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Background
Sustainable growth requires the 
effective use of high strength steels
• Steel’s mechanical properties are affected by 

the manufacturing process

• Statistical analysis is required across several 
length scales for engineering purposes

Research in the microstructural length scale 
reveals deformation mechanisms
• Optimisation of materials and manufacturing 

processes made possible by understanding 
the fundamental microstructure – strength 
relationships
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Steel in shipbuilding

• Energy efficiency of ships calls for 
alternative structural topologies and 
stronger steel grades (relative density)

• New manufacturing methods need to be 
implemented to fully utilize the higher 
strength and to guarantee the safety of 
the structure (e.g. fatigue)

• Welds are often structural weak points 
prone to failure (microstructural effects)
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Steel in shipbuilding

• Energy efficiency of ships calls for 
alternative structural topologies and 
stronger steel grades (relative density)

• New manufacturing methods need to 
be implemented to fully utilize the 
higher strength and guarantee the 
safety of the structure (e.g. fatigue)

• Welds are often structural weak points 
prone to failure (microstructural effects)
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Steel in shipbuilding

• Energy efficiency of ships calls for 
alternative structural topologies and 
stronger steel grades (relative density)

• New manufacturing methods need to be 
implemented to fully utilize the higher 
strength and guarantee the safety of the 
structure (e.g. fatigue)

• Welds are often structural weak 
points prone to failure 
(microstructural effects)
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Length scales of research
• To prevent catastrophic failures, we need to understand the 

load carrying mechanisms in different length scales
• Fundamental question: how does the manufacturing process 

affect the strength properties of steel?
• How to approach the problem, top-down or bottom-up?
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Length scales of research
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• To prevent catastrophic failures, we need to understand the 
load carrying mechanisms in different length scales

• Fundamental question: how does the manufacturing process 
affect the strength properties of steel?

• How to approach the problem, top-down or bottom-up?



Length scales of research
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• To prevent catastrophic failures, we need to understand the 
load carrying mechanisms in different length scales

• Fundamental question: how does the manufacturing process 
affect the strength properties of steel?

• How to approach the problem, top-down or bottom-up?



Scope of work



Scope of work
How to predict average strength 
properties of welded steel from 
statistical analysis of the 
microstructure?

Research questions:
• 1) How to characterize the 

microstructure
• 2) How to measure local 

strength variation
• 3) Define dependencies 

between microstructure and 
strength

A B C

A B
C
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Experiments
Microstructure and strength 
characterised for several weld 
metals:
• Instrumented indentation 

testing to measure local 
strength properties

• Scanning electron microscopy 
used for the characterization of 
microstructure and plastic 
deformation
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Experiments
Microstructure and strength 
characterised for several weld 
metals:
• Instrumented indentation testing 

to measure local strength 
properties

• Scanning electron 
microscopy used for the 
characterization of 
microstructure and plastic 
deformation
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Grain size of steel

50 µm

• Solidification of a weld creates a broad dispersion of different grain 
sizes in comparison to base metal

• Methods developed for the characterisation of the heterogeneous 
grain structure
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Prediction of strength

• Average strength properties can be 
predicted using average grain size

• However, the grain size dispersion 
must be considered

• Based on the observations of this 
dissertation, the Hall-Petch 
equation was modified:

Literature: simulated base metal
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Local plastic deformation

• In a hardness test the material 
must permanently change it’s 
shape to accommodate the 
indenter

• The mechanism for the shape 
change is material rotation

• At microstructural level the grains in 
the material are subdivided into 
smaller units

• Dislocations are moving on specific 
slip systems

1.0 µm
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0.6 µm
0.4 µm
0.2 µm

0 µm
-0.2 µm

Indentation depth 4.9 µm
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Local plastic deformation
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• In a hardness test the material must 
permanently change it’s shape to 
accommodate the indenter

• The mechanism for the shape 
change is material rotation

• At microstructural level the grains in 
the material are subdivided into 
smaller units

• Dislocations are moving on specific 
slip systems
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PDZ 722 µm210 µm

GRZ 315 µm210 µm

Local plastic deformation
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• In a hardness test the material must 
permanently change it’s shape to 
accommodate the indenter

• The mechanism for the shape 
change is material rotation

• At microstructural level the 
grains in the material are 
subdivided into smaller units

• Dislocations are moving on specific 
slip systems
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Local plastic deformation
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• In a hardness test the material must 
permanently change it’s shape to 
accommodate the indenter

• The mechanism for the shape 
change is material rotation

• At microstructural level the grains in 
the material are subdivided into 
smaller units

• Dislocations are moving on 
specific slip systems

10 µm Misorientation

Misorientation axis
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Local misorientation analysis 
in MTEX



Deformation mechanism of steel

Undeformed

Deformed

Initial grain orientation and 
dislocation structure

Load
(magnitude/direction)

Slip systems
Shear

stress on 
slip plane

Elastic

Plastic

New grain
orientation

lattice rotation dislocation motion

Evolution of 
dislocation
structure

New obstacles
for dislocation
motion (GND)

τ> τCRSS

τ < τCRSS

Damage area (KAM)Mechanisms (GROD+KAM)

• Two aspects need to be analyzed for local plastic deformation:
• 1) Changes in grain orientation
• 2) Evolution of dislocation structure



Deformation mechanism of steel
• Grain subdivision process, where lattice dislocations rearrange to 

form dislocation tangles (DT) and dense dislocation walls (DDW).

• As deformation continues, dislocation density increases, and new 
sub-grain and grain boundaries are formed. 

• With sufficient plastic deformation the process is repeated in the 
newly formed grains, further refining the grain size. 
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Deformation mechanism of steel
• Sub-grain boundaries are harder to detect than grain boundaries 

from EBSD data for two reasons:
• 1. Boundaries are gradual, not sharp
• 2. Misorientation is small in relation to angular resolution



Deformation mechanism of steel
• Sub-grain boundaries are harder to detect than grain boundaries 

from EBSD data for two reasons:
• 1. Boundaries are gradual, not sharp
• 2. Misorientation is small in relation to angular resolution

IPF-Z Misorientation trace
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Kernel misorientation

3x3 kernel (nn=1) 5x5 kernel (nn=2) 7x7 kernel (nn=3)

Kernel average misorientation (°)
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

• Kernel misorientation measures the average misorientation 
between a central point and its nearest neighbours

• Small kernels affected by the global orientation gradient
• Some boundaries visible, but the measurement noise inhibits 

reliable detection of sub-granular features
• => A new measurement strategy is needed



Sub-grain 
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Dense dislocation wall
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Adaptive kernel size analysis
• Instead of sampling the immediate vicinity of the gradual border, the 

misorientation between neighbouring sub-grains should be measured
• Kernel size should be in proportion to the measured sub-granular units

• Different sub-GB types have characteristic misorientation ranges

• Large kernels (20..100 nn) effective in averaging EBSD measurement noise
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10 µm

11x11 kernel (nn=5) 21x21 kernel (nn=10) 61x61 kernel (nn=30)

121x121 kernel (nn=60) 201x201 kernel (nn=100)

5
10

Kernel size (nn)

30

60

100

Kernel average misorientation (°)
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.7

Adaptive kernel size analysis
• Kernel size up to 100 nearest neighbours (0.1 µm step size)
• Misorientation analysis range 0 – 2° reveals sub-grain boundaries
• Large kernels minimise the effect of global orientation gradient



Post-processing of EBSD data
• Noise of EBSD data can be effectively reduced with MTEX to enhance visibility of 

sub-granular features

• Combination of Half-Quadratic filter (α=0.15) and Kuwahara Filter (1st NN) suitable 
for reducing measurement noise while retaining sub-granular detail (MTEX 5.0.1)
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Effective kernel size
• The effective kernel size is dependent on size of features and 

location of measurement point

• In the example below, 60 nn kernel is moved inside a sub-grain
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Sub-grains and dense dislocation walls
• By analyzing smaller misorientation ranges, the dense dislocation 

walls become visible
• Median value enhances contrast between non-deformed and 

deformed areas for 0-2° range
0 < θ < 0.5°
θmax=0.425

0 < θ < 2°
θmax=1.8

10 µm

Kernel misorientation (°)
0 θmax

0 < θ < 1°
θmax=0.9
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• Misorientation between neighbouring sub-grains 2.3 – 5.6°, 
average 3.5°
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• Misorientation between neighbouring dislocation cells 0.5 – 2.1°, 
average 1.0°

Sub-grains and dense dislocation walls
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• Misorientation between neighbouring dislocation cells 0.5 – 2.1°, 
average 1.0°

Sub-grains and dense dislocation walls
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Post-processing of EBSD data
• Combination of Half-Quadratic filter (α=0.15) and Kuwahara Filter 

(1st NN) suitable for reducing measurement noise while retaining 
dislocation cell detail (MTEX 5.0.1)



Post-processing of EBSD data
• Comparison of detail resolved with 0.06 µm step size:

• Raw data and conventional KAM
• Post-processed data and adaptive kernel size approach
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Plastic deformation zone

Indenter

Plastic deformation
zone (PDZ)

Dense
dislocation wall

Dislocation cell

Grain refined
zone (GRZ)

Sub-grain boundary

Grain boundary

• Two deformation zones can be defined:
• 1) Grain refined zone with sub-grain boundaries (KMM 0-2°)
• 2) Plastic deformation zone with dense dislocation walls (KAM 0-0.5°)



Plastic deformation zone
• Two deformation zones can be defined:

• 1) Grain refined zone with sub-grain boundaries (KMM 0-2°)
• 2) Plastic deformation zone with dense dislocation walls (KAM 0-0.5°)
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Plastic deformation zone
• Influence of grain boundaries and grain size on deformation can be analysed
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Plastic deformation zone
• Average shape of grain refined zone for two materials at different 

indentation load levels
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Plastic deformation zone
• Average plastic deformation zone can be related to grain size

• Normalisation of deformation zone radius and indentation diagonal with 
volume-weighted average grain size
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Lattice rotation analysis in 
MTEX



Lattice rotation analysis
• Deformation inside a grain can be 

measured by comparing the orientations 
inside a grain to a pre-defined reference 
orientation

• Grain reference orientation deviation 
(GROD) or in MTEX mis2mean

• Angle – axis pair

• Accurate definition of reference 
important, but challenging for 
polycrystalline materials
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Lattice rotation analysis

Misorientation

From single crystal to polycrystalline material:
• Grain orientation not known before testing

Orientation Euler angles

Severely
deformed
orientations

Low deformation

Level of deformation inside the grain can be 
severe: how to determine reference orientation?

• Average orientation of the grain
• Suitable only when level of deformation is low and limited to 

a small area inside the grain

• Point with the highest pattern quality
• Assumption that pattern quality correlates with plastic 

deformation.
• However, pattern quality is affected by a number of other 

factors, making this approach unreliable.

• Point with the lowest local misorientation
• Local misorientation also correlates with plastic deformation.
• Reference determination unreliable, as the single orientation 

can deviate significantly from other points with low local 
misorientation



Clustering based reference orientation
• Deformation causes orientation gradients: large 

misorientation to the closest neighbour inside the 
grain

• Undeformed areas have similar orientation, causing 
the misorientation to the nearest neighbour to be 
very small; In the example case ~45% of all 
orientation in the grain are in close proximity to 
each other

=> Orientations can be grouped with a density
based clustering algorithm DBSCAN

1.
2.3.

Orientation distribution inside the grain

1.

2.

3.

Eps

Core

Noise

Border
Noise

CoreBorder

MinPts = 3

A) Low-density cluster B) High-density cluster
MinPts = 3



• Instead of using all grain orientations, the areas with low 
deformation should be used

Clustering based reference orientation

Average 
orientation

A B

Average 
orientation
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Moderate

Low

(0.11, -0.99, 0.02)
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• A-B) Kernel misorientation used 
to determine plastic deformation 
inside the grain (5th nn)

• C-D) 50% of Lowest KAM are 
used for clustering, and this 
already leaves out most of the 
deformation

• While using a fixed percentage 
of low KAM areas is feasible, 
automating the correct value is 
difficult (grain size, level of 
deformation)

• => Clustering used to group 
similar orientations

Clustering based reference orientation
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• An algorithm is required to determine the 
clustering parameter ‘Epsilon’

• Done individually for each grain, (A) shows 
the misorientation to 5th nearest neighbour
(no spatial information)

• In (B) the knee-point defined with bi-linear 
fitting defines the clustering parameter
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• Clustering parameters: Eps= 0.089°, MinPTS = 5

• One large cluster with large density, 19 small clusters

• Reference orientation is the median of the largest cluster

• Flexibility to manually choose other clusters, or to re-run 
clustering with alternative parameters for selected grains

Clustering based reference orientation
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• Example of misorientation with different reference orientations

Clustering based reference orientation
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Misorientation analysis
• Example case with S355 structural steel and HV0.05 indentation 

to demonstrate misorientation analysis with clustering based 
reference orientation

• For misorientation analysis the Kuwahara Filter is not 
recommended, often 1. pass of Half-Quadratic filter is enough 
(in some cases 2. passes)

A B C

10 µm10 µm



Misorientation analysis
• Misorientation angle, and rotation relative to the specimen coordinate system

A) Misorientation B) Rotation around x

C) Rotation around y D) Rotation around z
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Misorientation analysis
• Misorientation axis in specimen and crystal coordinates
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Combination of analysis approaches
• Misorientation axis (SS) + Sub-grain boundaries

10 µm

BA C

Kernel misorientation(°)1 1.7

• Misorientation axis (SS) + Extent of plastic deformation

10 µm

BA C

Kernel misorientation (°)0.2 1.0



10 µm

BA C

Kernel misorientation (°)0.2 1.0

10 µm

BA C

KAM (°)0.21 0.42

Combination of analysis approaches
• Misorientation axis (SS) including plastic deformation zone + Dense dislocation walls

• Misorientation axis (CS) + Extent of plastic deformation



Analysis example #1
Dislocation motion



Dislocation motion
• Clustering enables more accurate deformation analysis

• Investigation to resolve what causes local minima in the misorientation field

• Attempt to link dislocation motion with the rotation patterns
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Dislocation motion
• Misorientation axis distribution (specimen symmetry) shows strong symmetry

• A plane fit to the data reveals a normal vector close to [1 1 -1], indication of 
dislocation slip direction

X+Y+

Z+
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10 µm
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(1 0 1) Slip plane

Slip direction
[1 1 -1]

Direction of dislocation motion
[-1 2 1]

(1 1 -1) Plane

[1 0 1] Slip plane normal

Dislocation motion
• For BCC materials such as the structural steel, the [11-1] direction is a zone axis 

associated with three {110}<11-1> and three {211}<11-1> slip systems

• Screw dislocations determine the plastic deformation process (below Tc)

• For a screw dislocation with [11-1] slip direction, the dislocations on a (1 0 1) plane move 
to the [-1 2 1] direction

[111] zone axis Geometry of dislocation 
motion for screw dislocation
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C

Dislocation motion
• Based on the clustered reference orientation, direction of dislocation motion 

can be estimated for the {110} and {211} slip planes

• Experimental result shows traces radiating outward from the misorientation 
minimum at the centre of the grain

(110)

(211)

b

Estimated dislocation 
motion directions Experimental patterns



Dislocation motion
• Global direction of the traces is consistent with the estimated directions

• Jagged appearance of the traces indicates cross-slip processes on 
neighbouring (110) and (211) slip planes, producing macroscopic slip in (211) 
and (110) slip planes directions

   

1 µm
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Dislocation motion
• Dislocation cell size is the smallest at the location of the misorientation 

minimum

• Small dislocation cell size indicates large local stresses and strains
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Dislocation motion
• Assuming we are dealing with a screw dislocation, it’s stress 

distribution is inversely proportional to the distance from its core

• With this assumption, the dislocation cell size follows the 
theoretical stress
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Dislocation motion
• Deformation progresses in <11-1> directions for the studied BCC steels

• Influence of grain boundaries and grain size on slip transmission can be studied
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Analysis example #2
Grain interaction



Grain interaction
• As an indenter is pushed deeper into the material, the plastic deformation zone will 

start to influence multiple grains

• Strain bursts (Δh) during an instrumented indentation test indicate significant 
dislocation pile-up – slip transmission events at grain boundaries

• As transmission takes place, energy of the pile-up is released, resulting in a temporary 
increase of indenter’s speed of displacement (in a force controlled test)
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Grain interaction
• When hardness is measured as a function if indentation depth, the changes in 

displacement speed (B) are visible as drops in hardness (A)

• Three cases: 

• 1) No significant strain bursts (1) 

• 2) One significant strain burst (7) 

• 3) Multiple strain bursts (6)
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A B
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Grain interaction
• Comparison between no bursts (1) 

and one significant burst (7)

• Similarity of orientation for the 
large grain under the indenter, with 
a significantly larger grain size for 
indentation 1
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Grain interaction
• For indentation 1 the majority of the 

deformation is contained in the large 
grain, without transmission taking 
place from this grain (plane 1 and 2)

• For indentation 7 there is clear 
transmission from the grain under the 
indenter visible on planes 1 and 2

• Most likely slip transmission has 
taken place near plane 1, as 
there’s continuity of rotation axes 
(ss) across the GB, and the grain 
has a sharp corner (stress 
concentrator)
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Grain interaction
• The size of the grain refined and plastic deformation zones is estimated for the onset 

of the pile-up and slip transmission for indentation 7

• Hemispheric shape assumed for simplicity

• Based on the estimation, pile-up effects are visible when the PDZ reaches the GB.

• Transmission took place approximately when the GRZ reached the GB.
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Grain interaction
• Indentation 6 has multiple small grains under the indenter

• Misorientation analysis reveals that deformation has been transmitted to multiple 
grains, consistent with the strain bursts in indentation data 
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Conclusions



Conclusions
• MTEX is extremely versatile for orientation 

data post-processing and analysis!

• For plastic deformation analysis even 
Hough-based EBSD data contains a lot of 
information when processed and analyses 
in an efficient manner

• Deformation patterns can be linked with 
deformation mechanisms
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References
• More detailed information on the methods can be 

found in my doctoral dissertation: 
http://urn.fi/URN:ISBN:978-952-60-8807-5

• The grain size measurement methods are available
at: http://wiki.aalto.fi/display/GSMUM/

• MTEX implementation is future work

• The adaptive kernel misorientation method and 
clustering based misorientation analysis will be
made available as an open source code in due
course with example datasets

• For any questions don’t hesitate to contact me 
at pauli.lehto (at) aalto.fi

http://urn.fi/URN:ISBN:978-952-60-8807-5
http://wiki.aalto.fi/display/GSMUM/
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