Lecture 2 - Crystal Lattices

R. Hielscher
Faculty of Mathematics,
Chemnitz University of Technology, Germany

MTEX Workshop 2021

Crystals

Definition

A crystal is an anisotropic, homogenous body consisting of a three-dimensional periodic ordering of atoms, ions or molecules.

Crystals

Definition

A crystal is an anisotropic, homogenous body consisting of a three-dimensional periodic ordering of atoms, ions or molecules.

Consequence: There are linearly independent vectors $\vec{a}, \vec{b}, \vec{c}$ such that the atomic structure is invariant with respect to translations about these vectors.

- The definition of periodicity assumes infinity of the atomic structure.
- The choice of the vectors $\vec{a}, \vec{b}, \vec{c}$ is not unique

The Unit Cell

- is the parallelepiped spanned by $\vec{a}, \vec{b}, \vec{c}$.
- is the smallest region that constitutes a repeating pattern.
- is characterized by the length and angles

$$
\begin{aligned}
a & =|\vec{a}|, b=|\vec{b}|, c=|\vec{c}| \\
\alpha & =\measuredangle(\vec{b}, \vec{c}), \beta=\measuredangle(\vec{a}, \vec{c}), \gamma=\measuredangle(\vec{b}, \vec{a}) .
\end{aligned}
$$

```
\[
a b c=[5.2,5.2,5.3]
\]
\[
\text { abg }=\left[\begin{array}{lll}
90 & 99.25 & 90
\end{array}\right] * \text { degree } ;
\]
\[
c s=\text { crystalSymmetry }\left({ }^{\prime} 1^{\prime}, a b c, a b g\right)
\]
```

```
ans = crystalSymmetry
```

ans = crystalSymmetry
symmetry : 1
symmetry : 1
a,b, c: 5.2, 5.2, 5.3
a,b, c: 5.2, 5.2, 5.3
alpha, beta, gamma: 90, 99.25, 90

```
    alpha, beta, gamma: 90, 99.25, 90
```


The Crystal Coordinate Systems

The vectors $\vec{a}, \vec{b}, \vec{c}$ constitute a right handed but non orthogonal coordinate system.

Lattice points are given by coordinates u, v, w :

$$
\cdot u v w \cdot=\vec{d}=u \vec{a}+v \vec{b}+w \vec{c} .
$$

Usage: slip systems, dislocation systems

$$
\| \mathrm{d}=\mathrm{Miller}\left(1,1,0, \mathrm{cs}, \quad, u v w^{\prime}\right)
$$

```
d = Miller
    size: 1 x 1
    symmetry: 1
        u 1
        v 1
        W 0
```

Smaller integers u, v, w indicate higher density of lattice points on the line and larger distance between parallel lines.

The Crystal Coordinate Systems

The vectors $\vec{a}, \vec{b}, \vec{c}$ constitute a right handed but non orthogonal coordinate system.

Lattice points are given by coordinates u, v, w :

$$
\cdot u v w \cdot=\vec{d}=u \vec{a}+v \vec{b}+w \vec{c} .
$$

Usage: slip systems, dislocation systems

$$
\| \mathrm{d}=\mathrm{Miller}\left(1,1,0, \mathrm{cs},{ }^{\prime} u v w^{\prime}\right)
$$

Lattice directions [uvw]: all vectors parallel to \vec{d} $\| d=[2 * d,-d]$

ans $=$	
1	0

The Crystal Coordinate Systems

The vectors $\vec{a}, \vec{b}, \vec{c}$ constitute a right handed but non orthogonal coordinate system.

Lattice points are given by coordinates u, v, w :

$$
\cdot u v w \cdot=\vec{d}=u \vec{a}+v \vec{b}+w \vec{c} .
$$

Usage: slip systems, dislocation systems

$$
\| \mathrm{d}=\mathrm{Miller}\left(1,1,0, \mathrm{cs},{ }^{\prime} u v w^{\prime}\right)
$$

Lattice directions [uvw]: all vectors parallel to \vec{d} $\| d=[2 * d,-d]$
| [abs(d), $\operatorname{norm}(2 * d)]$

The Crystal Coordinate Systems

The vectors $\vec{a}, \vec{b}, \vec{c}$ constitute a right handed but non orthogonal coordinate system.

Lattice points are given by coordinates u, v, w :

$$
\cdot u v w \cdot=\vec{d}=u \vec{a}+v \vec{b}+w \vec{c} .
$$

Usage: slip systems, dislocation systems

$$
\| \mathrm{d}=\mathrm{Miller}\left(1,1,0, \mathrm{cs},{ }^{\prime} u v w^{\prime}\right)
$$

Lattice directions [uvw]: all vectors parallel to \vec{d} $\| d=[2 * d,-d]$
$\|[\boldsymbol{a b s}(d), \quad \operatorname{norm}(2 * d)]$
Examples: $[100],[1 \overline{1} 0]=[2 \overline{2} 0] \neq[\overline{1} 10]$

The Reciprocal Coordinate System

The reciprocal axes are orthogonal to $\vec{a}, \vec{b}, \vec{c}$,

$$
\vec{a}^{*}=\frac{\vec{b} \times \vec{c}}{V}, \vec{b}^{*}=\frac{\vec{c} \times \vec{a}}{V}, \vec{c}^{*}=\frac{\vec{a} \times \vec{b}}{V}
$$

- $V=\vec{a} \cdot(\vec{b} \times \vec{c})$ is the volume of the unit cell
- $\vec{a} \cdot \vec{a}^{*}=1, \vec{b} \cdot \vec{b}^{*}=1, \vec{c} \cdot \vec{c}^{*}=1$
- units of $\vec{a}^{*}, \vec{b}^{*}, \vec{c}^{*}$ are reciprocal to $\vec{a}, \vec{b}, \vec{c}$
- for cubic lattices $\vec{a}\left|\left|\vec{a}^{*}, \vec{b}\right|\right| \vec{b}^{*}, \vec{c}| | \vec{c}^{*}$,

Directions with respect to the $\vec{a}^{*}, \vec{b}^{*}, \vec{c}^{*}$ are given by integers coordinates h, k, ℓ

$$
\vec{n}=h \vec{a}^{*}+k \vec{b}^{*}+\ell c^{*}
$$

The Reciprocal Coordinate System

$$
\| \mathrm{n}=\mathrm{Miller}(1,1,0, \mathrm{cs}, \quad h k l ')
$$

```
d = Miller
    symmetry: 1
        h 1
        k 1
        l 0
```


The Reciprocal Coordinate System

$$
\begin{aligned}
& \mathrm{n}=\operatorname{Miller}\left(1,1,0, \mathrm{cs},{ }^{\prime} h k l^{\prime}\right) \\
& \text { Miller }\left(\{1,1,0\},\{0,1,1\}, \mathrm{cs},{ }^{\prime} h k l^{\prime}\right)
\end{aligned}
$$

```
ans = Miller
    symmetry: 1
    h 1
    k 1
    l 0
```


The Reciprocal Coordinate System

$$
\begin{aligned}
& \mathrm{n}=\operatorname{Miller}\left(1,1,0, \mathrm{cs},{ }^{\prime} h k l^{\prime}\right) \\
& \text { Miller }\left(\{1,1,0\},\{0,1,1\}, \mathrm{cs},{ }^{\prime} h k l^{\prime}\right) \\
& \mathrm{rec}=\left[\begin{array}{cc}
& \text { cs.axisRec,cs.bAxisRec }, \ldots \\
& \text { cs.cAxisRec }]
\end{array}\right.
\end{aligned}
$$

The Reciprocal Coordinate System

The Reciprocal Coordinate System

$\| \operatorname{dot}(\mathrm{rec}, \mathrm{cs.aAxis})$
cross (cs.aAxisRec, cs.bAxisRec)

ans $=$	Miller
symmetry:	1
u	0
v	0
w	1

Crystal Lattice Planes

The plane P normal to $\vec{n}=h \vec{a}^{*}+k \vec{b}^{*}+\ell c^{*}$ is

$$
P=\{\vec{x} \mid \vec{x} \cdot \vec{n}=d\}=(h k \ell) .
$$

It intersects the \vec{a}-axis in $\cdot u 00$. if

$$
d=u \vec{a} \cdot n=u \vec{a} \cdot\left(h \vec{a}^{*}+k \vec{b}^{*}+\ell c^{*}\right)=u h .
$$

Crystal Lattice Planes

The plane P normal to $\vec{n}=h \vec{a}^{*}+k \vec{b}^{*}+\ell c^{*}$ is

$$
P=\{\vec{x} \mid \vec{x} \cdot \vec{n}=d\}=(h k \ell) .
$$

It intersects the \vec{a}-axis in $\cdot u 00$. if

$$
d=u \vec{a} \cdot n=u \vec{a} \cdot\left(h \vec{a}^{*}+k \vec{b}^{*}+\ell c^{*}\right)=u h .
$$

Hence, (hkl) intersects \vec{a}, \vec{b} and \vec{c} in $\frac{d}{h}, \frac{d}{k}, \frac{d}{\ell}$.

Crystal Lattice Planes

The plane P normal to $\vec{n}=h \vec{a}^{*}+k \vec{b}^{*}+\ell c^{*}$ is

$$
P=\{\vec{x} \mid \vec{x} \cdot \vec{n}=d\}=(h k \ell) .
$$

It intersects the \vec{a}-axis in $\cdot u 00$. if

$$
d=u \vec{a} \cdot n=u \vec{a} \cdot\left(h \vec{a}^{*}+k \vec{b}^{*}+\ell c^{*}\right)=u h .
$$

Hence, (hkl) intersects \vec{a}, \vec{b} and \vec{c} in $\frac{d}{h}, \frac{d}{k}, \frac{d}{\ell}$.
Given axes intersections $m, n, p \in \mathbb{N}$. The corresponding normal vector is

$$
\vec{n}=\frac{d}{m} \vec{a}^{*}+\frac{d}{n} \vec{b}^{*}+\frac{d}{p} \vec{c}^{*}
$$

with $d=\operatorname{LCM}(m, n, p)$.

Crystal Lattice Planes

The plane P normal to $\vec{n}=h \vec{a}^{*}+k \vec{b}^{*}+\ell c^{*}$ is

$$
P=\{\vec{x} \mid \vec{x} \cdot \vec{n}=d\}=(h k \ell) .
$$

It intersects the \vec{a}-axis in $\cdot u 00$. if

$$
d=u \vec{a} \cdot n=u \vec{a} \cdot\left(h \vec{a}^{*}+k \vec{b}^{*}+\ell c^{*}\right)=u h .
$$

Hence, (hkl) intersects \vec{a}, \vec{b} and \vec{c} in $\frac{d}{h}, \frac{d}{k}, \frac{d}{\ell}$.
Given axes intersections $m, n, p \in \mathbb{N}$. The corresponding normal vector is

$$
\vec{n}=\frac{d}{m} \vec{a}^{*}+\frac{d}{n} \vec{b}^{*}+\frac{d}{p} \vec{c}^{*}
$$

with $d=\operatorname{LCM}(m, n, p)$.

