Lecture 2 - Crystal Lattices

R. Hielscher

Faculty of Mathematics, Chemnitz University of Technology, Germany

MTEX Workshop 2021

Crystals

Definition

A crystal is an anisotropic, homogenous body consisting of a three-dimensional periodic ordering of atoms, ions or molecules.

Crystals

Definition

A crystal is an anisotropic, homogenous body consisting of a three-dimensional periodic ordering of atoms, ions or molecules.

Consequence: There are linearly independent vectors \vec{a} , \vec{b} , \vec{c} such that the atomic structure is invariant with respect to translations about these vectors.

- The definition of periodicity assumes infinity of the atomic structure.
- The choice of the vectors \vec{a} , \vec{b} , \vec{c} is not unique

The Unit Cell

- ▶ is the parallelepiped spanned by \vec{a} , \vec{b} , \vec{c} .
- is the smallest region that constitutes a repeating pattern.
- is characterized by the length and angles

$$\begin{aligned} \mathbf{a} &= |\vec{\mathbf{a}}|, \ \mathbf{b} &= |\vec{\mathbf{b}}|, \ \mathbf{c} &= |\vec{\mathbf{c}}| \\ \alpha &= \measuredangle(\vec{\mathbf{b}}, \vec{\mathbf{c}}), \ \beta &= \measuredangle(\vec{\mathbf{a}}, \vec{\mathbf{c}}), \ \gamma &= \measuredangle(\vec{\mathbf{b}}, \vec{\mathbf{a}}). \end{aligned}$$

ans =	<u>crystalSy</u>	mmetry		
symm	netry	:	1	
a, b), С	:	5.2,	5.2, 5.3
alph	a, beta,	gamma:	90,	99.25, 90

The vectors \vec{a} , \vec{b} , \vec{c} constitute a right handed but non orthogonal coordinate system.

Lattice points are given by coordinates u, v, w:

 $\cdot uvw \cdot = \vec{d} = u\vec{a} + v\vec{b} + w\vec{c}.$

Usage: slip systems, dislocation systems

d =	<pre>= Miller(1,1,0,cs, 'uvw')</pre>)
d =	Miller ze: 1 x 1	
syı	mmetry: 1	
u	1	
v w	0	

Smaller integers u, v, w indicate higher density of lattice points on the line and larger distance between parallel lines.

The vectors \vec{a} , \vec{b} , \vec{c} constitute a right handed but non orthogonal coordinate system.

Lattice points are given by coordinates u, v, w:

 $\cdot uvw \cdot = \vec{d} = u\vec{a} + v\vec{b} + w\vec{c}.$

Usage: slip systems, dislocation systems

d = Miller(1,1,0,cs, 'uvw')

Lattice directions [uvw]: all vectors parallel to \vec{d}

d === [2*d, -d]
ans =
 1 0

The vectors \vec{a} , \vec{b} , \vec{c} constitute a right handed but non orthogonal coordinate system.

Lattice points are given by coordinates u, v, w:

 $\cdot uvw \cdot = \vec{d} = u\vec{a} + v\vec{b} + w\vec{c}.$

Usage: slip systems, dislocation systems

d = Miller(1,1,0,cs, 'uvw')

Lattice directions [uvw]: all vectors parallel to \vec{d}

$$d = [2*d, -d]$$

[abs(d), norm(2*d)]

ans = 1.4142 2.8284

The vectors \vec{a} , \vec{b} , \vec{c} constitute a right handed but non orthogonal coordinate system.

Lattice points are given by coordinates u, v, w:

 $\cdot uvw \cdot = \vec{d} = u\vec{a} + v\vec{b} + w\vec{c}.$

Usage: slip systems, dislocation systems

d = Miller(1,1,0,cs, 'uvw')

Lattice directions [uvw]: all vectors parallel to \vec{d}

d == [2*d, -d] [**abs**(d), **norm**(2*d)]

Examples: [100], $[1\overline{1}0] = [2\overline{2}0] \neq [\overline{1}10]$

The reciprocal axes are orthogonal to $\vec{a}, \vec{b}, \vec{c}$,

$$ec{a}^* = rac{ec{b} imes ec{c}}{V}, \; ec{b}^* = rac{ec{c} imes ec{a}}{V}, \; ec{c}^* = rac{ec{a} imes ec{b}}{V}$$

- V = $\vec{a} \cdot (\vec{b} \times \vec{c})$ is the volume of the unit cell $\vec{a} \cdot \vec{a}^* = 1$, $\vec{b} \cdot \vec{b}^* = 1$, $\vec{c} \cdot \vec{c}^* = 1$
- units of \vec{a}^* , \vec{b}^* , \vec{c}^* are reciprocal to $\vec{a}, \vec{b}, \vec{c}$
- ▶ for cubic lattices $\vec{a}||\vec{a}^*, \vec{b}||\vec{b}^*, \vec{c}||\vec{c}^*,$

Directions with respect to the $\vec{a}^*, \vec{b}^*, \vec{c}^*$ are given by integers coordinates h, k, ℓ

$$\vec{n} = h\vec{a}^* + k\vec{b}^* + \ell c^*$$

$$n = Miller(1, 1, 0, cs, 'hkl')$$

d = Miller symmetry: 1 h 1 k 1 l 0

```
n = Miller(1,1,0,cs, 'hkl')
Miller({1,1,0}, {0,1,1}, cs, 'hkl')
ans = Miller
symmetry: 1
```

1 0

n = Miller(1,1,0,cs, 'hkl')
Miller({1,1,0}, {0,1,1},cs, 'hkl')
rec = [cs.aAxisRec,cs.bAxisRec,...
cs.cAxisRec]

$$n = Miller(1,1,0,cs,'hkl')$$

Miller({1,1,0}, {0,1,1},cs,'hkl')
rec = [cs.aAxisRec,cs.bAxisRec,...
cs.cAxisRec]

dot(rec,cs.aAxis)					
ans	=				
	1	0	0		


```
n = Miller(1,1,0,cs,'hkl')
Miller({1,1,0},{0,1,1},cs,'hkl')
```

rec = [cs.aAxisRec,cs.bAxisRec,...
cs.cAxisRec]

dot(rec,cs.aAxis)

cross(cs.aAxisRec,cs.bAxisRec)

ans	=	Mille	er
syr	n m e	etry:	1
u		0	
v		0	
W		1	

The plane *P* normal to $\vec{n} = h\vec{a}^* + k\vec{b}^* + \ell c^*$ is

$$P = \{\vec{x} \mid \vec{x} \cdot \vec{n} = d\} = (hk\ell).$$

It intersects the \vec{a} -axis in $\cdot u00$ if

$$d = u\vec{a} \cdot n = u\vec{a} \cdot (h\vec{a}^* + k\vec{b}^* + \ell c^*) = uh.$$

The plane *P* normal to $\vec{n} = h\vec{a}^* + k\vec{b}^* + \ell c^*$ is

$$P = \{\vec{x} \mid \vec{x} \cdot \vec{n} = d\} = (hk\ell).$$

It intersects the \vec{a} -axis in $\cdot u 00 \cdot$ if

$$d = u\vec{a} \cdot n = u\vec{a} \cdot (h\vec{a}^* + k\vec{b}^* + \ell c^*) = uh.$$

Hence, $(hk\ell)$ intersects \vec{a} , \vec{b} and \vec{c} in $\frac{d}{h}$, $\frac{d}{k}$, $\frac{d}{\ell}$.

The plane *P* normal to $\vec{n} = h\vec{a}^* + k\vec{b}^* + \ell c^*$ is

 $P = \{\vec{x} \mid \vec{x} \cdot \vec{n} = d\} = (hk\ell).$

It intersects the \vec{a} -axis in $\cdot u$ 00 \cdot if

$$d = u\vec{a} \cdot n = u\vec{a} \cdot (h\vec{a}^* + k\vec{b}^* + \ell c^*) = uh.$$

Hence, $(hk\ell)$ intersects \vec{a} , \vec{b} and \vec{c} in $\frac{d}{h}$, $\frac{d}{k}$, $\frac{d}{\ell}$.

Given axes intersections $m, n, p \in \mathbb{N}$. The corresponding normal vector is

$$\vec{n} = \frac{d}{m}\vec{a}^* + \frac{d}{n}\vec{b}^* + \frac{d}{p}\vec{c}^*$$

with d = LCM(m, n, p).

The plane *P* normal to $\vec{n} = h\vec{a}^* + k\vec{b}^* + \ell c^*$ is

 $P = \{\vec{x} \mid \vec{x} \cdot \vec{n} = d\} = (hk\ell).$

It intersects the \vec{a} -axis in $\cdot u$ 00 \cdot if

$$d = u\vec{a} \cdot n = u\vec{a} \cdot (h\vec{a}^* + k\vec{b}^* + \ell c^*) = uh.$$

Hence, $(hk\ell)$ intersects \vec{a} , \vec{b} and \vec{c} in $\frac{d}{h}$, $\frac{d}{k}$, $\frac{d}{\ell}$.

Given axes intersections $m, n, p \in \mathbb{N}$. The corresponding normal vector is

$$\vec{n} = \frac{d}{m}\vec{a}^* + \frac{d}{n}\vec{b}^* + \frac{d}{p}\vec{c}^*$$

with d = LCM(m, n, p).

$$k=0\iff rac{1}{0}=\infty\iff (hkl)$$
 is parallel to $ec{b}$

The plane *P* normal to $\vec{n} = h\vec{a}^* + k\vec{b}^* + \ell c^*$ is

 $P = \{\vec{x} \mid \vec{x} \cdot \vec{n} = d\} = (hk\ell).$

It intersects the \vec{a} -axis in $\cdot u$ 00 \cdot if

$$d = u\vec{a} \cdot n = u\vec{a} \cdot (h\vec{a}^* + k\vec{b}^* + \ell c^*) = uh.$$

Hence, $(hk\ell)$ intersects \vec{a} , \vec{b} and \vec{c} in $\frac{d}{h}$, $\frac{d}{k}$, $\frac{d}{\ell}$.

Given axes intersections $m, n, p \in \mathbb{N}$. The corresponding normal vector is

$$\vec{n} = \frac{d}{m}\vec{a}^* + \frac{d}{n}\vec{b}^* + \frac{d}{p}\vec{c}^*$$

with d = LCM(m, n, p).

$$k=0\iff rac{1}{0}=\infty\iff (hkl)$$
 is parallel to $ec{b}$

Miller Indices

The lattice plane (123) perpendicular to $\vec{n} = \vec{a}^* + 2\vec{b}^* + 3\vec{c}^*$ which intersects the direct lattice axes \vec{a} , \vec{b} and \vec{c} at 1, $\frac{1}{2}$ and $\frac{1}{3}$.

- ► The coordinates h, k, l are the Miller indices of the plane P.
- ▶ planes $(hk\ell)$ parallel to \vec{a} have interception point $\frac{1}{\infty}$ and hence h = 0
- ▶ planes (h00) perpendicular to a^{*} have interception points (^d/_h, ¹/_∞, ¹/_∞)

A direction [uvw] is parallel to a plane $(hk\ell)$ if

 $hu + kv + \ell w = 0.$

d1 = Miller(1,-1,2,cs, 'uvw')
n1 = Miller(1,1,0,cs, 'hkl')
dot(d1,n1)
ans =
7.7716e-16

A direction [uvw] is parallel to a plane $(hk\ell)$ if

 $hu + kv + \ell w = 0.$

d1 = Miller(1,-1,2,cs, 'uvw')
n1 = Miller(1,1,0,cs, 'hkl')
dot(d1,n1)
angle(n1,d2) ./ degree
ans =

```
90.0000
```

A direction [uvw] is parallel to a plane $(hk\ell)$ if

 $hu + kv + \ell w = 0.$

The plane (hkl) spanned by the directions $[u_1v_1w_1]$ and $[u_2v_2w_2]$:

 $(hkl) = [u_1v_1w_1] \times [u_2v_2w_2]$

```
d1 = Miller(1, -1, 2, cs, 'uvw')
n1 = Miller(1, 1, 0, cs, 'hkl')
dot(d1, n1)
angle(n1,d2) ./ degree
d2 = Miller(1, 0, 0, cs, 'uvw')
cross(d1, d2)
ans = Miller
 symmetry: 1
  h 0
```

A direction [uvw] is parallel to a plane $(hk\ell)$ if

 $hu + kv + \ell w = 0.$

The plane (hkl) spanned by the directions $[u_1v_1w_1]$ and $[u_2v_2w_2]$:

 $(hkl) = [u_1v_1w_1] \times [u_2v_2w_2]$

The common direction [uvw] of two planes $(h_1k_1\ell_1)$ and $(h_2k_2\ell_2)$

 $[uvw] = (h_1k_1\ell_1) \times (h_2k_2\ell_2)$

d1 = Miller(1, -1, 2, cs, 'uvw')n1 = Miller(1, 1, 0, cs, 'hkl')**dot**(d1, n1) angle(n1,d2) ./ degree d2 = Miller(1,0,0,cs, 'uvw')cross(d1, d2)n2 = Miller(1,0,0,cs, 'hkl')cross(n1, n2)ans = Miller symmetry: 1 0 77 w -1

- the grow rate is an anisotropic property
- lattice planes with high grow rate get smaller
- lattice planes with low grow rate become larger
- lattice planes (hkl) with small Miller indices usually have high density and grow slowly
- the shape of a crystal is formed by its low index lattice planes
- law of constant dihedral angles

Crystals are formed by crystallization from a solution or a melt. the two steps of crystallization: nucleation and growth

the grow rate is an anisotropic property

- lattice planes with high grow rate get smaller
- lattice planes with low grow rate become larger
- ▶ lattice planes (*hkl*) with small Miller indices usually have high density and grow slowly
- the shape of a crystal is formed by its low index lattice planes
- law of constant dihedral angles

- the grow rate is an anisotropic property
- lattice planes with high grow rate get smaller
- lattice planes with low grow rate become larger
- ▶ lattice planes (*hkl*) with small Miller indices usually have high density and grow slowly
- the shape of a crystal is formed by its low index lattice planes
- law of constant dihedral angles

- the grow rate is an anisotropic property
- lattice planes with high grow rate get smaller
- lattice planes with low grow rate become larger
- lattice planes (hkl) with small Miller indices usually have high density and grow slowly
- the shape of a crystal is formed by its low index lattice planes
- law of constant dihedral angles

- the grow rate is an anisotropic property
- lattice planes with high grow rate get smaller
- lattice planes with low grow rate become larger
- ▶ lattice planes (*hkℓ*) with small Miller indices usually have high density and grow slowly
- the shape of a crystal is formed by its low index lattice planes
- Iaw of constant dihedral angles

- the grow rate is an anisotropic property
- lattice planes with high grow rate get smaller
- lattice planes with low grow rate become larger
- ► lattice planes (*hkl*) with small Miller indices usually have high density and grow slowly
- the shape of a crystal is formed by its low index lattice planes
- Iaw of constant dihedral angles

- the grow rate is an anisotropic property
- lattice planes with high grow rate get smaller
- lattice planes with low grow rate become larger
- ► lattice planes (*hkl*) with small Miller indices usually have high density and grow slowly
- the shape of a crystal is formed by its low index lattice planes
- law of constant dihedral angles

ne Crystal Planes of Quartz in a Stereographic

- × positive trapezohedron: (5161), (6511), (1651)
- s trigonal bipyramid: (1121), (1211), (2111)
- z negative rhomboder: (1101),(0111),(1011)
- r positive rhomboeder: $(10\overline{1}1, (\overline{1}101), (0\overline{1}11)$
- m hexagonal prism: (1010), (0110),(1100) (1010), (0110),(1100)
- (0001), (0001)
- c c-axis:

The Crystal Planes of Quartz in a Stereographic Projection

Defining Crystal Shapes

Show this live!