on, hold off, add2all
multiple plots: nextAxis, newMTEXFigure, gcm
labels: label, fontSize, backgroundcolor,

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d
spherical region: upper, lower, complete, fundamentalRegion
plot alignment: plotx2east, plotx2north, plotzIntoPlane, plotzOutOfPlane
marker: s, d, o, v
markerSize, markerEcgeColor, markerFaceColor, linewidth, MarkerEdgeAlpha, MarkerFaceAlpha
combined plots: hold on, hold off, add2all
multiple plots: nextAxis, newMTEXFigure, gcm
labels: label, fontSize, backgroundcolor,

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d
spherical region: upper, lower, complete, fundamentalRegion
plot alignment: plotx2east, plotx2north, plotzIntoPlane, plotzOutOfPlane
marker: s, d, o, v
markerSize, markerEdgeColor, markerFaceColor, linewidth, MarkerEdgeAlpha, MarkerFaceAlpha
combined plots: hold on, hold off, add2all
multiple plots: nextAxis, newMTEXFigure, gcm
labels: label, fontSize, backgroundcolor,

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d
spherical region: upper, lower, complete, fundamentalRegion
plot alignment: plotx2east, plotx2north, plotzIntoPlane, plotzOutOfPlane
marker: s, d, o, v
markerSize, markerEdgeColor, markerFaceColor, linewidth, MarkerEdgeAlpha, MarkerFaceAlpha
combined plots: hold on, hold off, add2all
multiple plots: nextAxis, newMTEXFigure, gcm
labels: label, fontSize, backgroundcolor,

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d
spherical region: upper, lower, complete, fundamentalRegion
plot alignment: plotx2east, plotx2north, plotzIntoPlane, plotzOutOfPlane
marker: s, d, o, v
markerSize, markerEdgeColor, markerFaceColor, linewidth, MarkerEdgeAlpha, MarkerFaceAlpha
combined plots: hold on, hold off, add2all
multiple plots: nextAxis, newMTEXFigure, gcm
labels: label, fontSize, backgroundcolor,

Spherical Plots in MTEX

spherical projections: earea, edist, eangle, 3d
spherical region: upper, lower, complete, fundamentalRegion
plot alignment: plotx2east, plotx2north, plotzIntoPlane, plotzOutOfPlane
marker: s, d, o, v
markerSize, markerEdgeColor, markerFaceColor, linewidth, MarkerEdgeAlpha, MarkerFaceAlpha
combined plots: hold on, hold off, add2all
multiple plots: nextAxis, newMTEXFigure, gcm
labels: label, fontSize, backgroundcolor,

Data Plots

colorize vectors by value
$\mathrm{v}=$ vector3d.rand(100)
scatter (v, v.rho./degree) mtexColorbar southoutside mtexColorMap hsv

colorize by RGB triples

key $=$ HSVDirectionKey
scatter (v, key.direction2color (v))
visualize directions
ouiver (v, orth(v)) \% a vector field

Data Plots

colorize vectors by value
$v=$ vector3d.rand (100)
scatter (v, v.rho./degree)
mtexColorbar southoutside mtexColorMap hsv
colorize by RGB triples

key $=$ HSVDirectionKey scatter (v, key. direction2color (v))

visualize directions

quiver(v orth(v)) \% a vector field

Data Plots

colorize vectors by value

```
v = vector3d.rand(100)
scatter(v,v.rho./degree)
mtexColorbar southoutside mtexColorMap hsv
```

colorize by RGB triples
key $=$ HSVDirectionKey
 scatter (v, key. direction2color (v))
visualize directions
quiver(v, orth(v)) \% a vector field

Axes

Axes are three dimensional vectors where we do not care about length and direction, e.g. plane normals.

```
r = vector3d(1,1,1,'antipodal')
r = vector3d (show methods, plot)
    size: 1 x 1
    antipodal: true
    x y z
    1 1 1
```

Then r and $-r$ represent the same axis

eq'r

The angle to an axis is always less then 90

Axes

Axes are three dimensional vectors where we do not care about length and direction, e.g. plane normals.

```
r = vector3d(1,1,1,'antipodal')
```

Then r and -r represent the same axis

```
eq(r, -r)
```

| 1

The angle to an axis is always less then 90 angle(r, Uector3d X) / degree

Axes

Axes are three dimensional vectors where we do not care about length and direction, e.g. plane normals.

```
r = vector3d(1,1,1,'antipodal')
```

Then r and $-r$ represent the same axis

$$
\| \mathbf{e q}(r,-r)
$$

The angle to an axis is always less then 90°

```
angle(r,-vector3d.X) / degree
```

54.7

Axes

Axes are three dimensional vectors where we do not care about length and direction, e.g. plane normals.

```
r = vector3d(1,1,1,'antipodal')
```

Then r and $-r$ represent the same axis

$$
\| \mathbf{e q}(r,-r)
$$

The angle to an axis is always less then 90°
 |angle (r, - vector ld. X) / degree

Changing option antipodal

```
r = vector3d.rand(100)
o = v.orth;
quiver(v,o)
```


Axes

Axes are three dimensional vectors where we do not care about length and direction, e.g. plane normals.

```
|r = vector3d(1,1,1,'antipodal')
```

Then r and -r represent the same axis

$$
\| \mathbf{e q}(r,-r)
$$

The angle to an axis is always less then 90°

|angle(r,-vector3d.X) / degree

Changing option antipodal

```
r = vector3d.rand(100)
o = v.orth;
o.antipodal = true;
quiver(v,o)
```