$k=0 \Longleftrightarrow \frac{1}{0}=\infty \Longleftrightarrow(h k /)$ is parallel to \vec{b}

Crystal Lattice Planes

The plane P normal to $\vec{n}=h \vec{a}^{*}+k \vec{b}^{*}+\ell c^{*}$ is

$$
P=\{\vec{x} \mid \vec{x} \cdot \vec{n}=d\}=(h k \ell) .
$$

It intersects the \vec{a}-axis in $\cdot u 00$. if

$$
d=u \vec{a} \cdot n=u \vec{a} \cdot\left(h \vec{a}^{*}+k \vec{b}^{*}+\ell c^{*}\right)=u h .
$$

Hence, (hkl) intersects \vec{a}, \vec{b} and \vec{c} in $\frac{d}{h}, \frac{d}{k}, \frac{d}{\ell}$.
Given axes intersections $m, n, p \in \mathbb{N}$. The corresponding normal vector is

$$
\vec{n}=\frac{d}{m} \vec{a}^{*}+\frac{d}{n} \vec{b}^{*}+\frac{d}{p} \vec{c}^{*}
$$

with $d=\operatorname{LCM}(m, n, p)$.

$k=0 \Longleftrightarrow \frac{1}{0}=\infty \Longleftrightarrow(h k l)$ is parallel to \vec{b}

Miller Indices

The lattice plane (123) perpendicular to $\vec{n}=\vec{a}^{*}+2 \vec{b}^{*}+3 \vec{c}^{*}$ which intersects the direct lattice axes \vec{a}, \vec{b} and \vec{c} at $1, \frac{1}{2}$ and $\frac{1}{3}$.

- The coordinates h, k, ℓ are the Miller indices of the plane P.
- planes ($h k \ell$) parallel to \vec{a} have interception point $\frac{1}{\infty}$ and hence $h=0$
- planes ($h 00$) perpendicular to \vec{a}^{*} have interception points $\left(\frac{d}{h}, \frac{1}{\infty}, \frac{1}{\infty}\right)$

The Zone Equation

A direction $[u v w]$ is parallel to a plane $(h k \ell)$ if

$$
h u+k v+\ell w=0 .
$$

```
d1 = Miller(1, - 1,2, cs,'uvw')
n1 = Miller(1,1,0,cs,'hkl')
\operatorname{dot}(d1,n1)
ans =
    7.7716e-16
```


The Zone Equation

A direction $[u v w]$ is parallel to a plane $(h k \ell)$ if

$$
h u+k v+\ell w=0
$$

```
d1 = Miller(1, -1,2,cs, 'uvw')
n1 = Miller(1,1,0,cs,'hkl')
\boldsymbol{dot}(d1,n1)
angle(n1,d2) ./ degree
```

ans $=$
90.0000

The Zone Equation

A direction $[u v w]$ is parallel to a plane (hke) if

$$
h u+k v+\ell w=0 .
$$

$$
(h k l)=\left[u_{1} v_{1} w_{1}\right] \times\left[u_{2} v_{2} w_{2}\right]
$$

The plane ($h k l$) spanned by the directions [$u_{1} v_{1} w_{1}$] and [$u_{2} v_{2} w_{2}$]:

```
```

d1 = Miller(1, - 1,2,cs,'uvw')

```
```

d1 = Miller(1, - 1,2,cs,'uvw')
n1 = Miller(1,1,0,cs,'hkl')
n1 = Miller(1,1,0,cs,'hkl')
\operatorname{dot}(d1,n1)
\operatorname{dot}(d1,n1)
angle(n1,d2) ./ degree

```
```

angle(n1,d2) ./ degree

```
```

```
```

d2 = Miller(1,0,0,cs,'uvw')

```
```

d2 = Miller(1,0,0,cs,'uvw')
cross(d1,d2)

```
```

cross(d1,d2)

```
```

```
ans = Miller
    symmetry: 1
    h 0
    k 2
    l }
```


The Zone Equation

A direction $[u v w]$ is parallel to a plane (hke) if

$$
h u+k v+\ell w=0
$$

```
d1 = Miller(1, -1,2,cs,'uvw')
n1 = Miller(1,1,0,cs, 'hkl')
\boldsymbol{dot}(d1,n1)
angle(n1,d2) ./ degree
```

```
d2 = Miller(1,0,0,cs,'uvw')
cross(d1,d2)
```

```
n2 = Miller(1,0,0,cs,'hkl')
cross(n1,n2)
```

The common direction [$u v w$] of two planes ($h_{1} k_{1} \ell_{1}$) and ($h_{2} k_{2} \ell_{2}$)

$$
[u v w]=\left(h_{1} k_{1} \ell_{1}\right) \times\left(h_{2} k_{2} \ell_{2}\right)
$$

Morphology

Crystals are formed by crystallization from a solution or a melt. the two steps of crystallization: nucleation and growth

Morphology

Crystals are formed by crystallization from a solution or a melt. the two steps of crystallization: nucleation and growth

- the grow rate is an anisotropic property
- lattice planes with high grow rate get smaller
- lattice planes with low grow rate become larger
- lattice nlanes ($h k \ell$) with small Miller indices usually have high density and grow slowly
- the shape of a crystal is formed by its low index lattice planes
- law of constant dihedral angles

Morphology

Crystals are formed by crystallization from a solution or a melt. the two steps of crystallization: nucleation and growth

- the grow rate is an anisotropic property
- lattice planes with high grow rate get smaller
- lattice planes with low grow rate become larger
- lattice planes ($h k \ell$) with small Miller indices usually have high density and grow slowly
- the shape of a crystal is formed by its low index lattice planes
- law of constant dihedral angles

Morphology

Crystals are formed by crystallization from a solution or a melt. the two steps of crystallization: nucleation and growth

- the grow rate is an anisotropic property
- lattice planes with high grow rate get smaller
- lattice planes with low grow rate become larger
- lattice planes (hkl) with small Miller indices usually have high density and grow slowly
- the shape of a crystal is formed by its low index lattice planes
- law of constant dihedral angles

Morphology

Crystals are formed by crystallization from a solution or a melt. the two steps of crystallization: nucleation and growth

- the grow rate is an anisotropic property
- lattice planes with high grow rate get smaller
- lattice planes with low grow rate become larger
- lattice planes ($h k \ell$) with small Miller indices usually have high density and grow slowly
\Rightarrow the shape of a crystal is formed by its low index lattice planes
- law of constant dihedral angles

Morphology

Crystals are formed by crystallization from a solution or a melt. the two steps of crystallization: nucleation and growth

- the grow rate is an anisotropic property
- lattice planes with high grow rate get smaller
- lattice planes with low grow rate become larger
- lattice planes ($h k \ell$) with small Miller indices usually have high density and grow slowly
- the shape of a crystal is formed by its low index lattice planes
- law of constant dihedral angles

Morphology

Crystals are formed by crystallization from a solution or a melt. the two steps of crystallization: nucleation and growth

- the grow rate is an anisotropic property
- lattice planes with high grow rate get smaller
- lattice planes with low grow rate become larger
- lattice planes ($h k \ell$) with small Miller indices usually have high density and grow slowly
- the shape of a crystal is formed by its low index lattice planes
- law of constant dihedral angles

The Crystal Planes of Quartz in a Stereographic Projection

c c-axis:
(0001), (0001 $)$
m hexagonal prism:
(10̄ㅜ), (01 $\overline{10} 0),(1 \overline{1} 00)$
($\overline{1} 010$), ($(\overline{1} 10),(\overline{1} 100)$
r positive rhomboeder:
(10111, ($\overline{1} 101$), (0 111)
z negative rhomboder: (11 01$),(01 \overline{1} 1),(\overline{1} 011)$
s trigonal bipyramid: (11 $\overline{2} 1),(1 \overline{2} 11),(\overline{2} 111)$
\times positive trapezohedron: (516̄1), ($\overline{6} 511$), ($1 \overline{6} 51$)

Defining Crystal Shapes

Show this live!

