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Abstract: This paper presents the background for the calculation of anisotropic piezoelectric
properties of single crystals and the graphical display of the results in two or three dimensions,
and the calculation of the aggregate properties from constituent crystals and the texture of the
aggregate in a coherent manner. The texture data can be obtained from a wide range of sources,
including pole figure diffraction and single orientation measurements (electron backscattered dif-
fraction, electron channelling pattern, Laue Pattern, optical microscope universal-stage). We con-
sider the elastic wave propagation in piezoelectric crystals as an example of the interaction of
electrical (2nd rank tensor), piezoelectric (3rd rank tensor) and elastic properties (4th rank
tensor). In particular, we give explicit formulae for the calculation of the Voigt averaged tensor
from individual orientations or from an orientation distribution function. For the latter we consider
numerical integration and an approach based on the expansion into spherical harmonics. We illus-
trate the methods using single crystals, polycrystalline quartz measured using electron channelling
patterns and ideal Curie limiting groups applied to quartz aggregates. This paper also serves as a
reference paper for the mathematical tensor capabilities of the texture analysis software MTEX.

The word piezoelectricity is derived from the Greek
word for ‘to press’ (piezein), hence pressure causing
electricity or piezoelectricity. Piezoelectric proper-
ties are of a wide interest in science as the effect
has now been reported in inorganic single crystals
(e.g. a-quartz; Bechmann 1958), organic crystals
(e.g. sodium oxalate; Haussühl 1991), molecular
crystals (e.g. 2-furyl methacrylic anhydride; Kerkoc
et al. 1999), inorganic polycrystals (e.g. ceramics;
Messing et al. 2004), polymers (e.g. Hayakawa &
Wada 1973), bone (e.g. Fukada & Yasuda 1957),
collagen (e.g. Fukada & Yasuda 1964) and wood
(e.g. Bazhenov 1961). Industrial interest in piezo-
electricity for transducers and resonators stems
from the nature of the effect, which is either the
direct effect (when stress is applied to the material
and a polarized electric field develops) or the con-
verse effect (when an electric field is applied to
the material it becomes strained). On 8 April
1880, Jacques Curie reported to the French
Society of Mineralogy his discovery (with the
collaboration of his brother Pierre) of the direct
piezoelectric effect in five crystal species examined:
tourmaline (point group shown in bold, 3 m);

sphalerite (ZnS, �43 m); boracite (Mg3B7O13Cl,
mm 2); zincite (ZnO, 6 mm); and a-quartz (SiO2,
32) (Curie & Curie 1880). Here we have used
modern mineral names. The existence of the con-
verse effect was predicted from thermodynamic
arguments by Lippmann (1881). However, by the
end of 1881 the Curie brothers had experimentally
observed the converse effect and confirmed that
both effects are due to the same physical property
(Curie & Curie 1881, 1882). In 1893 Jacques Curie
became head lecturer in mineralogy at the Univer-
sity of Montpellier, where his last work was to deter-
mine the piezoelectric constants of a-quartz in 1910
before retiring due to poor health (Cady 1964). The
formal description of piezoelectricity in tensor
notation for all crystallographic classes is due to
Woldemar Voigt’s major contribution summarized
in his two books Die Fundamentalen Physiklischen
Eigenschaften der Kristalle (1898) and the better-
known Lehrbuch der Kristallphysik (1910, 1928).

Industrial application of piezoelectric single
crystals was probably first envisaged by Paul Lange-
vin who invented an ultrasonic generator using
quartz and steel plates, a precursor of modern

From: Faulkner, D. R., Mariani, E. & Mecklenburgh, J. (eds) Rock Deformation from Field, Experiments and
Theory: A Volume in Honour of Ernie Rutter. Geological Society, London, Special Publications, 409,
http://dx.doi.org/10.1144/SP409.2
# The Geological Society of London 2014. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics

 by guest on July 23, 2014http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


sonar device, around 1917. Subsequently the use of
piezoelectric single crystals (mainly quartz) in reso-
nators, filters and transducers became widespread.
Single-crystal quartz is still widely used today along
with crystals of new compositions, such as langa-
site, with improved characteristics (Jung & Auh
1999). Piezoelectric polycrystalline ceramics (Jaffe
et al. 1971), often composed of two ferroelectric
phases, are now more widely used than single crys-
tals in transducers. In this paper we will use terms
crystal-preferred orientations (CPOs), or textures
as they are referred to in Materials Science, inter-
changeably as no possible confusion can result in
present context. Enhancing of the CPOs of ceramics
is motivated by the need to increase the piezo-
electric strain for a given applied voltage in trans-
ducer applications. Many single crystals exhibit
strongly anisotropic piezoelectric properties and
many aggregates of piezoelectric crystals also have
strong CPOs. In polycrystalline aggregates, the
CPO may be due to the plastic deformation in geo-
logical samples or specially devised mechanical
processing in industrial applications. In industrial
processing, the application of strong electric fields
can be used to enhance the degree of alignment of
ferro-electric dipoles in ferroelectric crystals (e.g.
perovskite structured double oxides BaTiO3,
KNbO3, KTaO3 and PbTiO3 and double fluorides
KMgF3 and KZnF3), a technique known as pol-
ing (Messing et al. 2004). CPO is often partially
described by pole figures in ceramics, whereas the
CPO can be described completely and concisely
in a quantitative manner by the orientation density
function (ODF). The combination of strong CPOs
and anisotropic single-crystal properties results in
a strong directional variation in specimen proper-
ties, which are often difficult and time-consuming
to completely characterize by laboratory measure-
ments in many directions. The evaluation of seve-
ral physical properties of interest in piezoelectric
materials from CPO – such as the the 2nd rank
dielectric permittivity, 3rd rank piezoelectric strain
and 4th rank elastic stiffness tensors needed for
elastic wave propagation – allows the determi-
nation of aggregate properties over the complete
orientation sphere of the specimen reference frame.

The estimation of physical properties of crystal-
line aggregates from the properties of the compo-
nent crystals has been the subject of extensive
literature since the classical work of Voigt (1887)
and Reuss (1929). Such a simple volume averaging
approach is only feasible if the bulk properties of
the crystals dominate the physical property of the
aggregate and the effects of grain boundary inter-
faces can be ignored, such as the electrical con-
ductivity along grain boundaries. In the case of
piezoelectic properties, the Reuss bound cannot be
implemented as the piezoelectric 3rd rank tensors

are only transposable and not invertible (unlike
2nd and 4th rank centrosymmetric tensors, which
are both transposable e.g. 2nd rank tensor T to TT

and invertible e.g. T to T21). A further complica-
tion in piezoelectric materials is the coupled inter-
action between several thermal, electrical and
mechanical variables, which requires a more rigor-
ous thermodynamic definition of the measurement
of the tensor property and constitutive equations
for their application to given problems as illustrated
later. In this paper we will be restricted to the sim-
ple Voigt volume-averaging approach for aggre-
gates and to the propagation of elastic waves in a
piezoelectric material as an example of electrome-
chanical coupling. Other averaging methods, such
as self-consistent and variational effective medium
methods, are beyond the scope of the present paper.

A piezoelectric effect has been established either
quantitatively or qualitatively in only 30% of 239
minerals that do not have a centre of symmetry and
hence should be piezoelectric (Parkhomenko 1971).
The semi-conducting elements tellurium (Te) and
selenium (Se), along with the mineral pyrolu-
site (MnO2), have the greatest piezoelectric effect
of naturally occurring compounds. Minerals with
strong effect include greenockite (CdS), cadmo-
setite (b-CdSe) and zincite (ZnO), which have an
effect 3–5 times greater than a-quartz. However,
there are over 70 minerals that have a piezoelectric
effect of similar magnitude to a-quartz. Piezoelec-
tric minerals occur most frequently in ore deposits
(52 references), followed by veins and hydrothermal
associations (24 references) and volcanic rocks
(18 references) as documented by Parkhomenko
(1971). Ore deposits are often associated with
hydrothermal activity in volcanic rocks, so these
categories are not mutually exclusive. As can be seen
in an area as critical to the Earth’s non-renewable
resources as ore deposits, piezoelectric minerals
may have an important role for exploration. The
interest of the electronic industry in piezoelectric
minerals does not require development here. As
show by Parkhomenko (1971), the accurate determi-
nation of the piezoelectric tensors of minerals has
only been made for a very small fraction of piezo-
electric minerals.

Although piezoelectric minerals are generally
not very common in the Earth’s crust, one is very
common: quartz is the third-most common mineral
at about 12% of the Earth’s crust, according to
Taylor & McLennan (1985). The presence of sig-
nificant volumes of quartz will influence the seismic
properties of common crustal rock types such as
sandstone, quartzite and granite. Some piezoelectric
minerals are locally highly concentrated such as
sulphide and oxide minerals in ore deposits, which
are the subject of intensive geophysical exploration
in Russia (and more recently in western countries;
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Bishop & Emerson 1999; Neishtadt et al. 2006). To
our knowledge the implications of the piezoelectric
effect for wave propagation of minerals has never
been evaluated.

This paper is designed as a reference for Earth
and material scientists who want to use the texture
analysis software MTEX (Hielscher & Schaeben
2008) to compute piezoelectric tensor properties
of single crystals and aggregates from constituent
crystal properties and the texture of the aggregate.
MTEX is a comprehensive, freely available MatLab
toolbox that can be applied to a wide range of pro-
blems in quantitative texture analysis such as ODF
modelling, pole figure to ODF inversion, EBSD
data analysis, and grain modelling. The MTEX tool-
box can be downloaded from http://mtex.google
code.com. Unlike many other texture analysis pro-
grams, it offers a programming interface which
allows for the efficient processing of complex
research problems in the form of scripts (M-files).
The MatLabw environment provides a wide variety
of high-quality graphics file format to aid publication
and display of the results. In addition the MTEX
toolbox will work identically on Microsoft Windows,
Apple Mac OSX and Linux platforms in 32- and
64-bit modes with a simple installation procedure.

In MTEX, texture analysis information such as
ODFs, EBSD data and pole figures are represented
by variables of different types. For example, in
order to define a unimodal ODF with half-width
108, modal-preferred orientation (108, 208, 308)
Euler angles and trigonal crystal symmetry of
quartz, one issues the command

myODF ¼ unimodalODF(orientation
(‘Euler’, 10* degree,
20* degree,30* degree),. . .
symmetry(‘2 3m’),
‘halfwidth’, 10* degree)

which generates a variable myodf of type ODF
which is displayed as

myODF ¼ ODF (show methods, plot)
crystal symmetry : 23m, X | | a*,

Y | | b, Z | | c*
sample symmetry : triclinic

Radially symmetric portion:
Kernel : de la Vallee Poussin, hw ¼ 10
Center : (10, 20, 30)
Weight : 1

We will keep this style of displaying input and out-
put to make the syntax of MTEX as clear as possible.
Note that there is also an exhaustive interactive
documentation included in MTEX, which explains
the syntax of each command in detail. This paper
is the sequel to our previous paper (Mainprice
et al. 2011) on the 2nd and 4th rank symmetric
tensors of crystal and polycrystal anisotropic phys-
ical properties. To conform with the symbols used
in our previous paper, we will use the notation 1
for strain, s for stress and S for entropy; in many
texts on piezoelelectricty (e.g. Mason 1966; Ikeda
1990; Royer & Dieulesaint 1996; Tichý et al.
2010) the symbols S for strain, T for stress and s
for entropy are used. To avoid any potential confu-
sion all the symbols and SI units used in this paper
for tensors are listed in Table 1.

Fundamentals of piezoelectric tensors

In what follows we give the necessary background
to undertake piezoelectric property calculations
for single crystals, without the full mathematical
developments that can be found elsewhere (e.g.
Cady 1964; Mason 1966; Nye 1985; Ikeda 1990;
Newnham 2005; Tichý et al. 2010). We restrict

Table 1. Symbols and units used for tensors this paper

Tensor Rank Symbol SI Units

Elastic strain 2nd 1ij Dimensionless
Elastic stress 2nd sij Pa
Electric field 1st Ei V m21

Electric displacement 1st Di C m22

Dielectric permittivity 2nd kij F m21

Dielectric impermeability 2nd bij m F21

Dielectric polarization 1st Pi C m22

Elastic stiffness 4th cijkl Pa
Elastic compliance 4th sijkl Pa21

Piezoelectric strain 3rd dijk C N21 or m V21

Piezoelectric strain 3rd gijk V m N21 or m2 C21

Piezoelectric stress 3rd eijk C m22 or N V21 m21

Piezoelectric stress 3rd hijk V m21 or N C21

When notation is used as a superscript, it means the value is held constant during measurement.
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ourselves to linear physical properties, which are
properties that can be described by a linear relation-
ship between cause and effect such as stress and
electric field for linear piezoelectricity. Piezoelectri-
city is a reversible effect, so removing the stress will
remove the induced electric field.

Direct and converse effect

The first effect discovered by the Curie brothers was
the direct effect. When a mechanical stress is
applied to a crystal an electric polarization results.
To introduce the effect, we use a simplified situation
of constant entropy (adiabatic case) and temperature
conditions; other variables not explicitly mentioned
are also assumed constant.

The direct effect can be written as the relation-
ship between the 2nd rank stress tensor sik and 1st
rank electric polarization vector Pi, linked by the
piezoelectric tensor dijk as follows

P1 = d111s11 + d112s12 + d113s13 + d121s21

+ d122s22 + d123s23 + d131s31 + d132s32 + d133s33,

P2 = d211s11 + d212s12 + d213s13 + d221s21 + d222s22

+ d223s23 + d231s31 + d232s32 + d233s33,

P3 = d311s11 + d312s12 + d313s13 + d321s21 + d322s22

+ d323s23 + d331s31 + d332s32 + d333s33.

The electric polarization is the electric dipole
moment per unit volume, which is proportional
to the electric field defined by Pi ¼ k0 xij Ej where
k0 is the permittivity of a vacuum (8.854188 ×
10212 C V21 m21), xij is the dielectric susceptibility
tensor in F m21 and Ej is the electric field strength in
V m21. We use the more compact tensor notation
with the summations presented in the form

Pi =
∑3

j=1

∑3

k=1

dijks jk, i = 1, 2, 3,

involving the implicit Einstein summation conven-
tion (i.e. when an index occurs twice in the same
term, summation with respect to that index is under-
stood). For example, it is understood that sum-
mations occur for indices j and k for the direct
effect as they occur twice in dijk and sik on the right-
hand side of the equation

Pi = dijks jk,

where Pi is electric polarization, dijk the piezoelec-
tric tensor and sik the stress tensor.

The converse effect can be written as

1 jk =
∑3

i=1

dijkEi( j, k = 1, 2, 3) or 1 jk = dijkEi,

where 1ij is the elastic strain tensor and Ek is the
electric field vector. Here again the summation is

understood for the index i occurring in dijk and Ei.
As 1st rank electric polarization Pi and electric
field Ek vectors have the index i ¼ 1,2 or 3 and
2nd rank stress sik and elastic strain 1jk tensors
have indices j ¼ 1,2 or 3 and k ¼ 1,2 or 3, the 3rd
rank piezoelectric tensor dijk has 3 × 3 × 3 ¼ 27
coefficients. The symmetric nature of the stress
and strain 2nd rank tensors for linear elasticity
results in interchangeability of jk and kj indices of
piezoelectric tensor dijk, which reduces the number
of independent components from 27 to 18 where
dijk ¼ dikj but dijk = djik.

In the literature the tensor dijk is reported for
single crystals in the practical and compact Voigt
matrix notation. The conversion from Voigt din

notation to tensor dijk notation means dijk ¼ din

when n ¼ 1, 2, 3 and dijk = 1
2

din when n ¼ 4, 5, 6.
The factor of 1

2
is due to the difference between the

strain tensor and ‘engineering’ shear strains of
Voigt matrix notation. The piezoelectric tensor will
always have three indices and Voigt matrix notation
two indices. The direct and converse effects can also
be written in Voigt matrix notation as

Pi =
∑6

n=1

dinsj, i = 1, 2, 3, and

1j =
∑3

i=1

dniEi, n = 1, 2, 3, 4, 5, 6.

Alternatively, we can write the direct and converse
effects in reduced matrix notation bold type (see
Bond 1943; Bishop 1981; Russell & Ghomshei
1997 for tensor examples using the matrix method)
or full Voigt matrix and vector notation

P = ds =
P1

P2

P3

⎛
⎜⎝

⎞
⎟⎠

=
d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎛
⎜⎝

⎞
⎟⎠×

s1

s2

s3

s4

s5

s6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 = dTE =

11

12

13

14

15

16

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

d11 d21 d31

d12 d22 d32

d13 d32 d33

d14 d24 d34

d15 d25 d35

d16 d26 d36

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

E1

E2

E3

⎛
⎜⎝

⎞
⎟⎠.

We now write the matrix d in partial differential
form and a table format so it is easy to understand
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that the direct and converse effects require that the
tensor d is in units of Coulomb/Newton and its
transpose dT in units of metre/Volt.

d = din ;
∂sn

∂Pi

;

s1 s2 s3 s4 s5 s6

P1 d11 d12 d13 d14 d15 d16

P2 d21 d22 d23 d24 d25 d26

P3 d31 d32 d33 d34 d35 d36

dT = dni ;
∂Ei

∂1n

;

E1 E2 E3

11 d11 d21 d31

12 d12 d22 d32

13 d13 d23 d33

14 d14 d24 d34

15 d15 d25 d35

16 d16 d26 d36

.

Similar considerations also apply to the other piezo-
electric tensors that we introduce later in the section
on constitutive equations.

Symmetry and rotation

All crystals that belong to centrosymmetric point
groups (i.e. the 11 Laue classes) are piezoelectri-
cally inactive. All crystals belonging to the 21 non-
centrosymmetric point groups are piezoelectrically
active, with the exception of cubic 432. In the 432
point group, the presence of four-fold axes par-
allel to [100], [010] and [001] makes all directions
perpendicular to these axes non-polar (Hermann
1934), and results in all tensor coefficients that are
non-zero (d14 ¼ d25 ¼ d36) in the two other piezo-
electric cubic points groups (23 and �43m) being
zero in 432. Hence, there are 20 non-centrosym-
metric point groups for piezoelectric active crystals,
of which 10 enantiomorphic space group pairs do
not have improper rotations (i.e. no mirror planes).
Such crystals occur in right-handed and left-handed
forms (e.g. a-quartz) and are distributed in 6 point
groups (4, 422, 3, 32, 6 and 622). Standard texture
orientation determination using diffraction-based
measurements that obey Friedel’s law can be routi-
nely made for non-enantiomorphic piezoelectric
crystals where the diffraction intensity of planes
(hkl) and (�hkl) are the same because of the centre
of symmetry that is imposed by the diffraction
process. To distinguish the right-handed and left-
handed forms of enantiomorphic crystals additional
information, such as dynamical scattering revealing
a violation of Friedel’s law (e.g. Goodman &

Johnston 1977; Goodman & Secomb 1977; Bunge
& Esling 1985; Marthinsen & Høier 1988), is
required. Alternatively gyration, also called opti-
cal activity, can be used in optically transparent
crystals (e.g. Wenk 1985) to detect the handedness
of crystal.

Piezoelectric tensors, like all 3rd rank tensors,
obey the transformation laws such that P ′

ijk =
aila jmaknPlmn, where ail etc. are rotation matrices
(aT ¼ a21) that change the orientation of the piezo-
electric tensor Plmn to some new orientation in speci-
men coordinates P′

ijk. The application of a rotation
that belongs to the point group of the crystal sym-
metry means that the tensor will be invariant. An
orientation in MTEX can typically be defined by
Euler angles, quaternions and axis/angle pairs.

For a crystal with point group symmetry 1 there
are no intrinsic symmetry rotations or mirror planes
that will reduce the number of non-zero coefficients
from the 18 of the (3 × 6) Voigt matrix format of
the piezoelectric tensor for a triclinic crystal. If the
crystal has higher symmetry, then the number of
independent non-zero coefficients is reduced. For
example, in the monoclinic point group 2 with
a two-fold 1808 rotation about either the b-axis
or the c-axis depending on the crystallographic
setting, there are only 8 independent non-zero coef-
ficients. With the increasing number of symmetry
operations, the number of non-zero coefficients
reduces to one for hexagonal �62m and cubic �43m
and 23 point groups.

The crystal reference frame

Matter tensors describing physical properties such
as the piezoelectricity of a single crystal or polycrys-
talline specimen require a tensor reference frame. In
the case of single crystals, the reference frame must
be defined with respect to the crystal structure in
terms of crystallographic directions, whereas for
polycrystalline specimens it must be defined in
specimen coordinates. We will restrict ourselves to
tensors of single or polycrystals defined in a Carte-
sian reference frame comprising 3 unit vectors, X,
Y, Z. The use of an orthogonal reference frame for
single crystals avoids the complications of the
metric associated with the crystal unit cell. In any
case, almost all modern measurements of physical
property tensors are reported using right-handed
Cartesian reference frames.

We have previously discussed how the single-
crystal tensor reference frame is defined using
the crystal coordinate system in Mainprice et al.
(2011). Here we will illustrate the definition of the
crystal symmetry frame in MTEX using the example
of a right-handed single crystal of a-quartz.

In MTEX the alignment of the crystal reference
frame is defined together with the symmetry group
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and the crystal coordinate system. For the case of
3rd rank tensors such as piezoelectricity we need
to define the point group symmetry rather than the
Laue class, which is sufficient for symmetric 2nd
and 4th rank tensors as illustrated in MTEX by Main-
price et al. (2011). For example, a-quartz is in Laue
class �3m, which imposes a centre of symmetry it
does not have physically; the point group 32 has
no centre of symmetry and is compatible with
the piezoelectric properties of a-quartz. The infor-
mation is stored in a variable of type symmetry.
For example, for a-quartz the point group sym-
metry is 32, the axis lengths are a ¼ b ¼ 4.9134 Å
and c ¼ 5.4052 Å, a ¼ b ¼ 908 and g ¼ 1208. As
MTEX recognizes that point group symmetry is 32
and has trigonal symmetry, there is no need to
enter the cell angles in symmetry. Next comes
the definition of the the Cartesian tensor reference
frame X, Y, Z, where X is parallel to the a-axis and
Z is parallel to c-axis.

cs_tensor ¼ symmetry(‘32’, 4.9134 4.9134 54052],

‘X | | a’, ‘Z | |c’,. . .
‘mineral’, ‘RH alpha2 Quartz’);

cs_tensor ¼ symmetry (size: 1)
mineral : RH alpha-Quartz
symmetry : 32 (-3m)
a, b, c : 4.9, 4.9, 5.4
alpha, beta, gamma : 90, 90, 120
reference frame : X | | a, Y | | b*, Z | | c

When defining a crystal piezoelectric tensor d with
respect to this crystal reference frame, the variable
cs_tensor becomes part of the newly generated
tensor object d and, in this way, the tensor coeffi-
cients and the tensor reference frame are stored
together. For example, d defines the piezoelectric
tensor d in pC N21(where 1 pC ¼ 10212 C) of right-
handed a-Quartz. In this case we need to specify
DoubleConvention so that MTEX knows that this
tensor transforms Voigt to tensor notation as
dijk ¼ din, n ¼ 1, 2, 3 and dijk = 1

2
din, n = 4, 5, 6.

% Enter Piezoelectric (strain) tens or
(d_ij ) as (3 by 6) matrix

% Md line by line in pC/N
% Ogi, H., Ohmori, T. Nakamura, N. and

Hirao M. (2006)
% RH alpha–quartz d11 ¼ 21.9222

d14 ¼ 20.1423
Md ¼
[[21.9222 + 1.9222 0 2 0.1423 0 0];. . .

[ 0 0 0 0 0 + 0.1423 3.8444];. . .

[ 0 0 0 0 0 0]];

d ¼ tensor (Md,cs_Tensor,‘rank’,3,
‘propertyname’,. . .
‘piezoelectric_strain_tensor’,
‘unit’, ‘pC/N’,‘
Double Convention’)

d ¼ tensor (show methods, plot)

propertyname : piezoelectric strain

tensor

unit : pC/N

rank : 3 (3 × 3 × 3)

doubleConvention : true

mineral : RH alpha-Quartz (32,

X | | a, Y | | b*, Z | | c*)

tensor in compact matrix form:

2 1.9222 1.9222 0 20.1423 0 0

0 0 0 0 0.1423 3.8444

0 0 0 0 0 0

The transformation from Voigt to tensor notation
and vice versa is discussed in more detail later in
the section on constitutive equations.

Longitudinal surfaces and other

representations of tensors

The single-crystal piezoelectric tensor can be visu-
alized in several ways. The base of all visualizations
is the value of the tensor d in a direction x, or dvalue
(x) which is given by

dvalue(x) = xixjxkdijk.

To compute the dvalue (x) in MTEX we first need to
define a direction relative to the tensor reference
frame. This is done by the command Miller.
The following syntax is supported

† by coordinates with respect to the Euclidean
crystal reference frame X, Y, Z

x ¼ Miller (1, 0, 0, ‘xyz’, cs_tensor)

† by coordinates with respect to the crystal direc-
tions a, b, c

x ¼ Miller (1, 0, 0, ‘uvw’, cs_tensor)

† by coordinates with respect to the reciprocal
coordinate system a*, b*, c*

x ¼ Miller (1, 0, 0, ‘hkl’, cs_tensor)

† by polar coordinates

x ¼ Miller (polar_angle,
azimuth_angle,‘polar’, cs_tensor)

Note that again the variable cs_tensor is passed
on to the definition of the direction to make clear
that the coordinates are given with respect to this
specific reference frame. Now we can use the
command directionMagnitude to compute
dvalue (x).

dvalue ¼ directionalMagnitude(d, Miller
(1, 0, 0, ‘xyz’, cs_tensor))

dvalue ¼ –1.9222
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With vector3d x ¼ vector3d(1,0,0), the result is
–1.9222 pC N21 as expected for a positive a-axis
when X || a; for vector3d(0.5,0.8660,0) it is 1.9222
pC N21 as expected for a negative a-axis. For the
direction vector3d(0,0,1) parallel to the c-axis, the
value for d is zero as this is not a polar direction.

% positive a-axis (1.0, 0.0, 0.0)

positive_a_axis ¼ xvector

dvalue ¼ directionalMagnitude(d,xvector)

dvalue ¼ 21.9222

% alternative use uvtw ¼ +a1 [2, 21, 21, 0]

dvalue ¼ directionalMagnitude

(d, vector3d (Miller(2, 21, 21, 0,

cs_Tensor, ‘uvw’)))

polar_angle ¼ 90* degree

azimuth_angle ¼ 60* degree

negative_a_axis ¼ vector3d (‘polar’,

polar_angle, azimuth_angle)

dvalue ¼ directionalMagnitude

(d, negative_a_axis)

dvalue ¼ 1.9222

% alternative use uvtw ¼ –a [1, 1, –2, 0]

dvalue ¼ directionalMagnitude (d, vector3d

(Miller (1, 1, 22, 0, cs_Tensor, ‘uvw’)))

Perhaps the most classical representation of piezo-
electricity is the longitudinal surface. The longitu-
dinal surface of infinitesimal area is normal to an
axial tensile stress parallel to x′1. The polarization
normal to the surface is given by P′

1 = d′
111s

′
11,

and d′
111 is the polarization value parallel to x′1 for

unit stress. The longitudinal surface is defined
by the radius vector r parallel to the direction x′1,
which was previously in the orientation x1.

r = d′
111 = a1ia1ja1kdijk or

r = d′
222 = a2ia2ja2kdijk or

r = d′
333 = a3ia3ja3kdijk

From this expression we can understand that radius
vector r is rotated in the XYZ tensor frame to map the
longitudinal surface, where r = d′

111 = dvalue(x)
(Fig. 1).

The surface can be plotted in a 2D section nor-
mal to any direction defined by MTEX vector3d in
the tensor coordinate frame. For example, to plot
the surface in the basal (0001) plane we use the
predefined zvector ¼ vector3d(0,0,1) as Z || c, and
plot the plane normal to the predefined yvector ¼
vector3d(0,1,0), which is a 1st order prism plane
(m) containing the a- and c-axes in Figure 2.
Using the MTEX plot command with the option
‘section’ allows us to plot the 2D longitudinal sur-
face, which is the limiting surface between posi-
tive and negative values of the tensor d. In regions
outside these longitudinal limiting surfaces, no pola-
rization is possible.

plot (d, ‘section’, zvector)
% alterative use uvtw ¼ c [0, 0, 0, 1]
Plot (d, ‘section’, vector3d (Miller
(0, 0, 0, 1, cs_Tensor, ‘uvw’))
plot (d, ‘section’, yvector)
% alterative use uvtw ¼ m[0,1, 21, 0]
Plot (d, ‘section’, vector3d (Miller
(0, 1, 21, 0, cs_Tensor, ‘uvw’))

In MTEX the magnitude of a piezoelectric tensor
can be plotted as a function of crystal direction in
the tensor frame on an equal-area stereogram, as
the crystallographic asymmetric unit, the complete
hemisphere or as upper and lower hemispheres. The
plot of both hemispheres shows the 3D distribution
of the piezoelectric tensor d values in pC N21,
where the maximum negative value (white) is paral-
lel to the three +a-axes and the value parallel to
the c-axis is zero Figure 3. The upper and lower
hemisphere distributions are identical.

plot (d, ‘complete’)
colorbar
annotate ([xvector, yvector, zvector],
‘label’,. . .
{‘X ||a’, ‘Y ||m’, ‘Z||c’, ‘backgroundcolor’,
‘w’, ‘FontSize’, 18);

To better understand the distribution of the piezo-
electric tensor d a perspective 3D plot can be used
which can be rotated interactively using the com-
mand rotate3d in the Matlab environment. Figures
4 and 5 are generated using the command plot, illus-
trated fora-quartz (Fig. 4) and sphalerite (ZnS), also
know as zincblende (Fig. 5). Sphalerite is an

X

Y

Z

trace of longitudinal surface
trace of rotation of 

Fig. 1. Construction of the longitudinal surface by the
rotation of x′1 about the Z axis with d′

111 = dvalue(x); a
represents the infinitesimal surface area.
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important mineral in zinc-bearing mining deposits
(e.g. Bishop & Emerson 1999). The symmetry of
sphalerite is cubic �43m point group, where the
only non-zero independent value of tensor d is
d14 and the other three non-zero coefficients are
d14 ¼ d25 ¼ d36. The �43m point group has a set of
24 symmetry operations, but no proper (rotational)
four-fold axis and only four-fold inversion axes
parallel to the a, b and c-axes.

% crystal symmetry ( c s )
cs_tensor = symmetry (‘2 43m’,
[5.41 5.41 5.41],. . .

[90.0000 90.000 90.000]* degree,
‘X || a’, ‘Z || c’, ‘mineral’, ‘Sphalerite’)
%

% Enter Piezoelectric (strain) tensor
(d_ij) as (3 by 6) matrix

% Md line by line in pC/N
% Berlincourt, D., Jaffe, H., and

Shiozawa, L.R. (1963)

% Physical Review 129, 10092 1017.
% Sphalerite (ZnS) d14 ¼ 3.180 pC/N
Md ¼ [ [ .00 .00 .00 3.18 .00 .00 ];. . .

[ .00 .00 .00 .00 3.18 .00 ];. . .
[ .00 .00 .00 .00 .00 3.18 ] ];
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Fig. 2. Plot of longitudinal surfaces of the piezoelectric tensor d for right-handed a-quartz 32: (a) basal plane (c); and
(b) 1st order prism plane (m). Units pC N21.

Fig. 3. Upper and lower hemisphere plots of the piezoelectric tensor d for right-handed a-quartz 32: using the
‘complete’ option with default filled contour option and the MTEX annotate command.
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d ¼ tensor (Md,cs_Tensor, ‘rank’, 3,

‘propertyname’,. . .

‘piezoelectric_strain_tensor’,

‘unit’,‘pC/N’, ‘DoubleConvention’)

% plot

plot (d, ‘3d’)

% activate MATLAB 3d interactive rotation

of plot

rotate3d

cs_tensor = crystal symmetry

(show methods, plot)

mineral : Sphalerite

symmetry : 243m (m2 3m)

d ¼ tensor (show methods, plot)

propertyname : piezoelectric

strain tensor

unit : pC/N
rank : 3 (3 × 3 × 3)

doubleConvention : true

mineral : Sphalerite (243m)

tensor in compact matrix form:

0 0 0 3.18 0 0

0 0 0 0 3.18 0

0 0 0 0 0 3.18

Finally, we should point out that for two crystal
symmetry point groups 422 and 622 there is no
longitudinal effect; in these two groups there is
only one independent piezoelectric coefficient d14.
If we write out the full equation for the long longi-
tudinal effect for these symmetry groups we have,
in tensor notation,

d′
111 = a11a12a132d123 + a12a11a132d213

and in Voigt notation

d′
11 = a11a12a13(d14 + d25).

In these symmetry groups, d14 ¼ 2d25 such that
d′

11 = 0. Hence, no longitudinal effect and no

Fig. 4. 3D plot of the piezoelectric tensor d for right-handed a-quartz 32 using plot(d, ‘3D’). Note the three-fold
c-axis repeating the red (positive) and blue (negative) lobes, two-fold a-axes,+a-axes have negative values and the zero
value along the c-axis.
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polar axes are present, and electric polarization can
only be generated by shear. Two examples are
b-quartz point group 622, d14 ¼ 21.86 pC N21

(about two times that of a-quartz) at 612 (Cook &
Weissler 1950) and paratellurite (a-TeO2) point
group 422, d14 ¼ 12.41 pC N21 (Ogi et al. 2004).

Hydrostatic effect

The hydrostatic effect is simply described by the
direct piezoelectic effect, where the electric field
is considered to be constant and the D vector of
electric displacement is equal to the polarization P
so that

Pi = Di = dijks jk.

The hydrostatic pressure p is given by sjk ¼ 2pdjk,
where djk is the Kronecker delta:

Pi = −dikkp.

The hydrostatic effect is conveniently defined by
the three orthogonal components parallel to tensor
frame X, Y, Z in Voigt matrix notation. In Voigt
matrix notation, components related to normal
stresses are din (where i ¼ 1, 2, 3 and n ¼ 1, 2, 3)
and those that involve shear stresses din (where
i ¼ 1, 2, 3 and n ¼ 4, 5, 6). Obviously only the
coefficients related to normal stress are compatible
with hydrostatic stress.

P1 = −(d11 + d12 + d13)p
P2 = −(d21 + d22 + d23)p
P3 = −(d31 + d32 + d33)p.

The hydrostatic piezoelectric coefficient (Tichý
et al. 2010) is defined as scalar in the fixed single-
crystal X, Y and Z tensor co-ordinate frame

dh = (d11 + d12 + d13) + (d21 + d22 + d23)
+ (d31 + d32 + d33),

Fig. 5. 3D plot of the piezoelectric tensor d Sphalerite 4̄3m using plot(d,‘3D’). Note the three-fold [111] cube axes
repeating the red (positive) and blue (negative) lobes and two-fold axes along a, b and c.
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where dh has to be a non-zero value after taking into
account the action of symmetry on the signs and
magnitudes of din. The hydrostatic effect is only
present in 10 crystal point groups (�1, 2, m, mm2,
4, 4mm, 3, 3m, 6, 6mm) out of 20 for piezoelectric
crystals. For 7 crystal point groups the hydrostatic
polarization only occurs along the c-axis direction
(Klapper & Hahn 2006). After symmetry of the
tensor is taken into account, this requires that

dh = 2d31 + d33

for (4, 4mm, 3, 3m, 6, 6mm) and

dh = d31 + d32 + d33

for (mm2). For point group (2) with two-fold sym-
metry and the hydrostatic effect along the b-axis,

dh = d21 + d22 + d23.

For point group (m) with two-fold symmetry along
the b-axis and hydrostatic effect along [u0w]
directions,

dh = (d11 + d12 + d13) + (d31 + d32 + d33).

For point group (�1), all directions [uvw] are possible:

dh = (d11 + d12 + d13) + (d21 + d22 + d23)
+ (d31 + d32 + d33).

The only common minerals exhibiting the hydro-
static effect are the tourmaline group (3m), wurtzite
group (6mm), oxides with perovskite structure and
all minerals that are pyroelectric, as the same sym-
metry constraints apply. The presence of pressure
in almost all geological situations could potentially
generate electrical polarization if piezoelectric
minerals are present. However, relatively few min-
erals exhibit the hydrostatic effect. Some special
situations may occur in zinc-bearing mining depos-
its where two piezoelectric polymorphs of ZnS,
sphalerite (43m) without a hydrostatic effect and
wurtzite (6mm) with a hydrostatic effect are often
associated. It is also interesting to note that seve-
ral common sulphide ore minerals – bismuthinite
(Bi2S3 mm2), chalcocite (Cu2S 2/m), pyrrhotite
(Fe(12x)Sx 6/mmm) and stibnite (Sb2S3 mm2) –
are ferroelectric (Corry 1994), of which bismuthi-
nite and stibnite occur in piezoelectric point
groups. The piezoelectric effect has been used
extensively in geophysical exploration for the
mining industry in Russia (Neishtadt et al. 2006).
The hydrostatic effect has many industrial appli-
cations such as pressure measurement and under-
water sonar (historically, tourmaline has been used

in sonar devices). We use the tensor coefficients
recently measured for tourmaline (Pandey &
Schreuer 2012) to illustrate the calculation of dh.
Tourmaline has symmetry 3m, in which the only
non-zero coefficients involving normal stresses are
d21, d22, d31, d32 and d33 and where by symmetry
d21 ¼ 2d22, such that their combined effect
is zero. The remaining non-zero terms are
dh ¼ d31 + d32 + d33 ¼ 0.16 + 0.16 + 1.91 ¼ 2.23
pC N21.

Constitutive equations

Constitutive equations define the coupling between
independent variables. To visualize the relation-
ships between different variables of electric field
E, electric displacement D, strain 1, stress field
s, temperature T and entropy S, Heckmann (1925)
introduced a triangular diagram (Fig. 6a). From
this triangular diagram we have chosen the four
variables stress, strain, electric field and electric
displacement associated with piezoelectricity. This
is equivalent to setting the variables entropy and
temperature to constant values for the constitutive
equations we have chosen to present. The constitu-
tive or coupled equations given below are taken
from Mason (1966); other equations are given by
Ikeda (1990). A pair of constitutive equations is
required to describe the mechanical and electrical
behaviour of a piezoelectric crystal. The equations
are given in tensor and matrix notation as bold char-
acters. In matrix notation the superscript T means
transposed. Superscripts E, D, 1 and s signify
that these variables are held constant during the mea-
surement of the tensor. For example, in the first
pair of equations we have sE

ijkl which is the elastic
compliance tensor measured at constant electric
field, and ksik which is the dielectric permittivity
at constant stress. The first pair of constitutive
equations below illustrate the role of piezoelectric
strain coupling to electric field with the piezoelec-
tric tensor d. We have on the right-hand side the
variables associated with mechanical stress s and
electric field E in both equations. On the left-hand
side, we have the resulting values of elastic strain
1 and electric displacement D. These equations are
therefore called the Strain-Electric displacement
equations. In the first equation, the first and second
terms on the right-hand side are the stress and the
electric field contributions to the elastic strain. The
second term is the piezoelectric converse coupling
effect. In the second equation, the first and second
terms on the right-hand side are the stress and elec-
tric field contributions to electric displacement. The
first term is the piezoelectric direct coupling effect
and the second term is the classical relation for elec-
tric displacement of a dielectric crystal. The same
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logic applies to the other pairs of equations as
follows.

(1) Piezoelectric strain to electric field coupling
or Strain-Electric displacement equations with
‘strain’ piezoelectric tensor d can be written:

1ij = sE
ijklskl + dkijEk, 1 = sEs+ (d)TE

Di = dijksij + ksikEk, D = ds+ ksE

(2) Alternatively, piezoelectric stress to electric
field coupling or Stress-Electric displacement
equations with ‘stress’ piezoelectric tensor e
can be written:

sij = cE
ijkl1kl − ekijEk, s = cE1− eT E

Di = eijk1kl + k1ikEk, D = e1+ k1E

(3) Piezoelectric electric field to stress coupling
or Strain-Electric field equations with ‘strain’
piezoelectric tensor g can be written:

1ij = sD
ijklskl + gkijDk, 1 = sDs+ (g)TD

Ei = −gijks jk + bs
ikDk, E = −gs+ bsD

(4) Piezoelectric electric field to strain coupling
or Stress-Electric field equations with ‘stress’
piezoelectric tensor h can be written:

sij = cD
ijkl1kl − hkijDk, s = cD1− (h)TD

Ei = −hijk1kl + b1
ikDk, E = −h1+ b1D

Now we have a set of four piezoelectric tensors – d,
e, g and h – that form two related sets (d, g) and
(e, h). An illustration of their roles in the direct
and converse effects is given by the square dia-
gram in Figure 6b. We can see also the relation
between d and g by writing them in a differential
form with the direct effect first and the converse
second. Such representation makes it clear that
both are related in the direct effect to ∂s and in
the converse effect to ∂1. The differential form of
the tensors is given by

dijk = + ∂Di

∂s jk

( )
E

= + ∂1 jk

∂Ei

( )
s

gijk = − ∂Ei

∂sjk

( )
D

= + ∂1jk

∂Di

( )
s

.

Secondly, e and h are both related in the direct
effect in the first relationship to ∂1 and in the con-
verse effect in the second relationship to ∂s

eijk = + ∂Di

∂1 jk

( )
E

= − ∂s jk

∂Ei

( )
1

hijk = − ∂Ei

∂1jk

( )
D

= − ∂sjk

∂Di

( )
1

.

The close relation of these two sets of equations
is also important for understanding their transform-
ation between the Voigt matrix and tensor notation
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Fig. 6. Interactions between variables. (a) The Heckmann triangle shows the complete set of thermodynamical
variables. The variables chosen for constitutive equations are in the white circles and the constant variables (entropy and
temperature) in circles with grey shading. (b) The interaction square with strain, stress, electric displacement and
electric field variables at constant entropy and temperature. The piezoelectric tensors d, e, g and h in the direct effect
are marked with downward arrows and in the converse effect by upward arrows.
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and vice versa. The transformation from three-
indices to two-indices for the tensors dijk and gijk is

dijk = din and gijk = gin

with i, j, k ¼ 1, 2, 3
when j ¼ k, n ¼ 1, 2 or 3

dijk =
1

2
din and gijk =

1

2
gin

with i, j, k ¼ 1, 2, 3
when j = k, n ¼ 4, 5 or 6

and the transformation from two-indices to three-
indices for the tensors dijk and gijk is

din = dijk and gin = gijk

with i, j, k ¼ 1, 2, 3
when j ¼ k, n ¼ 1, 2 or 3

din = 2dijk and gin = 2gijk

with i, j, k ¼ 1, 2, 3
when j = k, n ¼ 4, 5 or 6

where for dijk and gijk the factor 1
2

or 2 is due to the
conversions from Voigt matrix shear strain to
tensor strains or vice versa. These transformations
are activated in MTEX by the option DoubleCon-
vention in the tensor command.

The transformation from three-indices to two-
indices for the tensors eijk and hijk is

eijk = ein and hijk = hin, i, j, k = 1, 2, 3

n = 1, 2, 3, 4, 5, 6

and for transformation from two-indices to three-
indices for the tensors eijk and hijk is

ein = eijk and hin = hijk, i, j, k = 1, 2, 3

n = 1, 2, 3, 4, 5, 6

where for eijk and hijk there are no correction factors.
These transformations are activated in MTEX by
the option SingleConvention in the tensor
command.

The relationship between all d, e, g and h tensors
provides a route for calculating one type of piezo-
electric tensor from another, as it is rare that publi-
cations quote coefficients of all four piezoelectric
tensors.

dnkl = esmngmkl = enijs
E
ijkl d = esg = esE

enkl = e1mnhmkl = dnijc
E
ijkl e = e1h = dcE

gnkl = bs
mndmkl = hnijs

D
ijkl g = bsd = hsD

hnkl = b1
mnemkl = gnijc

D
ijkl h = b1e = gcD

Standards for piezoelectric crystal properties

Over the years various conventions for the signs of
physical properties of piezoelectric crystals have
been proposed for crystals such as a-quartz, which
has left- and right-handed forms. The best known
conventions are the International Radio Engineers
(IRE) standard published in 1949 (Brainerd et al.
1949) and the more recent Institute of Electrical
and Electronic Engineering (IEEE) ANSI-IEEE
176 standard published in 1988 (http://www.ieee.
org). Both are considered important industrial stan-
dards but, as can been seen from Table 1, the sign
conventions for elastic and piezoelectric tensors for
a-quartz are different. Table 2 provides the values
for right- and left-handed a-quartz given in the IRE
1949 standard. If we know the values for dijk and
cE

ijkl from Table 2, then we can calculate the
coefficients for the other piezoelectric tensors (e, g
and h) in a self-consistent way using the relation-
ships given above starting with enkl = dnijc

E
ijkl.

In tensor notation this reduces approach to two
independent non-zero coefficients for a-quartz with

Table 2. Conventions for the signs of constants in right- and left-handed a-quartz
(simplfied after Tichý et al. 2010).

IRE 1949 IRE 1949 IEEE 1978 IEEE 1978
Property RH-Quartz LH-Quartz RH-Quartz LH-Quartz

Elastic compliance tensor s14 + + 2 2
Elastic stiffness tensor c14 2 2 + +
Piezoelectric strain tensor d11 2 + + 2
Piezoelectric strain tensor d14 2 + 2 +
Piezoelectric stress tensor e11 2 + + 2
Piezoelectric stress tensor e14 + 2 + 2

Note that all constants are measured in a right-handed Cartesian coordinate system. According to
Le Page et al. (2002), right-handed a-quartz c14 = 219.7 GPa.
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point group symmetry 32

e111 = d111(cE
1111 − cE

1122) + 2d123cE
1123 = e11,

e123 = d111cE
1123 + d122cE

2223 + 2(d123cE
2323) = e14.

In Voigt matrix notation, this can be written

e11 = d11(cE
11 − cE

12) + d14cE
14, e14

= d11cE
14 + d12cE

24 + d14cE
44.

Similarly, for the gnkl tensor we can write

gnkl = bs
mndnkl,

where bs
mn is the inverse of ksmn given in Table 1,

so that

g111 = (ks11)−1d111 = g11,

g123 = (ks11)−1d123 = g14/2.

For the tensor hnkl = b1
mnenkl, although we do

not have a value for 11mn in Table 3, we can calculate
the necessary correction from

ksmn − k1mn = dnklemkl,

where

ks11 − k111 = 0.57 × 10−12 mf−1,

which gives k111 = 39.74 × 10−12mf−1 and hence

h111 = (k111)−1e111 = h11,

h123 = (k111)−1e123 = h14.

Using this method, we have checked the coher-
ency of the sign conventions of the IRE 1949 and
IEEE 1987 standards for the four piezoelectric
tensors. Both are internally consistent and in agree-
ment with the equations given above. A further con-
sistency check was made by Le Page et al. (2002)
on the sign of the elastic stiffness coefficient c14

for right-handed a-quartz using ab initio methods
and they found that the sign was negative, which
can only be consistent with the IRE 1949 standard
(Table 2). We have therefore decided to use the
IRE 1949 standard in this paper, together with the
most recent published values of piezoelctric ten-
sors for a-quartz by Ogi et al. (2006).

Elastic wave propagation

For wave propagation in an infinite elastic piezo-
electric medium the appropriate independent vari-
ables are the strain (1) and the electric field (E),
which define the constitutive equations coupling
the elastic (acoustic) and electromagnetic waves
caused by a mechanical vibration. This choice of
constitutive equations is sometimes called the pie-
zoelectric stress equations due to the presence of
the eijk tensor. There are five plane-wave coupled
solutions in a piezoelectric medium: three elastic

Table 3. Properties of a-quartz according to IRE 1949 standard. Original data on eij, cij
E, and kij

s from
Ogi et al. (2006)

cE
ij

GPa

dij 10212

C N
21

gij

m2 C21

eij

C m22

hij

10
9

N C
21

ksij
10212 mf21

Right-handed a-quartz

cE
11 = 86.76 d11 ¼ –1.9222 g11 ¼ –0.0481 e11 ¼ 20.1510 h11 ¼ –3.8512 ks11 = 39.17

cE
12 = 6.868 d14 ¼ –0.1423 g14 ¼ –0.0036 e14 ¼ +0.0610 h14 ¼ +1.5558 ks33 = 41.01

cE
13 = 11.85

cE
14 = −18.02

cE
33 = 105.46

cE
44 = 58.14

Left-handed a-quartz

cE
11 = 86.76 d11 ¼ +1.9222 g11 ¼ +0.0481 e11 ¼ +0.1510 h11 ¼ +3.9820 ks11 = 39.17

cE
12 = 6.868 d14 ¼ +0.1423 g14 ¼ +0.0036 e14 ¼ 20.0610 h14 ¼ –1.9778 ks33 = 41.01

cE
13 = 11.85

cE
14 = −18.02

cE
33 = 105.46

cE
44 = 58.14
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and two electromagnetic (e.g. Auld 1990). Detailed
analysis shows that the effects of piezoelectric coup-
ling of elastic and electromagnetic planes waves in
infinite media are negligible in comparison with
the influence of the quasi-static electric field. The
velocity of elastic (acoustic) waves is approximately
five orders of magnitude lower than electromagnetic
waves. It is therefore only the quasi-static part of
the electric field that affects the propagation of
elastic waves. The quasi-static electric approxi-
mation neglects the rotational part (i.e. the magnetic
field B part) of the electromagnetic field (2▽ × E
¼ ∂B/∂t ¼ 0 and 2▽ . E ¼ r/10 where t is time,
r is total charge density and 10 is permittivity of a
vacuum) and retains only the scalar electric field
(E ¼ 2▽F, where F is the electric potential).
The quasi-static electric approximation introduces
insignificant errors for elastic wave propagation
(Auld 1990). In what follows we use explicit formu-
lations for the strain tensor,

1kl =
1

2

∂ul

∂xk

+ ∂uk

∂xl

( )
,

where u is the displacement. The quasi-static elec-
tric field lines are perpendicular to equipotential
surfaces in Ek ¼ 2(∂F/∂xk) to develop a form of
the constitutive equations suitable for the study of
elastic wave propagation,

sij = cE
ijkl1kl − ekijEk = cE

ijkl

∂ul

∂xk

+ ekij

∂F

∂xk

Dj = e jkl1kl + k1jkEk = e jkl

∂ul

∂xk

− k1jk
∂F

∂xk

.

If we ignore the effect of gravity on Newton’s
second law, an equation of motion can be written
as displacement ui as a function of time with ∂sij/
∂xj ¼ r (∂2ui/∂t2). From Maxwell’s electrostatic
equation for an insulator, the divergence is (∂Dj/
∂xj) ¼ 0( j ¼ 1, 2, 3). That is, the flux entering any
element of space is exactly balanced by that leav-
ing it. Substitution of the modified constitutive
equations developed above into Newton’s and Max-
well’s equations yields the following differential
equations:

∂sij

∂xj

= r
∂2ui

∂t2
= cE

ijkl

∂2ul

∂xj∂xk

+ ekij

∂2F

∂xj∂xk

∂Dj

∂xj

= 0 = e jkl

∂2ul

∂xj∂xk

− k1jk
∂2F

∂xj∂xk

.

The first equation corresponds to the equation
of motion for non-piezoelectric elastic medium,
with the addition of a second term on the right-hand
side that adds to the elastic stiffness term. The

second equation is related to the electrical displace-
ment field, which has a divergence of zero.

We require the solution for the displacement of a
monochromatic plane wave that can be described
by any harmonic form as a function of time. For
example, uk ¼ Ak exp i(vt 2 vi

. xi) where v is the
angular frequency, Ak is the amplitude, vi is wave
vector and xi is the position vector. The solution of
the system of dynamic equations for plane waves
are the following equations (e.g. Royer & Dieule-
saint 1996)

rV2pi = Gilpl + giF

0 = glpl − kF

with

Gil = cE
ijklnjnk, gi = ekijnjnk and k = k1jknjnk,

where V is the wave velocity, Pi is the particle move-
ment or polarization direction and Gil is the familiar
symmetric Christoffel tensor of a non-piezoelectric
material. The three wave velocities depend on the
direction of propagation (ni). The other two terms
gi and k are specific quantities related to the piezo-
electric properties. The scalar factor F of electric
potential in both equations on the left-hand side
may be removed by division. We therefore obtain
an equation similar to the Christoffel equation for
an anisotropic elastic medium plus the gigl/k
term (Sirotin & Shaskolskaya 1982; Royer & Dieu-
lesaint 1996):

rV2pi = Gil +
gigl

k

( )
pl.

We can now write the stiffened Christoffel tensor
�Gil of a piezoelectric material as

�Gil = Gil +
gigl

k
.

Alternatively, we write the piezoelectric stiffened
elastic constants (Auld 1990; Ikeda 1990) as:

�cE
ij = cE

ij +
(eimnm)(emjnm)

k1klnknl

= cE + (eT · n)(e · n)
nT · k1 · n

and hence an alternative formulation of the stiffened
Christoffel tensor is:

�Gil = �cE
ijklnjnk = n · cE · n.

As pointed out by Royer & Dieulesaint (1996)
however, the piezoelectric stiffened elastic con-
stants are not elastic constants in the conventional
sense because of the additional piezoelectric terms,
which are dependent on the propagation direction.
Sirotin & Shaskolskaya (1982) and Royer &
Dieulesaint (1996) suggest using the velocities
calculated from �Gil = Gil + (gigl/k) for practical
applications. We favour the method of Ikeda
(1990) and Auld (1990) as this formulation
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conserves the full tensor notation and only requires
the calculation of modified stiffened elastic con-
stants for each propagation direction, which is
used in a standard Christoffel tensor calculation.
From either formulation we see that the Christoffel
tensor is symmetric and therefore three veloci-
ties have orthogonal polarizations as in a non-
piezoelectric material. From the equation of the
displacement of monochromatic plane waves and
requirements of Maxwell’s equations for quasi-
static electrical fields it can be shown that E is par-
allel (longitudinal) and D, which is associated with
electric power flow, is perpendicular (transverse)
to the direction of propagation (ni) in all cases
(Auld 1990; Ikeda 1990). Each plane wave therefore
has constant electric potential.

Applications

Elastic wave propagation

To confirm the validity of our MTEX code for cal-
culating the elastic wave speed in piezoelectric crys-
tals we have plotted the slowness (1/wave speed)
surfaces of two crystals with a well-known strong
coupling behaviour, lithium niobate (LiNbO3)
point group 3m (Warner et al.1967) and zincite
(ZnO) 6mm (Kobiakov 1980). Coupling behaviour
is detected when the elastic wave speed calcula-
ted using the full piezoelectric formulation given
above with stiffened elastic constants is higher

than the classical elastic calculation using the ordin-
ary stiffness constants. The plots most frequently
used in crystal physics to illustrate the effect of
coupling are 2D sections of the slowness surface
normal to one of the tensor reference directions
(X, Y or Z). Figure 7a shows the the plot for
lithium niobate normal to the X direction (a-axis)
in which the S waves with polarization normal to
X show a strong decrease in slowness (increase in
wave speed) for propagation directions near the
Y-axis. In contrast, the S waves with their polariz-
ation parallel to X show no coupling effect. The P
waves also exhibit a coupling effect in most pro-
pagation directions in the YZ section. Zincite is
hexagonal and it elastic properties have transverse
isotopic symmetry about the c-axis, so that any
plane normal to the c-axis (||Z-axis) displays the
same slowness surfaces. In Figure 7b we have
plotted the the slowness surfaces normal to the Y
direction. The P and S waves with polarization
normal to Y show a reduction in slowness (increase
in wave speed) typical of a coupling effect. The S
wave with polarization parallel to Y shows no
coupling effect. Both figures of slowness surfaces
agree with previously published plots by Auld
(1990) and Royer & Dieulesaint (1996). MTEX can
plot also the wave speeds and polarizations in
various pole figure plots, which allows a more
complete understanding of the coupling effect.

We have also investigated the effect of piezo-
electric coupling on elastic wave speeds in a-quartz.

P

X
Y

Z

 0.1 s km–1  0.1 s km–1

S polarized
parallel to X

S polarized
normal to X

Lithium Niobate Slowness surfaces

Solid black lines - piezoelectric effect active

Dashed grey lines  - elastic only

P

S polarized
parallel to Y

S polarized
normal to Y

X Y

Z

Zincite (ZnO) Slowness surfaces(a) (b)

Fig. 7. Slowness surfaces for (a) lithium niobate (3 m) and (b) zincite (6 mm), where X = a[2�1�10], Y = m[01�10]
and Z ¼ c[0001].
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In right- and left-handed crystals the P, S1 and S2

wave speeds are exactly the same along the c-axis
(6.3144, 4.6884 and 4.6884 km s21 respectively)
with or without piezoelectric coupling. Given that
the piezoelectric tensors have zero values along
the c-axis (e.g. Fig. 2), this is to be expected. A
potentially stronger coupling may occur along the
a-axis in the basal plane where the piezoelectric
tensors have their highest values. For example, the
P, S1 and S2 wave speeds along the positive and
negative a-axis are higher with coupling (0.006,
0.07 and 0.6% respectively) than an elastic calcu-
lation without coupling. These results are confirmed
by the plot of the slowness in the basal plane for
right- (Fig. 8a) and left-handed (Fig. 8b) quartz,
in which the piezoelectric coupling has almost no
effect on the the elastic wave speeds.

The effect of coupling on the elastic wave speed
anisotropy is complex. For lithium niobate, which
clearly has the strongest coupling, we have calcu-
lated the P-wave (AVp) and S-wave (AVs) aniso-
tropy. With piezoelectric coupling AVp is 11.0%
and AVs is 16.9%, whereas for the elastic case
with no coupling AVp is 12.5% and AVs is 17.5%.
For zincite with intermediate piezoelectric coupling
AVp is 7.1% and AVs is 12.0%, whereas for the
elastic case with no coupling AVp is 1.8% and
AVs is 6.6%. Quartz, with very weak piezoelectric
coupling, has AVp of 27.7% and AVs of 43.1%

both with and without coupling. The effect of
piezoelectric coupling on wave speed anisotropy
depends on the specific 3D velocity distribution
induced by the coupling. For the case of zincite, the
anisotropy is multiplied by 3 for AVp and 2 for AVs.

Polycrystalline quartz vein

Previous measurements on a quartz mylonite by
Bishop (1981) showed a piezoelectric effect of
about 1.5% of the single crystal, whereas a quartz
vein sample measured by Ghomshei et al. (1988)
showed a maximum effect of 7% of the single
crystal. Various studies from the Russian litera-
ture confirm that quartz veins frequently have a
strong piezoelectric effect (Parkhomenko 1981).
We therefore selected a quartzite that was probably
originally a quartz vein near Tongue in the Moine
Thrust zone, North Scotland. The sample has been
studied previously by Lloyd et al. (1987) and Main-
price et al. (1993). A total of 382 Electron Chan-
nelling Patterns (ECPs) were recorded using a
CamScan S4 scanning electron microscope (SEM)
fitted with electron beam rocking coils. The patterns
were indexed using both manual and computer-
aided techniques. The 382 individual orientations
have been indexed as right-handed crystals with the
convention that the positive rhomb r is a stronger

P

S2

S1

Dashed black lines - piezoelectric effect active

Dashed grey lines  -  elastic only

X

Y

ZZ

P

α-quartz slowness surfaces

Y

X

S2

S1

Right-handed(a) (b) Left-handed

 0.1 s km–1  0.1 s km–1

Fig. 8. Slowness surfaces for (a) right-handed and (b) left-handed a-quartz (32), where X = a[2�1�10], Y = m[01�10],
Z ¼ c[0001].
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reflection than the negative rhomb z (see Donnay &
Le Page 1978). The original ECP indexing solutions
have been converted to Bunge Euler angles and
imported into MTEX using the EBSD generic
import filter to create an object containing the indi-
vidual orientation data. The orientation distribu-
tion function for right-handed indexed quartz was
calculated using the default de la Vallee Poussin
kernel with half-width of 10 degrees, corresponding
to a harmonic expansion of 28. A list of pole figures
was defined using the command Miller and the pole
figures plotted with the command plotpdf.

% create an EBSD variable containing the data

ebsd ¼ loadEBSD(fname, CS, SS, ‘interface’,

‘generic’,. . .

‘ColumnNames’, {‘phi1’ ‘Phi’ ‘phi2’},
‘Bunge’)

% Calculate an ODF of right2 hand index quartz

odf_qtz_rh ¼ calcODF (ebsd(‘Quartz’),

‘HALFWIDTH’, 10* degree)

% quartz pole figure list

% c (00.1), a (2 2 1.0), m(10.0), r (10.1),

z (01.1) quartz

h_qtz ¼ [Miller(0, 0, 0, 1, CS), Miller

(2, 21, 21, 0, CS),. . .

Miller (1, 0, 21, 0, CS), Miller

(1, 0, 21, 1, CS),

Miller(0, 1, 21, 1, CS)];

% antipodal

plotpdf (odf_qtz_rh, h_qtz, ‘resolution’,

5*degree, ‘contourf’, ‘antipodal’)

To plot inverse pole figures (IPFs) the specimen
directions must be defined. In the simplest cases,
the predefined Cartesian specimen coordinates
xvector, yvector and zvector can be used. For speci-
fic specimen directions, the command vector3d
is necessary.

polar_angle ¼ 60* degree;
azimuth_angle ¼ 45* degree;
r ¼ vector3d (‘polar’, polar_angle,

azimuth_angle);

For example, if we want to define two positions in
pole figure coordinates labelled A and P where (i)
A is an orientation in the a{2�1�10} figure with high
values in multiples of uniform distribution at polar
angle 908 and azimuth 1308 and (ii) P is an orien-
tation in the z{01�11} pole figure with a high value
in multiples of uniform distribution at polar angle
908 and azimuth 2208, the inverse pole figures
corresponding to specimen directions A and P can
be ploted with the command plotipdf.

% definepole figure directions A and P
polar_angle_A = 90* degree;
azimuth_angle_A = 130* degree;
polar_angle_P = 90* degree;

azimuth_angle_P = 220* degree;
r = [vector3d(‘polar’, polar_angle_A,

azimuth_angle_A),. . .
vector3d (‘polar’, polar_angle_P,
azimuth_angle_P)];

% plot inverse pole figure
plotipdf (odf_qtz_rh, r, ‘earea’,

‘complete’,. . .
‘resolution’, 5* degree, ‘contourf’,
‘antipodal’)

From these compact commands we can plot the pole
and inverse pole figures with the ‘podal’ default
setting or the option ‘antipodal’. In MTEX ‘podal’
means that vectors with positive and negative ends
are treated as such, and require in general to be
plotted on the sphere or on two hemispheres.
Other workers have referred to the ‘podal’ operation
as ‘polar’ directions or vectors. The option ‘antipo-
dal’ will treat a vector as an unsigned ‘axis’, also
known as an ‘non-polar’ direction. All the data
plotted with the ‘antipodal’ option can be plotted
in one hemisphere.

In Figure 9 the classical pole figures used for
quartz have been plotted as podal plots. The a-axis
is the only axis that has polarity in a-quartz. In
the IPF (Fig. 10) for the specimen direction ‘A’,
the podal plot has three-fold symmetry expected
for a-quartz. The highest densities in the ‘A’ direc-
tion IPF correspond to +a{2�1�10} and its symmetry
equivalents. The IPF for the ‘P’ specimen direction
are almost identical between upper and lower
hemispheres, with high densities parallel to the
poles of m{10�10} and z{01�11}. Note that the ‘P’
direction IPF also has a slightly imperfect three-
fold symmetry.

The next step is to calculate the piezoelectric
tensor d for our ideal right-handed a-quartz aggre-
gate. Mainprice et al. (2011) describe in some
detail the methods for calculating the average
properties of aggregates for symmetric 2nd and
4th rank physical property tensors. Here we recall
that the Voigt and Reuss averages in MTEX have
been developed for individual orientations (ECP,
EBSD, U-stage, etc.) as simple summations via
the ODF by numerical integration or via the ODF
Fourier coefficients. The route via the Fourier coef-
ficients is particularly efficient and can be applied to
ODFs of single orientations or derived from pole
figure inversion. A caveat is that we have four piezo-
electric tensors and their transpose for the direct and
converse piezoelectric effects, respectively (see
Fig. 6). However, the tensors are not symmetric
and hence have no inverse. We can therefore only
calculate the Voigt average tensor using the piezo-
electric tensors, but not the Reuss average as this
would require the inverse piezoelectric tensors
which do not exist. Another caveat is that there is
always some coupling in piezoelectric properties,
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as described by the constitutive equations above.
A simple Voigt average clearly does not explicitly
take this into account. Despite these limitations,
various studies have shown that the Voigt aver-
age is in reasonable agreement (within 10%) with
experimental results and variational Hashin–
Shtrikman upper bounds (e.g. Li and Dunn 2001;
Wan et al. 2012).

We start with the case that we have individual
orientation data gm, m ¼ 1, . . . , M, ECP measure-
ments and volume fractions Vm, m ¼ 1, . . . , M.
The Voigt (1887, 1910) effective piezoelectric
properties of aggregates are those defined by assum-
ing that the induced tensor (in the broadest sense
including vectors, e.g. the electric polarization
vector for the direct effect and the elastic strain
tensor for the converse effect) is everywhere homo-
geneous or constant (i.e. the induced tensor at every
position is set equal to the macroscopic induced
tensor of the specimen). The Voigt average spec-
imen effective piezoelectric tensor kdlVoigt is

defined by the volume average of the individual
tensors d(gc

m) with crystal orientations gc
m and

volume fractions Vm,

kd lVoigt =
∑M

m=1

Vmd(gc
m).

To perform a simple summation Voigt average
for piezoelectric tensor d we used the command
calcTensor. We previously defined the tensor d for
right-handed a-quartz. We can do the same for the
left-handed a-quartz and calculate the tensors for
both handedness cases.

% Enter Piezoelectric (strain) tensor
(d_ij) as (3 by 6) matrix

% Md line by line in pC/N
% Ogi, H., Ohmori, T. Nakamura, N. and

Hirao M. (2006) RH alpha - quartz
% LH alpha-quartz

d11 ¼ +1.9222 d14 ¼ +0.1423

Fig. 9. Polefigure plots of c{0001}, a{2�1�10}, m{10�10}, r{10�11}, z{01�11} for Tongue Quartzite. The figure was
generated using the ‘complete’ MTEX option where positive and negative crystallographic vectors are kept in their

appropriate original orientations. The ‘complete’ plot reveals that three is a strong preference for one a{2�1�10} pole. X is

lineation and Z is the normal to the foliation. A marks the maximum in the a{2�1�10} pole figure. P marks a high density

in a{10�10} and z{01�11} pole figures. Left: upper hemisphere plots and right: lower hemisphere plots. Note that upper

and lower hemisphere plots are rotated by 180 degrees, except for the a{2�1�10} pole figure as positive and negative
directions are not equivalent.
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Md_LH ¼

[ [+1.9222 21.9222 0 +0.1423 0 0 ]; . . .

[0 0 0 0 20.1423 23.8444]; . . .

[0 0 0 0 0 0 ] ];

d_LH_quartz ¼ tensor (Md_LH, cs_Tensor,
‘rank’, 3, ‘propertyname’, . . .

‘LH⊔piezoelectric⊔strain⊔tensor’,
‘unit’, ‘pC/N’, ‘DoubleConvention’)

%
% Voigt average for EBSD for right - and
left - handed alpha - quartz

%
d_RH_Voigt_Tongue_Quartzite ¼ . . .

calcTensor (ebsd (‘Quartz’),
d_RH_quartz, ‘Voigt’)

d_LH_Voigt_Tongue_Quartzite ¼ . . .

calcTensor (ebsd (‘Quartz’),
d_LH_quartz, ‘Voigt’)

d_RH_Voigt_Tongue_Quartzite ¼ tensor
(show methods, plot)

propertyname : RH piezoelectric
strain tensor

rank : 3 (3 × 3 × 3)
doubleConvention : true

tensor in compact matrix form: *10^ 2 2

2 8.761 23.593 214.832 26.251 257.522 223.927

2 13.01 22.634 15.644 56.003 7.005 42.088

2 30.721 29.961 0.76 29.195 224.565 2.078

Fig. 10. The inverse pole figures (IPFs) of the specimen directions A (top row) and P (bottom row) marked on the pole
figures in Figure 9. Left: upper hemisphere plots and right: lower hemisphere plots. The crystallographic directions of
the pole figures are marked on the IPFs. The A-direction IPFs with the ‘complete’ option clearly shows a preference for
+ a{2�1�10} preferred orientation with multiples of the uniform distribution reaching 5.5. The P-direction IPFs have high
densities (c. 2.2) for m{10�10} and z{01�11} directions.
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d_LH_Voigt_Tongue_Quartzite ¼ tensor

(show methods, plot)

propertyname : LH piezoelectric

strain tensor

rank : 3 (3 × 3 × 3)

doubleConvention : true

tensor in compact matrix form: *10^ 2 2

8.761 223.593 14.832 6.251 57.522 23.927

13.01 2.634 215.644 256.003 27.005 242.088

30.721 229.961 20.76 229.195 24.565 22.078

From the results (Fig. 11) it can be seen that
the Voigt polycrystal average gives the same

magnitudes, but the positive and negative signs are
opposite between the right- and left-hand cases,
just as they are in right- and left-hand single-crystal
tensors d. If we add right-handed single-crystal
tensor d to left-handed single-crystal tensor the
result is a zero-values tensor or, in other words, no
piezoelectric effect. This is a situation that occurs
in a single crystal if it is twinned on the Brazil
law, where the host is for example right-handed
and the twin will be left-handed or vice versa.
Brazil twins are called ‘optical’ twins and Dauphiné
twins are called ‘electrical’ twins (Frondel 1962) in
the piezoelectric oscillator-plate industry, because

Fig. 11. The pole figures of the Voigt average for piezoelctric strain tensor d assuming all the crystals are right-handed
(top) with upper (left) and lower (right) hemisphere projections. Below: assuming all the crystals are left-handed. Both
right- and left-handed show extreme values near A, but the distribution is clearly three-dimensional as shown by the
upper (left) and lower(right) hemisphere projections with approximate three-fold symmetry associated with the strong
c-axis maximum near C in the upper hemisphere. X is lineation and Z is the normal to the foliation. Note that the
maximum magnitude is +0.5 pC N21, that is, 26% of the single crystal value.
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they can be detected optically and electrically, res-
pectively. As highlighted by Donnay and Le Page
(1975), both Brazil and Dauphiné twins reverse
the polarity of the two-fold a-axes and degrade
the electrical properties of the crystals, whereas
only Brazil twins reverse optical activity along the
c-axis. In the same way, if we imagined a quartz
aggregate with equal volumes of right-handed and
left-handed crystals, there would be no piezoelectric
effect if the aggregate had topological electrical
connections of all the quartz crystals. However,
it should be recalled that in general the overall fre-
quency of right- and left-handed quartz is 49.5%
and 50.5%, respectively, from a total of 7335
single crystals reported by Frondel (1962) based on
several studies. It is therefore classically assumed
that both forms are equally likely to occur. We can
plot the results for right-handed and left-handed
aggregates for Voigt averages of the d tensor using
the plot command (see Fig. 11).

% pole figure representation of d′111 the
longitudinal

% pizezoelectric surface
plot (d_RH_Voigt_Tongue_Quartzite,

‘complete’)
colorbar
% Structural reference Z-X frame and

labels A and P
annotate (r_ZXAP, ‘label’,{‘Z’, ‘X’,

‘A’, ‘P’}, ‘backgroundcolor’,. . .
‘w’, ‘FontSize’, 18)

% Grey scaled plots for publications
mtexColorMap white2black

Another important case to consider is the
uniform crystallographic distribution and its effect
on piezoelectric properties. Consider the case
where the texture is given by an ODF f which may
originate from texture modelling (Bachmann et al.
2010), pole figures inversion (Hielscher & Schae-
ben 2008), density estimation from EBSD data
(Hielscher et al. 2010) or the present situation of
a uniform ODF using the MTEX command
uniformODF.

The Voigt average kdlVoigt of a tensor d given an
ODF f is defined by the integral

kd lVoigt =
∫

SO(3)
d(g)f (g)dg.

Next, the ODF can be expressed as an expansion
into generalized spherical harmonics of the form

f (g) =
∑r

ℓ=0

∑ℓ
k,k′=−ℓ

f̂ (l, k, k′)Dℓ
kk′ (g).

The Fourier method uses the expansion of the
rotated tensor into generalized spherical harmonics
Dℓ

kk′ (g). Let di1,...,ir be a piezoelectric tensor d of rank
r ¼ 3. Then it is well known (cf. Bunge 1969;
Ganster & Geiss 1985; Mainprice & Humbert
1994; Morris 2006) that the rotated tensor
di1,...,ir

(g) has an expansion into generalized spheri-
cal harmonics up to order r, defined

di1,...,ir (g) =
∑r

ℓ=0

∑ℓ
k,k′=−ℓ

d̂i1,...,ir
(l, k, k′)Dℓ

kk′ (g).

The explicit calculations of the coefficients
d̂i1, . . . , ir(l, k, k′) are given in the appendix of
Mainprice et al. (2011).

The average tensor with respect to this ODF can
be computed using the formula

1

8p2

∫
SO(3)

di1,...,ir (g)f (g)=
1

8p2

∫
SO(3)

di1,...,ir (g)f (g)dg

=
∑r

ℓ=0

1

2ℓ+1

∑ℓ
k,k′=−ℓ

×d̂i1,...,ir (l, k, k′) f̂ (l, k, k′).

By default, MTEX uses the Fourier approach for
ODFs because it is much faster compared to the
approach using a quadrature rule and is independent
of any discretization. The latter approach is applied
only in those cases when MTEX cannot determine
the Fourier coefficients of the ODF in an efficient
manner. The only case in MTEX with this problem is
the Bingham orientation distribution. All the necess-
ary calculations are done automatically, including
the correction for different crystal and tensor refer-
ence frames.

To calculate the Voigt average using an ODF
with the Fourier method and to obtain the most
accurate results (without bias) the Dirichlet kernel
with a band-width equal to the rank of the tensor
property is used for piezoelectric tensors with a
band-width of 3.

% Dirichlet kernel with Band - width ¼ 3
K_Dirichlet ¼ kernel (‘Dirichlet’,

‘bandwidth’, 3)
% Calculate the uniform ODF with

alpha - quartz
% crystal symmetry (CS) and triclinic sample

symmetry (SS)
Uniform_Quartzite_Odf ¼ uniformODF

(CS, SS, ‘kernel’, K_Dirichlet)
% Voigt averages for RH and LH - quartz with

uniform ODF
d_RH_Voigt_Uniform_Quartzite ¼ . . .

calcTensor (Uniform_Quartzite_Odf,
d_RH_quartz, ‘Voigt’)
d_LH_Voigt_Uniform_Quartzite ¼ . . .

calcTensor (Uniform_Quartzite_Odf,
d_LH_quartz, ‘Voigt’)
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d_RH_Voigt_Uniform_Quartzite ¼ tensor

(show methods, plot)

rank : 3 (3 × 3 × 3)

tensor in compact matrix form:

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

d_LH_Voigt_Uniform_Quartzite ¼ tensor

(show methods, plot)

rank: 3 (3 × 3 × 3)

tensor in compact matrix form:

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

The results are of course the same for both right-
and left-handed quartz with zero tensor d and no
piezoelectric effect. For enantiomorphic crystals
such as a-quartz there are two ways of obtaining no
piezoelectric effect: equal volumes of right- and
left-handed crystals with the same ODF or a
uniform distribution of crystal orientations. In addi-
tion, for the case of a-quartz, both Brazil and Daup-
hiné twins reduce the piezoelectric effect. For all
aggregates of piezoelectric crystals, a uniform dis-
tribution of crystal orientations will result in no
piezoelectric effect. Clearly the strategy for piezo-
electric polycrystalline ferroelectric ceramics (e.g.
lead zirconate titanate PbZr1 – x TixO3, Newnham
2005) is to optimize the ODF to obtain the desired
piezoelectric effect by various electrical and mech-
anical processes, which is referred to as poling. In
geological samples such as quartzites the maximum
piezoelectric effect will occur if all crystals are of
one handedness (e.g. right-handed) and the ODF is
as close as possible to a single crystal. That is, the
point maxima for the c-axis and + a-axis pole
figures have developed three-fold symmetry. Quart-
zites with such CPO occur in the amphibolite facies
Saxony granulites (e.g. Schmid et al. 1981; Schmid
& Casey 1986).

Until now, the geological view of the probability
of finding right- or left-handed quartz crystals was
based on the studies reported by Frondel (1962),
where the frequency is nearly 50%:50%. These
studies were based on measurements of large single
crystals rather than polycrystalline aggregates. In
chemistry, it has been shown that two types of
crystalline solids can be formed by chiral (enantio-
morphic) crystals: ‘racemic’ aggregates of 50%:
50% right- and left-handed crystals; and ‘homochir-
ality’ aggregates composed uniquely of right- or
left-handed forms. The latter originate by some
‘symmetry breaking’ process that creates an imbal-
ance between left and right enantiomorphic crystals.

The degree of imbalance is measured by crys-
tal enantiomorphic excess or CEE ¼ (NR 2 NL)/
(NR + NL), where NR and NL are the number of
right- and left-handed crystals. Over 100 years ago,
Kipping & Pope (1898) showed that seeding a crys-
tallizing solution of sodium chlorate (NaClO3 cubic
space group P213, point group 23) with right- or
left-handed crystal would result in an aggregate of
uniquely one-hand. A number of experiments con-
ducted in recent years on sodium chlorate have
shown that the simple action of stirring crystals
floating in solution will cause homochirality (e.g.
Kondepudi et al. 1990; Viedma 2004; Veintemil-
las-Verdaguer et al. 2007). Similarly, stirred crystal-
lization of melt (Kondepudi et al. 1999), crushing
or grinding of crystals (Viedma 2005), boiling
solutions with temperature gradient (El Hachemi
et al. 2009; Viedma & Cintas 2011) or shaking sol-
utions of millimetre-sized crystals (Viedma et al.
2013) can also cause homochirality. All of these
processes are likely to occur in tectonic or volcanic
environments within the Earth. Although the mech-
anism responsible for homochirality of the crys-
tal aggregates remains controversial, experimental
results have been reproduced by several laboratories
(see reviews by Weissbuch & Lahav 2011; Cintas &
Viedma 2012). While no similar experiments have
been conducted on quartz, it would be surprising
if similar effects did not occur for natural crystals
to explain the probable increased homochirality in
vein quartz.

Idealized symmetry models of piezoelectric pro-
perties of quartz aggregates have been proposed
by Zheludev (1974) and used by Parkhomenko
(1971) and Bishop (1981). We develop here the
modelling of polycrystalline aggregates of Zhelu-
dev (1974) by using the ideal symmetry groups
with n-fold axis, where n ¼ 1 are called limiting
or Curie groups. There are seven limiting groups,
but only three (11111,11111mm and 111112) do not have a
centre of symmetry and hence can have piezoelec-
tric properties (e.g. Zheludev 1974). Both 1 and
11111mm and have a unique polar axis and could poten-
tially be associated with CPO of a-quartz. For
example, an ideal 1 right-handed quartz CPO
would have the 1-fold axis parallel to the quartz
a1 [2�1�10]. This can be implemented by MTEX as:

% Default Dirichlet kernel when calculating
physical properties from odf

% Band 2 width ¼ Lmax¼3 for piezoelectric
properties (tens or 3th rank)

% axial direction : a1 ¼ [22 12 10] quartz
a1_direction ¼ Miller (2, 21, 21, 0, CS,
‘uvw’, ‘phase’, ‘Quartz’)

% setup Dirichlet kernel
K_Dirichlet ¼ kernel (‘Dirichlet’,

‘bandwidth’, 3)
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% calcluate fibre odf with a1 crystal
parallel x specimen

Odf_Model_A_Dirichlet ¼ fibreODF
a1_direction, zvector, K_Dirichlet)

% RH Voigt average from odf_qtz_fourier
[d_RH_Voigt_Model_A_Quartzite_ODF_

Dirichlet] ¼ . . .

calcTensor (Odf_Model_A_Dirichlet ,. . .
d_RH_quartz, ‘Voigt’)

a1_direction ¼ Miller (show methods, plot)
size : 1 × 1
options: uvw
mineral : Quartz (23m, X | | a*, Y || b, Z || c*)
u 2
v 21
t 21
w 0

K_Dirichlet ¼ kernel (show methods, plot)
type: Dirichlet, hw ¼ 37

Odf_Model_A_Dirichlet ¼ ODF(show methods,
plot)
crystal symmetry: Quartz(23m, X || a* ,
Y || b, Z || c*)

sample symmetry : triclinic

Fibre symmetric portion:
kernel: Dirichlet, hw ¼ 37
center: ,22 12 10. 2001
weight: 1

d_RH_Voigt_Model_A_Quartzite_ODF_
Dirichlet =tensor (show methods, plot)
rank: 3 (3 × 3 × 3)

tensor in compact matrix form:
0 0 0 0.0356 0.9611 0
0 0 0 0.9611 –0.0356 0

0.9611 0.9611 –1.9222 0 0 0

From this calculation we deduce that the
11111 d31 ¼ d32 ¼ d24 ¼ d15 ¼ single-crystal quartz 2
d11/2, d33 ¼ single-crystal quartz d11 and d14 and
d25 ¼ single-crystal quartz 2 d14/4 and d14/4, res-
pectively. Figure 12 shows the maximum value of
21.92 pC N21 parallel to X, as expected. The value
is 100% of the single crystal in the +a1[2�1�10]
direction, confirming that no bias or smoothing is
introduced into the ODF when using the Dirichlet
kernel for physical properties. The 11111mm symmetry
would require more complex microstructure in an
aggregate composed of right- and left-handed crys-
tals with 1-fold axis parallel to the quartz a1[2�1�10]
direction as before, but now with two mirror planes
(one normal to the symmetry axis and parallel to
the symmetry axis) resulting in four-fold disposition
of the positive a1-axis in the basal plane (Zheludev
1974); this seems unlikely in quartz. Alternatively,
it is more probable in tourmaline 3m point group
symmetry with mirror planes. The 111112 symmetry

with a two-fold axis normal to the symmetry axis
has no polar axes. This symmetry of the piezoelectric
property could result from right-handed quartz with a
CPO having the 1-fold axis parallel to both the
quartz c[0001] and the specimen z-direction and
two-fold a-axes normal to the symmetry axis. By per-
forming a similar calculation to above, we find that
the only two non-zero coefficients are d14 and d25,
equal to the single-crystal quartz d14/2 and 2 d14/
2, respectively. There are no polar axes because the
only non-zero coefficients are two shear terms (d14

and d25) and no polarization can be generated
parallel to compressive stress (longitudinal effect),
and piezoelectric polarization can only be generated
by applying shear stresses. The 111112 has the same
non-zero coefficients as the crystal point groups
422 and 622, for which we demonstrated that
d′

11 = 0 = 0.

Conclusions

We have extended the functions of MTEX to include
the calculation of anisotropic crystal physical prop-
erties of 3rd rank Cartesian tensors. The functions
can be applied to tensors of single or polycrystalline
materials. The implementation of the average ten-
sor of polycrystalline and multi-phase aggregates
using the Voigt average has been made using three

Fig. 12. Pole figure of the Voigt average for the
piezoelectric strain tensor d for right-handed a-quartz
assuming the 11111 Curie group symmetry with the positive
a1-axis parallel to the 1-fold symmetry axis. The Voigt
average was calculated using an ODF constructed using
fibreODF command with Dirichlet kernel and
band-width of three. Upper hemisphere projection. X is
lineation and Z is the normal to the foliation. Note that
the maximum magnitude is+1.92 pC N21, that is, 100%
of the single crystal value.
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methods: (a) the weighted summation for indivi-
dual orientation data (e.g. EBSD, ECPs); (b) the
weighted integral of the ODF; and (c) the Fourier
coefficients of the ODF. Special attention has been
paid to the crystallographic reference frame used
for orientation data (e.g. Euler angles) and Cartesian
tensors, as they dependent on the origin of the orien-
tation and tensor data. Specifically, piezoelectric
properties in the 2D and 3D representations allow
a better appreciation of the often-complex 3D dis-
tribution of the different electrical polarizations
and their signs. Uniform ODFs will result in a
zero piezoelectric tensor for all aggregates of piezo-
electric crystals. Enantiomorphic crystal aggregates
composed of equal volumes of right- and left-
handed crystals with the same ODF will also result
in a zero piezoelectric tensor. Processes such as
stirring or shaking crystals floating in solution
and crushing or grinding can cause homochirality,
leading to aggregates with a high piezoelectric
anisotropy. When searching for ODFs that will
produce aggregates with a maximum piezoelectric
effect, a good understanding of the single-crystal
properties is essential. In the case of quartz, the
so-called Y maximum CPO with c-axis parallel to
the specimen Y-axis would appear to be a good can-
didate. While the elastic wave velocity is virtually
unaffected (less than 1%) by piezoelectric coupl-
ing for quartz, in other materials the effect is very
important as the wave speed anisotropy may be
increased by a factor of 2–3 (e.g. zincite). In other
examples there is almost no effect. The effect of
the ODF can be investigated by using the fibreODF
command, either a simple verification of the Curie
symmetry group for a-quartz as illustrated here or
using a combination of model ODFs.

The ensemble of MTEX functions can be used to
construct project-specific MatLab M-files to process
orientation data of any type in a coherent workflow
from the texture analysis to the anisotropic physical
properties. A wide range of graphical tools provides
publication-quality output in a number of formats.
The construction of M-files for specific problems
provides a problem-solving method for teaching
elementary to advanced texture analysis and aniso-
tropic physical properties. The open-source nature
of this project (http://mtex.googlecode.com) allows
researchers to access all the details of their calcu-
lations, check intermediate results and further the
project by adding new functions on Linux, Mac
OS X or Windows platforms.

It is pleasure for DM to dedicate this paper to Professor
Ernie Rutter who introduced him to the representation of
physical properties of crystals by tensors as part of his
Masters course at Imperial College, London. This contri-
bution is the result of scientific cooperation on the research
project ‘Texture and Physical Properties of Rocks’, funded

by the French–German program EGIDE-PROCOPE. This
bilateral program is sponsored by the German Academic
Exchange Service (DAAD) with financial funds from the
Federal Ministry of Education and Research (BMBF)
and the French Ministry of Foreign Affairs. The authors
thank the two reviewers for the hard work involved in
reviewing such a technical manuscript; their checking of
some of the equations eliminated some typing errors and
helpful comments greatly improved our paper.

References

ANSI-IEEE 176 1987. Standard on Piezoelectricity,
http://dx.doi.org/10.1109/IEEESTD.1988.79638

Auld, B. A. 1990. Acoustic Fields and Waves in Solids
(Two Volumes). Krieger Publishing Co., Malabar,
Florida.

Bachmann, F., Hielscher, H., Jupp, P. E., Pantleon,
W., Schaeben, H. & Wegert, E. 2010. Inferential
statistics of electron backscatter diffraction data
from within individual crystalline grains. Journal of
Applied Crystallography, 43, 1338–1355.

Bazhenov, A. V. 1961. Piezoelectric Properties of Wood.
Consultants Bureau, New York.

Bechmann, R. 1958. Elastic and piezoelectric constants
of alpha-quartz. Physical Review, 110, 1060–1061.

Bishop, J. R. 1981. Estimating quartz fabrics from piezo-
electric measurements. Mathematical Geosciences,
13, 261–289.

Bishop, J. R. & Emerson, D. W. 1999. Geophysical prop-
erties of zinc-bearing deposits. Australian Journal of
Earth Sciences, 46, 311–328.

Bond, W. L. 1943. The mathematics of the physical prop-
erties of crystals. Bell System Technical Journal, XXII,
1–72.

Brainerd, J. G. et al. 1949. Standards on piezoelectric
crystals. Proceedings of the Institute of Radio Engin-
eers, 37, 1378–1395.

Bunge, H. J. 1969. Mathematische Methoden der Textur-
analyse. Akademie-Verlag, Berlin.

Bunge, H. J. & Esling, C. 1985. Symmetries in texture
analysis. Acta Crystallographica, A41, 59–67.

Cady, W. G. 1964. Piezoelectricity. Dover Publications
Inc., New York.

Cintas, P. & Viedma, C. 2012. On the physical basis of
asymmetry and homochirality. Chirality, 24, 894–908.

Cook, R. K. & Weissler, P. G. 1950. Piezoelectric con-
stants of alpha- and beta-quartz at various tempera-
tures. Physical Review, 80, 712–716.

Corry, C. E. 1994. Investigation of ferroelectric effects in
two sulfide deposits. Journal of Applied Geophysics,
32, 55–72.

Curie, J. & Curie, P. 1880. Développement par com-
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