Prior austenite reconstruction: a graph sectioning problem

Tuomo Nyyssönen

Tampere University

Orientation map of martensite

Martensite is not really composed of grains like ferrite and austenite

• Instead martensite is composed of laths formed through a shear transformation **from grains**

Stacked ellipsoids – like a pile of pancakes!

3/9/2020

Reconstruction of parent austenite from martensitic EBSD data, Tuomo Nyyssönen

THE PROBLEM BEHIND THE PROBLEM

- Pancakes are made from flour mix. But when you make the pancakes, you can't study the flour mix any more!
- The "flour mix" here is austenite at ~700 1000 °C so it's a bit tricky to study anyway!

Reconstruction of parent austenite from martensitic EBSD data, Tuomo Nyyssönen

Mathematically, the relationship looks like this:

Relationship of pancake (martensitic lath) to flour mix (parent austenite):

We are interested in the relationships of the pancakes to each other, however....

Stacked ellipsoids – like a pile of pancakes!

Reconstruction of parent austenite from martensitic EBSD data, Tuomo Nyyssönen

Mathematically, we therefore need something like this:

Two pancakes (martensitic laths) *i* and *j* originating from the same mix (parent austenite). How to describe their relationship:

Only the pan (orientation relationship) is required to describe the relationships between pancakes (martensitic laths)!

The list describing all possible relationships between pancakes (martensitic laths) has only 24 candidates!

Reconstruction of parent austenite from martensitic EBSD data, Tuomo Nyyssönen

Graph problems

• Modelling of relations and processes in physical, biological, social and informations systems.

A graph is a collection of: - nodes

- edges

Graph problems: medicine

A graph is a collection of: - nodes

- edges

Austenite

Austenite as a graph

Austenite as a graph

Austenite

Martensite

Martensite as a graph

Martensite as a graph

$$O_{\alpha'}(x_i) = O_{\gamma}(x_i) P_i T_{\gamma \to \alpha} C_i$$
$$M = C_j^{-1} T_{\gamma \to \alpha}^{-1} P_j^{-1} P_i T_{\gamma \to \alpha} C_i$$

The list describing all possible relationships between pancakes (martensitic laths) has only 24 candidates!

Reconstruction of parent austenite from martensitic EBSD data, Tuomo Nyyssönen

Misorientation-based analysis may help:

$$M = C_j^{-1} T_{\gamma \to \alpha}^{-1} P_j^{-1} P_i T_{\gamma \to \alpha} C_i$$

$$T_{\gamma \to \alpha} = (T_{\gamma \to \alpha}^{-1} P_j^{-1} P_i)^{-1} C_j M_{exp} C_i^{-1}$$

$$T_{\gamma \to \alpha} = (T_{\gamma \to \alpha}^{-1} P_j^{-1} P_i)^{-1} C_j M_{exp} C_i^{-1} 1$$
$$T_{n+1}(x_i, x_j) = (\overline{T}_n^{-1} P_j^{-1} P_i)^{-1} C_j M_{x_i, x_j} C_i^{-1} 1$$

Iterative procedure gives you a decent result!

We can now do the following:

We have an orientation map measured via EBSD from a martensitic surface. We will now divide the boundaries between laths (pancakes) to block and packet boundaries using the definition:

Reconstruction of parent austenite from martensitic EBSD data, Tuomo Nyyssönen

While doing so...

• We have essentially defined parent orientations for all the analyzed misorientations! $M = C_i^{-1}T_{\gamma \to \alpha}^{-1}P_iT_{\gamma \to \alpha}C_i$

Reconstruction of parent austenite from martensitic EBSD data, Tuomo Nyyssönen

What does MCL do?

What we get!

Quite often the problem is twinning.

$$O_{\gamma}(x_i)P_i = O_{\alpha'}(x_i)(T_{\gamma \to \alpha}C_i)^{-1}$$
$$O_{\gamma}(x_j)P_j = O_{\alpha'}(x_j)(T_{\gamma \to \alpha}C_j)^{-1}$$

A reference map becomes available for comparison with whatever algorithm.

$$O_{\gamma}(x_i)P_i = O_{\alpha'}(x_i)(T_{\gamma \to \alpha}C_i)^{-1}$$
$$O_{\gamma}(x_j)P_j = O_{\alpha'}(x_j)(T_{\gamma \to \alpha}C_j)^{-1}$$

		Terrore or the ter		1
EBSD maps	PAGs via MCL	MCL Analysis	PAGS via triple points	
Grains data so	urce			
Import GraGenerate r	in Data Grains var OR new grains 3 De	iable Name grain gree Boundary 🔽	Clean up grains smaller th	Rev 0
🗹 save 'g	rains' to workspace	and update ebsd		
Load	ed and saved	Dataset contains 30	17 grains.	
Orientation rela	ationship determinat	ion		
			PAGS V	as pole figure
OR	determined	Plot result	White on black	ot OR
viev	v development	Zoriontation relatio	nchin as fac2has	
Save	to workspace	variant histogram	as [variants_hist, variants_h	pin]
Construct undi	rected graph and ca	II MCL		
Construct undi	rected graph and ca	1.8 Inflation pow	er Save to workspace	MCL clusters
Construct undii MC MCL fo	rected graph and ca CL complete und 34 discrete clus	1.8 Inflation pow	er Save to workspace	MCL clusters
Construct undii MC MCL fo Reconstruct pa	rected graph and ca DL complete und 34 discrete clus rent austenite	I MCL 1.8 Inflation pow ters.	er Save to workspace	MCL clusters
Construct undir MCL fo Reconstruct pa	rected graph and ca CL complete und 34 discrete clus rent austenite	I MCL 1.8 Inflation pow ters.	er Save to workspace) MCL clusters
Construct undi MCL fo Reconstruct pa	rected graph and ca CL complete und 34 discrete clus rent austenite Complete	I MCL 1.8 Inflation pow ters. Plot results	er Save to workspace) MCL clusters

More details

Metallurgical and Materials Transactions A manuscript No. (will be inserted by the editor)

Crystallography, Morphology, and Martensite Transformation of Prior Austenite in Intercritically Annealed High-Aluminum Steel

T. Nyyssönen · P. Peura ·

V.-T. Kuokkala

Received: date / Accepted: date

Abstract The crystallography and morphology of the intercritical austenite phase in two high-aluminum steels annealed at 850 °C was examined on the basis of electron backscattered diffraction analysis, in concert with a novel orientation relationship determination and prior austenite reconstruction algorithm. The formed intercritical austenite predominantly shared a Kurdjumov-Sachs type semicoherent boundary with at least one of the neighboring intercritical ferrite grains. If

Researchgate

Parent austenite reconstruction for Matlab with MTEX: graphical user interface Tuomo Nyyssönen

e-mail

tuomoknyyssonen@gmail.com

Github

https://github.com/nyyssont/parent_austenite_reconstruction

Two basic reconstruction methods:

