Prior austenite reconstruction: a graph sectioning problem

Tuomo Nyyssönen
Tampere University

Orientation map of martensite

Martensite is not really composed of grains like ferrite and austenite

- Instead martensite is composed of laths formed through a shear transformation from grains

Stacked ellipsoids - like a pile of pancakes!

THE PROBLEM BEHIND THE PROBLEM

- Pancakes are made from flour mix. But when you make the pancakes, you can't study the flour mix any more!
- The "flour mix" here is austenite at $\sim 700-1000^{\circ} \mathrm{C}$ so it's a bit tricky to study anyway!

Mathematically, the relationship looks like this:

Relationship of pancake (martensitic lath) to flour mix (parent austenite):

We are interested in the relationships of the pancakes to each other, however....

Mathematically, we therefore need something like this:

Two pancakes (martensitic laths) i and j originating from the same mix (parent austenite). How to describe their relationship:

$$
M=\left(o_{\alpha}\left(x_{j}\right)\right)^{-1}\left(o_{\alpha}\left(x_{j}\right)\right)
$$

$$
M=C_{j}^{-1} T_{\gamma \rightarrow \alpha}^{-1} P_{j}^{-1} P_{i} T_{\gamma \rightarrow \alpha} C_{i}
$$

Only the pan (orientation relationship) is required to describe the relationships between pancakes (martensitic laths)!

Happily...

$$
M=C_{j}^{-1} T_{\gamma \rightarrow \alpha}^{-1} P_{j}^{-1} P_{i} T_{\gamma \rightarrow \alpha} C_{i}
$$

The list describing all possible relationships between pancakes (martensitic laths) has only 24 candidates!

Graph problems

- Modelling of relations and processes in physical, biological, social and informations systems.

A graph is a collection of:

- nodes
- edges

Graph problems: medicine

Graphs in steel

Graphs in steel

Graphs in steel

A graph is a collection of:

- nodes
- edges

Graphs in steel

Austenite

Austenite as a graph

Austenite as a graph

Austenite

Martensite

Martensite as a graph

Martensite as a graph

Happily...

$$
M=C_{j}^{-1} T_{\gamma \rightarrow \alpha}^{-1} P_{j}^{-1} P_{i} T_{\gamma \rightarrow \alpha} C_{i}
$$

The list describing all possible relationships between pancakes (martensitic laths) has only 24 candidates!

Misorientation-based analysis may help:

$$
M=C_{j}^{-1} T_{\gamma \rightarrow \alpha}^{-1} P_{j}^{-1} P_{i} T_{\gamma \rightarrow \alpha} C_{i}
$$

$$
T_{\gamma \rightarrow \alpha}=\left(T_{\gamma \rightarrow \alpha}^{-1} P_{j}^{-1} P_{i}\right)^{-} 1 C_{j} M_{e x p} C_{i}^{-} 1
$$

$$
\begin{aligned}
& T_{\gamma \rightarrow \alpha}=\left(T_{\gamma \rightarrow \alpha}^{-1} P_{j}^{-1} P_{i}\right)^{-} 1 C_{j} M_{e x p} C_{i}^{-} 1 \\
& T_{n+1}\left(x_{i}, x_{j}\right)=\left(\bar{T}_{n}^{-1} P_{j}^{-1} P_{i}\right)^{-1} C_{j} M_{x_{i}, x_{j}} C_{i}^{-} 1
\end{aligned}
$$

Iterative procedure gives you a decent result!

$$
\left.\begin{array}{c}
\text { - Angle between }\{111\} \mathrm{a} \text { and }\{011\} \mathrm{m} \\
\text { Angle between }<110>\mathrm{a} \text { and }<111>\mathrm{m}
\end{array}\right]
$$

We can now do the following:

We have an orientation map measured via EBSD from a martensitic surface. We will now divide the boundaries between laths (pancakes) to block and packet boundaries using the definition:

$$
M=C_{j}^{-1} T_{\gamma \rightarrow \alpha}^{-1} P_{j}^{-1} P_{i} T_{\gamma \rightarrow \alpha} C_{i}
$$

While doing so...

- We have essentially defined parent orientations for all the analyzed misorientations! $M=C_{j}^{-1} T_{\gamma \rightarrow \alpha}^{-1} P_{j}^{-1} P_{i} T_{\gamma \rightarrow \alpha} C_{i}$

Reconstruction of parent austenite from martensitic EBSD data, Tuomo Nyyssönen

What does MCL do?

What we get!

Quite often the problem is twinning.

$$
\begin{aligned}
O_{\gamma}\left(x_{i}\right) P_{i} & =O_{\alpha^{\prime}}\left(x_{i}\right)\left(T_{\gamma \rightarrow \alpha} C_{i}\right)^{-1} \\
O_{\gamma}\left(x_{j}\right) P_{j} & =O_{\alpha^{\prime}}\left(x_{j}\right)\left(T_{\gamma \rightarrow \alpha} C_{j}\right)^{-1}
\end{aligned}
$$

A reference map becomes available for comparison with whatever algorithm.

$$
\begin{aligned}
O_{\gamma}\left(x_{i}\right) P_{i} & =O_{\alpha^{\prime}}\left(x_{i}\right)\left(T_{\gamma \rightarrow \alpha} C_{i}\right)^{-1} \\
O_{\gamma}\left(x_{j}\right) P_{j} & =O_{\alpha^{\prime}}\left(x_{j}\right)\left(T_{\gamma \rightarrow \alpha} C_{j}\right)^{-1}
\end{aligned}
$$

Software for analysis

Software for analysis

Software for analysis

Stereographic projection for austenite

More details

Crystallography, Morphology, and Martensite

Transformation of Prior Austenite in Intercritically

Annealed High-Aluminum Steel
T. Nyyssönen • P. Peura •
V.-T. Kuokkala

Received: date / Accepted: date

Abstract The crystallography and morphology of the intercritical austenite phase in two high-aluminum steels annealed at $850{ }^{\circ} \mathrm{C}$ was examined on the basis of electron backscattered diffraction analysis, in concert with a novel orientation relationship determination and prior austenite reconstruction algorithm. The formed intercritical austenite predominantly shared a Kurdjumov-Sachs type semicoherent boundary with at least one of the neighboring intercritical ferrite grains. If

Software for analysis

Researchgate

Parent austenite reconstruction for Matlab
with MTEX: graphical user interface
Tuomo Nyyssönen
e-mail
tuomoknyyssonen@gmail.com

Github
https://github.com/nyyssont/parent_austenite_reconstruction

Two basic reconstruction methods:

