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Abstract: This paper presents the background for the calculation of physical properties of an
aggregate from constituent crystal properties and the texture of the aggregate in a coherent
manner. Emphasis is placed on the important tensor properties of 2nd and 4th rank with appli-
cations in rock deformation, structural geology, geodynamics and geophysics. We cover texture
information that comes from pole figure diffraction and single orientation measurements (electron
backscattered diffraction or EBSD, electron channelling pattern, Laue pattern, optical microscope
universal-stage). In particular, we provide explicit formulae for the calculation of the averaged
tensor from individual orientations or from an orientation distribution function (ODF). For the
latter we consider numerical integration and an approach based on the expansion into spherical
harmonics. This paper also serves as a reference paper for the mathematical tensor capabilities
of the texture analysis software MTEX, which is a comprehensive, freely available MatLab
toolbox that covers a wide range of problems in quantitative texture analysis, for example, ODF
modelling, pole figure to ODF inversion, EBSD data analysis and grain detection. MTEX offers
a programming interface which allows the processing of involved research problems as well
as highly customizable visualization capabilities; MTEX is therefore ideal for presentations,
publications and teaching demonstrations.

The estimation of physical properties of crystalline
aggregates from the properties of the component
crystals has been subject of extensive literature
since the classical work of Voigt (1928) and Reuss
(1929). Such an approach is only feasible if the
bulk properties of the crystals dominate the physical
property of the aggregate and the effects of grain-
boundary interfaces can be ignored. For example,
the methods discussed here cannot be applied to
the electrical properties of water-saturated rock,
where the role of interfacial conduction is likely to
be important. Many properties of interest to earth
and materials scientists can be evaluated from the
knowledge of the single-crystal tensors and the
orientation distribution function (ODF) of crystals
in an aggregate, for example, thermal diffusivity,
thermal expansion, diamagnetism and elastic wave
velocities.

The majority of rock-forming minerals have
strongly anisotropic physical properties and many
rocks also have strong crystal preferred orientations
(CPOs, or textures as they are called in materials
science; these terms are used interchangeably in

this paper as no possible confusion can result in
present context) that can be described concisely
in a quantitative manner by the orientation
distribution function ODF. The combination of
strong CPOs and anisotropic single-crystal pro-
perties results in a three-dimensional variation in
rock properties. Petrophysical measurements are
usually made under hydrostatic pressure and often
at high temperatures to simulate conditions in the
Earth, where presumably the micro-cracks present
at ambient conditions are closed. The necessity to
work at high pressure and temperature conditions
limits the number of orientations that can be
measured. Typically, three orthogonal directions
are measured parallel to structural features, such
as the lineation and foliation normal defined by
grain shape. The evaluation of physical properties
from CPO allows the determination of properties
over the complete orientation sphere of the speci-
men reference frame.

This paper is designed as a reference paper
for earth and material scientists who want to use
the texture analysis software MTEX to compute
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physical tensor properties of aggregates from
constituent crystal properties and the texture of
the aggregate. MTEX is a comprehensive, freely
available MatLab toolbox that covers a wide range
of problems in quantitative texture analysis, for
example: ODF modelling, pole figure to ODF inver-
sion, electron backscatter diffraction (EBSD) data
analysis and grain detection. The MTEX toolbox
can be downloaded from http://mtex.googlecode.
com. Unlike many other texture analysis software,
it offers a programming interface which allows for
the efficient processing of complex research pro-
blems in the form of scripts (M-files). The MatLab
environment provides a wide variety of high-quality
graphics file formats to aid publication and display
of the results. In addition the MTEX toolbox will
work identically on Microsoft Windows, Apple
Mac OSX and Linux platforms in 32 and 64 bit
modes with a simple installation procedure.

In MTEX texture analysis information such as
ODFs, EBSD data and pole figures are represented
by variables of different types. For example, in
order to define a unimodal ODF with half-width
108, preferred orientation 108, 208, 308 Euler
angles and cubic crystal symmetry, the command

myODF = unimodalODF(orientation(’Euler’,
10*degree, 20*degree,30*degree),
... symmetry (’cubic’), ’halfwidth’,
10*degree)

is issued which generates a variable myODF of type
ODF, displayed as

myODF = ODF
specimen symmetry: triclinic
crystal symmetry : cubic

Radially symmetric portion:
kernel: de la Vallee Poussin, hw = 10
center: (10, 20, 30)
weight: 1

We will use this style of displaying input and output
to make the syntax of MTEX as clear as possible.
Note that there is also an exhaustive interactive
documentation included in MTEX, which explains
the syntax of each command in detail.

The outline of the paper is as follows. In the first
section the basics of tensors mathematics and crystal
geometry are briefly described and presented in
terms of MTEX commands. In the second section
these basics are discussed for some classical
second-order tensors and the elasticity tensors.
In particular, we give a comprehensive overview
about elastic properties that can be computed
directly from the elastic stiffness tensor. All calcu-
lations are accompanied by the corresponding
MTEX commands. In the third section we are
concerned with the calculation of average matter
tensors from their single-crystal counterparts and

the texture of the aggregate. Here we consider tex-
tures given by individual orientation measurements,
which lead to the well-known Voigt, Reuss and Hill
averages, as well as textures given by ODFs, which
lead to formulae involving integrals over the orien-
tation space. We can compute these integrals in
several ways: either we use known quadrature
rule, or we compute the expansion of the rotated
tensor into generalized spherical harmonics and
apply Parseval’s theorem. Explicit formulae for
the expansion of a tensor into generalized spherical
harmonics and a proof that the order of the tensor
defines the maximum order of this expansion is
included in the Appendix.

Tensor mathematics and crystal geometry

In what follows we give the necessary background
to undertake physical property calculation for
single crystals, without the full mathematical devel-
opments that can be found elsewhere (e.g. Nye
1985). We will restrict ourselves to linear physical
properties, which are properties that can be
described by a linear relationship between cause
and effect such as stress and strain for linear
elasticity.

Tensors

Mathematically, a tensor T of rank r is a r-linear
mapping which can be represented by an
r-dimensional matrix Ti1,i2,...,ir . A rank zero tensor
is simply a scalar value, a rank-one tensor Ti is a
vector and a rank-two tensor Tij has the form of a
matrix. Linearity means that the tensor applied to r
vectors x1, . . . , xr [ R3, defines a mapping

(x1, . . . , xr) −�
∑3

i1=1

∑3

i2=1

· · ·
∑3

ir=1

Ti1 ,..., ir
x1

i1
· · · xr

ir

which is linear in each of the arguments x1, . . . , xr .
Physically, tensors are used to describe linear inter-
actions between physical properties. In the simplest
case, scalar properties are modelled by rank
zero tensor whereas vector fields (i.e. direction-
dependent properties) are modelled by rank-one
tensors. An example for a second-rank tensor is
the thermal conductivity tensor kij which describes
the linear relationship between the negative temp-
erature gradient −gradT = −(∂T

∂x1
, ∂T
∂x2

, ∂T
∂x3

), that is a
first-order tensor, and the heat flux q = (q1, q2, q3)
per unit area which is also a first-order tensor. The
linear relationship is given by the equality

qi = −
∑3

j=1

kij

∂T

∂xj

, i = 1, . . . , 3,
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and can be seen as a matrix vector product of the
thermal conductivity tensor kij interpreted as a
matrix and the negative temperature gradient inter-
preted as a vector. In the present example the nega-
tive temperature gradient is called applied tensor
and the heat flux is called induced tensor.

In the general case, we define a rank r tensor
Ti1,...,ir inductively as the linear relationship
between two physical properties which are mod-
elled by a rank s tensor A j1, j2, ..., js and a rank t
tensor Bk1,k2,...,kt

, such that the equation r = t + s is
satisfied. The rank of a tensor is therefore given by
the rank of the induced tensor plus the rank of the
applied tensor. The linear dependency between the
applied tensor A and the induced tensor B is given
by the tensor product

Bk1,...,kt
=

∑3

j1=1

∑3

j1=1

· · ·
∑3

js=1

Tk1 ,k2 ,..., kt , j1,..., js
A j1,..., js

= Tk1,k2,..., kt , j1,..., js A j1 ,..., js .

In the right-hand side of the last equation
we used the Einstein summation convention and
omitted the sum sign for every two equal indexes;
this will be default in all further formulae.

In MTEX a tensor is represented by a variable of
type tensor. In order to create such a variable, the
r-dimensional matrix has to be specified. As an
example we consider the 2nd rank stress tensor
sij, which can be defined by

M = [[1.45 0.00 0.19];...
[0.00 2.11 0.00];...
[0.19 0.00 1.79]];

sigma = tensor (M, ’name’, ’stress’,
’unit’, ’MPa’);

sigma = stress tensor (size: 3 3)
rank: 2
unit: MPa

1.45 0.00 0.19
0.00 2.11 0.00
0.19 0.00 1.79

Furthermore, we defined the normal
�n = (1, 0, 0) to plane by

n = vector3d (1,0,0)
n = vector3d (size: 1 1)

x y z
1 0 0

According to Cauchy’s stress principle, the
stress vector T�n associated with the plane normal �n
is then computed by

T�n
j = sij �ni .

In MTEX this equation may be written as

T = EinsteinSum (sigma, [-1 1], n, -1,
’unit’, ’MPa’)

T = tensor (size: 3)
unit: MPa
rank: 1

1.45
0
0.19

Note that the 21 in the arguments of the com-
mand EinsteinSum indicates the dimen-
sion which has to be summed up and the 1 in
the argument indicates that the second dimension
of s becomes the first dimension of T. Using
the stress vector T�n, the scalar magnitudes of
the normal stress sN and the shear stress sS are
given as

sN = T�n
i �ni = sij �ni �nj and sS =

������������
T�n

i T�n
i − s2

N

√
.

In MTEX the corresponding calculation reads as

sigmaN = double (EinsteinSum (T, -1, n,
-1))

sigmaS = sqrt (double(EinsteinSum (T, -1,
T, -1))2 sigma N^2)

sigmaN = 1.4500
sigmaS = 0.1900

The crystal reference frame

Tensors can be classified into two types: matter
tensors describing physical properties such as
electrical or thermal conductivity, magnetic per-
meability, etc. of a crystalline specimen, and field
tensors describing applied forces such as stress,
strain or a electric field to a specimen. Furthermore,
it is important to distinguish between single-crystal
tensors describing constituent crystal properties
and tensors describing averaged macroscopic prop-
erties of a polycrystalline specimen. While the refer-
ence frame for the latter is the specimen coordinate
system, the reference frame for single-crystal
tensor properties is unambiguously connected to
the crystal coordinate system. The reference frames
and their conventions are explained below. We will
restrict ourselves to tensors of single or polycrystals
defined in a Cartesian reference frame comprising

the three unit vectors �XT , �YT , �ZT . The use of an
orthogonal reference frame for single crystals
avoids the complications of the metric associated
with the crystal unit cell axes. In any case, almost
all modern measurements of physical property
tensors are reported using Cartesian reference
frames.
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We next discuss how the single-crystal tensor
reference frame is defined using the crystal coordi-
nate system. In the general case of triclinic crystal
symmetry, the crystal coordinate system is specified
by its axis lengths a, b, c and inter-axial angles a, b,
g resulting in a non-Euclidean coordinate system
�a, �b, �c for the general case. In order to align the

Euclidean tensor reference frame �XT , �YT , �ZT in
the crystal coordinate system, several conventions
are in use. The most common conventions are sum-
marized in Table 1.

In MTEX the alignment of the crystal reference
frame is defined together with the symmetry group
and the crystal coordinate system. All this infor-
mation is stored in a variable of type symmetry.
For example by

cs_tensor = symmetry(’triclinic’ [5.29],
9.18, 9.42],...
[90.4, 98.9, 90.1]* degree, ’X||a*’,
’Z||c’, ’mineral’, ’Talc’);

cs_tensor = symmetry(size: 1)

mineral : Talc

symmetry : triclinic (2 1)
a, b, c : 5.3, 9.2, 9.4
alpha, beta, gamma : 90.4, 98.9, 90.1
reference frame : X||a*, Z||c

we store in the variable cs_tensor the geometry
of Talc which has triclinic crystal symmetry, axis
lengths 5.29, 9.18, 9.42, inter-axial angles 90.48,
98.98, 90.18 and the convention for a Cartesian
right-handed tensor reference frame �X||�a∗, �Z||�c;

we therefore have �Y = �Z × �X for the alignment of
the crystal reference frame. In order to define a
crystal constituent property tensor with respect to
this crystal reference frame, we append the variable
cs_tensor to its definition, that is,

M = [[219.83 59.66 -4.82 -0.82 -33.87
-1.04];...
[59.66 216.38 -3.67 1.79 -16.51
-0.62];...
[-4.82 -3.67 48.89 4.12 -15.52
-3.59];...
[-0.82 1.79 4.12 26.54 -3.60
-6.41];...
[-33.87 -16.51 -15.52 -3.60 22.85
-1.67];...
[-1.04 -0.62 -3.59 -6.41 -1.67
78.29]];

C = tensor(M, ’name’, ’elastic stiffness,
’unit’, ’GPa’, cs_tensor)

C = elastic stiffness tensor(size : 3 3 3 3)
unit: GPa
rank: 4

mineral: Talc (triclinic, X||a*, Z||c)

tensor in Voigt matrix representation
219.83 59.66 -4.82 -0.82 -33.87 -1.04
59.66 216.38 -3.67 1.79 -16.51 -0.62
-4.82 -3.67 48.89 4.12 -15.52 -3.59
-0.82 1.79 4.12 26.54 -3.60 -6.41

-33.87 -16.51 -15.52 -3.60 22.85 -1.67
-1.04 -0.62 -3.59 -6.41 -1.67 78.29

defines the elastic stiffness tensor in GPa of Talc.
This example will be discussed in greater detail in
the section ‘Elasticity tensors’.

Crystal orientations

Let �Xc, �Yc, �Zc be a Euclidean crystal coordi-
nate system assigned to a specific crystal and let
�Xs, �Ys, �Zs be a specimen coordinate system. In
polycrystalline materials, the two coordinate
systems generally do not coincide. Their relative
alignment describes the orientation of the crystal
within the specimen. More specifically, the orien-
tation of a crystal is defined as the (active) rotation
g that rotates the specimen coordinate system into
coincidence with the crystal coordinate system.
From another point of view, the rotation g can be
described as the basis transformation from the
crystal coordinate system to the specimen coordi-
nate system. Let �h = (h1, h2, h3) be the coordinates
of a specific direction with respect to the crys-
tal coordinate system. Then �r = (r1, r2, r3) = g�h
are the coordinates of the same direction with
respect to the specimen coordinate system.

Crystal orientations are typically defined by
Euler angles, either by specifying rotations with

Table 1. Alignment of the crystal reference frame
for the tensors of physical properties of crystals. The
notation �a, �b, �c, �m corresponds to crystallographic
directions in the direct lattice space, whereas the
notation �a∗ , �b∗ , �c∗ denotes the corresponding
directions in the reciprocal lattice space, which are
parallel to the normal to the plane written as ⊥a for
�a∗, etc. Note that there are at least two possible
reference choices for all symmetries except
orthorhombic, tetragonal and cubic

Crystal symmetries �XT �YT �ZT

Orthorhombic,
tetragonal, cubic

�a �b �c

Trigonal, hexagonal �a �m �c
�m −�a �c

Monoclinic �a∗ �b �c
�a �b �c∗

Triclinic �a∗ �ZT × �XT �c
�a �ZT × �XT �c∗
�YT × �ZT �b

∗
�c

�YT × �ZT �b �c∗
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angles f1, F, f2 about the axes Zs, Xs, Zs (Bunge
convention) or with angles a, b, g about the axes
Zs, Ys, Zs (Matthies convention). Both conventions,
and also some others, are supported in MTEX. In
order to define an orientation in MTEX we start by
fixing the crystal reference frame �Xc, �Yc, �Zc used
for the definition of the orientation,

cs_orientation = symmetry(’triclinic’
[5.29], 9.18, 9.42],...
[90.4, 98.9, 90.1]* degree, ’X||a*’,
’Z||c’, ’mineral’, ’Talc’);

cs_orientation = crystal symmetry
(size: 1)

mineral : talc
symmetry : triclinic (-1)
a, b, c : 5.3, 9.2, 9.4
alpha, beta, gamma: 90.4, 98.9, 90.1
reference frame : X||a, Z||c*

Now an orientation can be defined as a variable of
type orientation, it is common practice to use the
letter g to denote an orientation, derived from the
German word Gefüge used by Sander (1911).

g = orientation (’Euler’, 10*degree,
20*degree, 5*degree, ’Bunge’,
cs_orientation)

g = orientation (size : 1 1)
mineral : talc
crystal symmetry : triclinic, X||a,

Z||c*
specimen symmetry: triclinic

Bunge Euler angles in degree
phi1 Phi phi2
10 20 5

Note that for the definition of an orientation the
crystal reference frame is crucial. The definition
of the variable of type orientation therefore
includes a variable of type symmetry, storing the
relevant information. This applies in particular if
the orientation data (i.e. Euler angles) are imported
from third-party measurement systems such as
EBSD and associated software with their own
specific conventions for �Xc, �Yc, �Zc, which should
be defined when using the MTEX import wizard.

In order to demonstrate the coordinate transform
between the crystal and the specimen coordinate
system, we choose a crystal direction in the recipro-
cal lattice �h = h �a∗ +kb∗ + ℓc∗ (pole to a plane) by
defining a variable of type Miller:

h = Miller (1, 1, 0, cs_orientation, ’hkl’)
h = Miller (size: 1 1)

mineral : talc (triclinic, X||a,
Z||c*)

h 1
k 1
l 0

and express it in terms of the specimen coordinate
system for a specific orientation g ¼ (108, 208, 58)

r = g * h
r = vector3d (size: 1 1),

x y z
0.714153 0.62047 0.324041

The resulting variable is of type vector3d reflect-
ing that the new coordinate system is the specimen
coordinate system. Note that in order that the coor-
dinate transformation rule makes sense physically,
the corresponding crystal reference frames used
for the definition of the orientation and the crystal
direction by Miller indices must coincide. Alterna-
tively, a crystal direction �u = u�a + v�b + w�c in
direct space can be specified:

u = Miller (1, 1, 0, cs_orientation, ’uvw’)
h = Miller (size: 1 1), uvw

mineral: talc (triclinic, X||a,
Z||c*)

u 1
v 1
w 0

and expressed in terms of the specimen coordinate
system

r = g * u
r = vector3d (size: 1 1),

x y z
0.266258 0.912596 0.310283

This obviously gives a different direction, since
direct and reciprocal space do not coincide for tricli-
nic crystal symmetry.

The relationship between the single-crystal

physical property and Euler angle reference

frames

Let us consider a rank r tensor Ti1,...,ir describing
some physical property of a crystal with respect
to a well-defined crystal reference frame
�XT , �YT , �ZT . We are often interested in expressing
the tensor with respect to another, different
Euclidean reference frame �X, �Y , �Z, which might be

(1) a crystallographically equivalent crystal refer-
ence frame,

(2) a different convention for aligning the Eucli-
dean reference frame to the crystal coordinate
system or

(3) a specimen coordinate system.

Let us first consider a vector �h that has the represen-
tation

�h = hT
1
�XT + hT

2
�YT + hT

3
�XT
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with respect to the tensor reference frame

�XT , �YT , �ZT , and the representation

�h = h1
�X + h2

�Y + h3
�X

with respect to the other reference frame �X, �Y , �Z.
Then the coordinates hT

1 , hT
2 , hT

3 and h1, h2, h3

satisfy the transformation rule

h1

h2

h3

⎛
⎝

⎞
⎠ =

�X · �XT �X · �YT �X · �ZT

�Y · �XT �Y · �YT �Y · �ZT

�Z · �XT �Z · �YT �Z · �ZT

⎛
⎝

⎞
⎠

︸
















︷︷
















︸
=:R

hT
1

hT
2

hT
3

⎛
⎝

⎞
⎠,

(1)

that is, the matrix R performs the coordinate trans-
formation from the tensor reference frame
�XT , �YT , �ZT to the other reference frame �X, �Y , �Z.
The matrix R can also be interpreted as the rotation
matrix that rotates the second reference frame
into coincidence with the tensor reference frame.
Considering hT

j to be a rank-one tensor, the trans-
formation rule becomes

hi = hT
j Rij.

This formula generalizes to arbitrary tensors. Let
TT

i1 ,...,ir
be the coefficients of a rank r tensor with

respect to the crystal reference frame XT, YT, ZT

and let Ti1,...,ir be the coefficients with respect
to another reference frame X, Y , Z. Then the
linear orthogonal transformation law for Cartesian
tensors states that

Ti1,...,ir = TT
j1 ,..., jr

Ri1 j1 · · ·Rirjr
. (2)

Let us now examine the three cases for a new
reference frame as mentioned at the beginning of
this section. In the case of a crystallographically
equivalent reference frame, the coordinate trans-
form R is a symmetry element of the crystal and
the tensor remains invariant with respect to this
coordinate transformation, that is T̃ i1,...,ir = Ti1 ,...,ir .

In the case that the other reference frame �X, �Y , �Z
follows a different convention in aligning to the
crystal coordinate system, the transformed tensor
T̃ i1 ,...,ir is generally different to the original tensor.
In MTEX this change of reference frame is carried
out by the command set. Let us consider the
elastic stiffness tensor Cijkl of talc (as defined
above) as:

C = elastic stiffness tensor (size: 3 3 3 3)
unit: GPa
rank: 4

mineral: talc (triclinic, X||a*, Z||c)

219.83 59.66 -4.82 -0.82 -33.87 -1.04
59.66 216.38 -3.67 1.79 -16.51 -0.62
-4.82 -3.67 48.89 4.12 -15.52 -3.59
-0.82 1.79 4.12 26.54 -3.60 -6.41
-33.87 -16.51 -15.52 -3.60 22.85 -1.67
-1.04 -0.62 -3.59 -6.41 -1.67 78.29

and let us consider the reference frame cs_orienta-
tion as defined in the previous section

cs_orientation = symmetry(Size : 1)
mineral : talc
symmetry : triclinic (-1)
a, b, c : 5.29, 9.18, 9.42
alpha, beta, gamma: 90.4, 98.9, 90.1
reference frame : X||a, Z||c*

Then the elastic stiffness tensor Cijkl of talc with
respect to the reference frame cs_orientation
is computed by setting cs_orientation as the
new reference frame, that is

C_orientation = set(C, ’CS’,
cs_orientation)

C_orientation = elastic stiffness tensor
(size: 3 3 3 3)

unit: GPa
rank: 4

mineral: talc (triclinic, X||a, Z||c*)

tensor in Voigt matrix representation
231.82 63.19 -5.76 0.76 -4.31 -0.59
63.19 216.31 -7.23 2.85 -5.99 -0.86
-5.76 -7.23 38.92 2.23 -16.69 -4.3
0.76 2.85 2.23 25.8 -4.24 1.86
-4.31 -5.99 -16.69 -4.24 21.9 -0.14
-0.59 -0.86 -4.3 1.86 -0.14 79.02

Finally, we consider the case that the second refer-
ence frame is not aligned to the crystal coordinate
system but to the specimen coordinate system.
According to the previous section, the coordinate
transform then defines the orientation g of the
crystal and equation (2) tells us how the tensor has
to be rotated according to the crystal orientation.
In this case we will write

Ti1,...,ir = TT
j1,..., jr

(g)

= TT
j1,..., jr

Ri1 j1 (g) · · · Rirjr (g), (3)

to express the dependency of the resulting tensor
from the orientation g. Here Rirjr

(g) is the rotation
matrix defined by the orientation g. In order
to apply equation (3), it is of major importance
that the tensor reference frame and the crystal refer-
ence frame used for describing the orientation
coincide. If they do not coincide, the tensor has to
be transformed to the same crystal reference frame
used for describing the orientation. When working
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with tensors and orientation data it is therefore
always necessary to know the tensor reference
frame and the crystal reference frame used for
describing the orientation. In practical applications
this is not always a simple task, as this information
is sometimes hidden by the commercial EBSD
systems.

If the corresponding reference frames are speci-
fied in the definition of the tensor as well as in the
definition of the orientation, MTEX automatically
checks for coincidence and performs the necessary
coordinate transforms if they do not coincide.
Eventually, the rotated tensor for an orientation
g ¼ (108, 208, 58) is computed by the command
rotate:

C_rotated = rotate (C,g)
C_rotated = elastic_stifness tensor
(size: 3 3 3 3)
unit: GPa
rank: 4

tensor in Voigt matrix representation
228.79 56.05 1.92 19.99 -13.82 6.85
56.05 176.08 11.69 50.32 -7.62 4.42
1.92 11.69 43.27 5.28 -19.48 2.33
19.99 50.32 5.28 43.41 -1.74 0.24
-13.82 -7.62 -19.48 -1.74 29.35 17.34
6.85 4.42 2.33 0.24 17.34 73.4

Note, that the resulting tensor does not contain any
information on the original mineral or reference
frame; this is because the single-crystal tensor is
now with respect to the specimen coordinate
system and can be averaged with any other elastic
stiffness tensor from any other crystal of any com-
position and orientation.

Single-crystal anisotropic properties

We now present some classical properties of single
crystals that can be described by tensors (cf. Nye
1985).

Second-rank tensors

A typical second-rank tensor describes the relation-
ship between an applied vector field and an induced
vector field, such that the induced effect is equal to
the tensor property multiplied by the applied vector.
Examples of such a tensor are

† the electrical conductivity tensor, where the
applied electric field induces a field of current
density,

† the dielectric susceptibility tensor, where the
applied electric field intensity induces electric
polarization,

† the magnetic susceptibility tensor, where the
applied magnetic field induces the intensity of
magnetization,

† the magnetic permeability tensor, where the
applied magnetic field induces magnetic
induction,

† the thermal conductivity tensor, where the applied
negative temperature gradient induces heat flux.

As a typical example for a second-rank tensor we
consider the thermal conductivity tensor k,

k =
k11 k12 k13

k21 k22 k23

k31 k32 k33

⎛
⎝

⎞
⎠

=

− ∂x1

∂T
q1 − ∂x2

∂T
q1 − ∂x2

∂T
q1

− ∂x1

∂T
q2 − ∂x2

∂T
q2 − ∂x2

∂T
q2

− ∂x1

∂T
q3 − ∂x2

∂T
q3 − ∂x2

∂T
q3

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

which relates the negative temperature gradient
−gradT = −(∂T/∂x1, ∂T/∂x2, ∂T/∂x3) to the heat
flux q = (q1, q2, q3) per unit area by

qi = −
∑3

j=1

kij

∂T

∂xj

= −kij

∂T

∂xj

. (4)

In the present example the applied vector is the
negative temperature gradient and the induced
vector is the heat flux. Furthermore, we see that
the relating vector is built up as a matrix where
the applied vector is the denominator of the rows
and the induced vector is the numerator of
columns. We see that the tensor entries kij describe
the heat flux qi in direction Xi given a thermal gradi-
ent ∂T/∂xj in direction Xj.

As an example we consider the thermal conduc-
tivity of monoclinic orthoclase (Hofer & Schilling
2002). We start by defining the tensor reference
frame and the tensor coefficients in W m21 K21.

cs-tensor = symmetry(’monoclinic’,
[8.561, 12.996, 7.192] ,...
[90, 116.01, 90]*degree, ’mineral’,
’orthoclase’,’Y||b’,’Z||c’);

M = [[1.45 0.00 0.19];...
[0.00 2.11 0.00];...
[0.19 0.00 1.79]];

Now the thermal conductivity tensor k is
defined by

k = tensor (M, ’name’, ’thermal_
conductivity’, unit’, ’W_1/m_1/K’,
cs_tensor)

k = thermal conductivity tensor (size: 3 3)
unit : W 1/m 1/K
rank : 2
mineral: orthoclase (monoclinic,

X||a*, Y||b, Z||c)
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1.45 0 0.19
0 2.11 0
0.19 0 1.79

Using the thermal conductivity tensor k we can
compute the thermal flux q in W m22 for a tempera-
ture gradient in K m21:

gradT = Miller(1,1,0, cs_tensor, ’uvw’)
gradT = Miller (size: 1 1), uvw

mineral: orthoclase (monoclinic,
X||a*, Y||b, Z||c)

u 1
v 1
w 0

by equation (4). In MTEX, this becomes

q = EinsteinSum(k, [1 -1],gradT, -1,
’name’, ’thermal_flux’, ’unit’, ’W_1/
m^2’)

q = thermal flux tensor (size: 3)
unit : W 1/m^2
rank : 1
mineral: orthoclase (monoclinic,

X||a*, Y||b, Z||c)
0.672
1.7606
-0.3392

Note that the 21 in the arguments of the command
EinsteinSum indicates the dimension which has
to be summed up and the 1 in the argument indicates
that the first dimension of k becomes the first dimen-
sion of q; see equation (4).

A second-order tensor kij can be visualized by
plotting its magnitude R(�x) in a given direction �x,

R(�x) = kij �xi �xj .

In MTEX the magnitude in a given direction �x
can be computed via

x = Miller (1,0,0, cs_tensor, ’uvw’);
R = EinsteinSum (k, [-1 -2],x,- 1,x,- 2)
R = tensor (size:)

rank : 0
mineral: orthoclase (monoclinic,

X||a*, Y||b, Z||c)

1.3656

Again, the negative arguments 21 and 22 indicate
which dimensions have to be multiplied and
summed up. Alternatively, we can use the
command magnitude,

R = directionalMagnitude (k, x)

Since in MTEX the directional magnitude is the
default output of the plot command, the code

plot(k)
colorbar

plots the directional magnitude of k with respect to
any direction �x as shown in Figure 1. Note that, by
default, the X axis is plotted in the north direction,
the Y axis is plotted in the west direction and the Z
axis is at the centre of the plot. This default alignment
can be changed by the commands plotx2north,
plotx2east, plotx2south, plotx2west.

When the tensor k is rotated the directional mag-
nitude rotates accordingly. This can be checked in
MTEX by

g = orientation(’Euler’,10*degree,
20*degree,30*degree,cs_tensor);

k_rot = rotate(k,g);
Plot(k_rot)
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Fig. 1. The thermal conductivity k of orthoclase visualized by its directionally varying magnitude for left: the tensor in
standard orientation and right: the rotated tensor.
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The resulting ploat is shown in Figure 1.
Furthermore, from the directional magnitude we

observe that the thermal conductivity tensor k is
symmetric, that is, kij = k ji. This implies that the
thermal conductivity is an axial or non-polar prop-
erty, which means that the magnitude of heat flow
is the same in positive or negative crystallographic
directions.

We want to emphasize that there are also
second-rank tensors which do not describe the
relationship between an applied vector field and an
induced vector field but relate, for instance, a
zero-rank tensor to a second-rank tensor. The
thermal expansion tensor a, defined

aij =
∂1ij

∂T
,

is an example of such a tensor which relates a small
applied temperature change ∂T (a scalar or
zero-rank tensor) to the induced strain tensor 1ij (a
second-rank tensor). The corresponding coefficient
of volume thermal expansion becomes

1

V

∂V

∂T
= aii.

This relationship holds true only for small
changes in temperature. For larger changes in temp-
erature, higher-order terms have to be considered
(see Fei 1995 for data on minerals). This also
applies to other tensors.

Elasticity tensors

We will now present fourth-rank tensors, but restrict
ourselves to the elastic tensors. Let sij be the
second-rank stress tensor and let 1kl be the
second-rank infinitesimal strain tensor. Then
the fourth-rank elastic stiffness tensor Cijkl describes
the stress sij induced by the strain 1kl, defined

sij = Cijkl1kl, (5)

which is known as Hooke’s law for linear elasticity.
Alternatively, the fourth-order elastic compliance
tensor Sijkl describes the strain 1kl induced by the
stress sij, defined

1kl = Sijklsij.

The above definitions may also be written as

Cijkl =
∂sij

∂1kl

and Sijkl =
∂1kl

∂sij

.

In the case of static equilibrium for the stress
tensor and infinitesimal deformation for the strain

tensor, both tensors are symmetric, that is,
sij = s ji and 1ij = 1 ji. For the elastic stiffness
tensor, this implies the symmetry

Cijkl = Cijlk = C jikl = C jilk

reducing the number of independent entries of the
tensor from 34¼ 81 to 36. Since the elastic stiffness
Cijkl is related to the internal energy U of a body by

Cijkl =
∂

∂1kl

∂U

∂1ij

( )
,

assuming constant entropy, we obtain by the
Schwarz integrability condition that allows the
interchanging of the order of partial derivatives of
a function:

Cijkl =
∂

∂1kl

∂U

∂1ij

( )
= ∂2U

∂1ij∂1kl

( )
= ∂2U

∂1kl∂1ij

( )
= Cklij.

Hence,

Cijkl = Cklij

which further reduces the number of independent
entries from 36 to 21 (e.g. Mainprice 2007). These
21 independent entries may be efficiently rep-
resented in the form of a symmetric 6 × 6 matrix
Cmn, m, n = 1, . . . , 6 as introduced by Voigt
(1928). The entries Cmn of this matrix representation
equal the tensor entries Cijkl whenever m and n cor-
respond to ij and kl according to:

m or n 1 2 3 4 5 6

ij or kl 11 22 33 23, 32 13, 31 12, 21

The Voigt notation is used for published compila-
tions of elastic tensors (e.g. Bass 1995; Isaak 2001).

In a similar manner, a Voigt representation
Smn is defined for the elastic compliance tensor
Sijkl. However, there are additional factors when
converting between the Voigt Smn matrix represen-
tation and the tensor representation Sijkl. More
precisely, for ij, kl, m, n which correspond to
each other according to the above table, we have
the identities:

Sijkl

= P · Smn,

P = 1, if both m, n = 1, 2, 3

P = 1
2
, if either m or n are 4, 5, 6

P = 1
4
, if both m, n = 4, 5, 6

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭
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Using the Voigt matrix representation of the
elastic stiffness tensor (equation (5)) may be
written as

s11

s22

s33

s23

s13

s12

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠ =

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

×

111

122

133

2123

2113

2112

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠.

The matrix representation of Hooke’s law allows
for a straightforward interpretation of the tensor
coefficients Cij. For example the tensor coefficient
C11 describes the dependency between normal
stress s11 in direction X and axial strain 111 in the
same direction. The coefficient C14 describes the
dependency between normal stress s11 in direction
X and shear strain 2123 = 2132 in direction Y in
the plane normal to Z. The dependency between
normal stress s11 and axial strains 111, 122 and 133

along X, Y and Z is described by C11, C12 and C13,
whereas the dependencies between the normal
stress s11 and shear strains 2123, 2113 and 2112 are
described by C14, C15 and C16. These effects are
most important in low-symmetry crystals, such as
triclinic and monoclinic crystals, where there are a
large number of non-zero coefficients.

In MTEX the elasticity tensors may be specified
directly in Voigt notation as we have already seen in
the ‘Tensor mathematics and crystal geometry’
section. Alternatively, tensors may also be imported
from ASCII files using a graphical interface called
import wizard in MTEX.

Let C be the elastic stiffness tensor for talc in
GPa as defined in ‘The crystal reference frame’
section.

C = elastic_stiffness tensor
(size: 3 3 3 3)
unit : GPa
rank : 4
mineral: talc (triclinic, X||a*, Z||c)

tensor in Voigt matrix representation
219.83 59.66 -4.82 -0.82 -33.87 -1.04
59.66 -216.38 -3.67 1.79 -16.51 -0.62
-4.82 -3.67 48.89 4.12 -15.52 -3.59
-0.82 1.79 4.12 26.54 -3.6 -6.41
-33.87 -16.51 -15.52 -3.6 22.85 -1.67
-1.04 -0.62 -3.59 -6.41 -1.67 78.29

The elastic compliance S in GPa21 can then be
computed by inverting the tensor C.

S = inv(C)
S = elastic compliance tensor

(size: 3 3 3 3)
unit : 1/GPa
rank : 4
mineral: talc (triclinic, X||a*,

Z||c)

tensor in Voigt matrix (×1023)
representation

6.91 -0.83 4.71 0.74 6.56 0.35
-0.83 5.14 1.41 -0.04 1.72 0.08
4.71 1.41 30.31 -0.13 14.35 1.03
0.74 -0.04 -0.13 9.94 2.12 0.86
6.56 1.72 14.35 2.12 21.71 1.02
0.35 0.08 1.03 0.86 1.02 3.31

Elastic properties

The fourth-order elastic stiffness tensor Cijkl and
fourth-order elastic compliance tensor Sijkl are the
starting point for the calculation of a number of
elastic anisotropicphysical properties, which include

† Young’s modulus,
† shear modulus,
† Poisson’s ratio,
† linear compressibility,
† compressional and shear elastic wave velocities,
† wavefront velocities,
† mean sound velocities,
† Debye temperature,

and, of course, their isotropic equivalents. In the
following we provide a short overview of these
properties.

Scalar volume compressibility. First we consider the
scalar volume compressibility b. Using the fact that
the change of volume is given in terms of the strain
tensor 1ij by

∂V

V
= 1ii,

we determine, for hydrostatic or isotropic pressure
(which is given by the stress tensor skl = −Pdkl),
that the change of volume is given by

∂V

V
= −PSiikk.

The volume compressibility is therefore

b = − ∂V

V

1

P
= Siikk.

Linear compressibility. The linear compressibility
b(x) of a crystal is the strain, that is the relative
change in length ∂l/l, for a specific crystallographic
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direction x when the crystal is subjected to a unit
change in hydrostatic pressure −Pdkl. From

∂l

l
= 1ijxixj = −PSiikkxixj

we conclude

b(x) = − ∂l

l

1

P
= Sijkkxixj.

Young’s modulus. Young’s modulus E is the ratio of
the axial (longitudinal) stress to the lateral (trans-
verse) strain in a tensile or compressive test. As
we have seen earlier when discussing the elastic
stiffness tensor, this type of uniaxial stress is
accompanied by lateral and shear strains as well as
the axial strain. Young’s modulus in direction x is
given by

E(x) = (Sijklxixjxkxl)
−1.

Shear modulus. Unlike Young’s modulus, the shear
modulus G in an anisotropic medium is defined
using two directions: the shear plane h and the
shear direction u. For example, if the shear stress
s12 results in the shear strain 2112 then the corre-
sponding shear modulus is G = s12/2112. From
Hooke’s law we have

112 = S1212s12 + S1221s21,

and hence G = (4S1212)−1. The shear modulus for an
arbitrary, but orthogonal, shear plane h and shear
direction u is given by

G(h, u) = (4Sijklhiujhkul)
−1.

Poisson ratio. The anisotropic Poisson ratio is
defined by the elastic strain in two orthogonal direc-
tions: the longitudinal (or axial) direction x and the
transverse (or lateral) direction y. The lateral strain
is defined by −1ijyiyj along y and the longitudinal
strain by 1ijxixj along x. The anisotropic Poisson
ratio n(x, y) is given as the ratio of lateral to longi-
tudinal strain (Sirotin & Shakolskaya 1982) as

n(x, y) = − 1ijyiyj

1klxkxl

= − Sijklxixjykyl

Smnopxmxnxoxp

.

The anisotropic Poisson ratio has recently been
reported for talc (Mainprice et al. 2008) and has
been found to be negative for many directions at
low pressure.

Wave velocities. The Christoffel equation, first pub-
lished by Christoffel (1877), can be used to calculate
elastic wave velocities and the polarizations in an
anisotropic elastic medium from the elastic stiffness
tensor Cijkl or, more straightforward, from the Chris-
toffel tensor Tik which is, for a unit propagation
direction �n, defined by

Tik(�n) = Cijkl �nj �nl .

Since the elastic tensors are symmetric, we have

Tik(�n) = Cijklnjnl = C jikl �nj �nl = Cijlk �nj �nl

= Cklij �nj �nl = Tki(�n),

and hence the Christoffel tensor T(�n) is symmetric.
The Christoffel tensor is also invariant upon the
change of sign of the propagation direction, as the
elastic tensor is not sensitive to the presence or
absence of a centre of crystal symmetry (being a
centro-symmetric physical property).

Because the elastic strain energy 1/2Cijkl 1ij1kl

of a stable crystal is always positive and real (e.g.
Nye 1985), the eigenvalues l1, l1 and l3 of the
Christoffel tensor Tik(�n) are real and positive.
They are related to the wave velocities Vp, Vs1 and
Vs2 of the plane P-, S1- and S2-waves propagating
in the direction �n by the formulae

Vp =
���
l1

r

√
, Vs1 =

���
l2

r

√
, Vs2 =

���
l3

r

√
,

where r denotes the material density. The three
eigenvectors of the Christoffel tensor are the polar-
ization directions, also called vibration, particle
movement or displacement vectors, of the three
waves. As the Christoffel tensor is symmetric, the
three polarization directions are mutually perpen-
dicular. In the most general case there are no par-
ticular angular relationships between polarization
directions p and the propagation direction �n.
However, the P-wave polarization direction is typi-
cally nearly parallel and the two S-waves polariz-
ations are nearly perpendicular to the propagation
direction. They are termed quasi-P or quasi-S
waves. The S-wave velocities may be identified
unambiguously by their relative velocity Vs1 . Vs2.

All the elastic properties mentioned in this
section have direct expressions in MTEX:

beta = volumeCompressibility (C)
beta = linearCompressibility (C,x)

E = YoungsModulus (C,x)
G = shearModulus (C,h,u)

nu = PoissonRatio (C,x,y)
T = ChristoffelTensor (C,n)
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Note that all these commands take the compli-
ance tensor C as basis for the calculations. For the
calculation of the wave velocities the command
velocity

[vp, vs1, vs2, pp, ps1, ps2] = velocity
(C,x ,rho)

allows for the computation of the wave velocities
and the corresponding polarization directions.

Visualization

In order to visualize the above quantities, MTEX
offers a simple, yet flexible, syntax. Let us demon-
strate it using the Talc example of the previous
section. In order to plot the linear compressibility
b(�x) or Young’s Modulus E(�x) as a function of the
direction �x, we use the commands

plot (C, ’PlotType’,
’linearCompressibility’)

plot (C, ’PlotType’, ’YoungsModulus’)

The resulting plots are shown in Figure 2.
Next we want to visualize the wave velocities

and the polarization directions. Let us start with
the P-wave velocity in km s21 which is plotted by

rho = 2.78276;
plot (C, ’PlotType’, ’velocity’, ’vp’,

’density’, rho)

Note that we had to pass the density rho in g cm23 to
the plot command. We now want to plot the P-wave
polarization directions on top, so use the commands

hold on and hold off to prevent MTEX from clearing
the output window:

hold on
plot(C, ’PlotType’, ’velocity’, ’pp’,

’density’, rho);
hold off

The result is shown in Figure 3. Instead of
only specifying the variables to plot, we can also
perform simple calculations. From the commands

plot (C, ’PlotType’, ’velocity’,
’200*(vs1-vs2)./(vs1+vs2)’,
’density’, rho);

hold on
plot (C, ’PlotType’, ’velocity’, ’ps1’,

’density’, rho);
hold off

the S-wave anisotropy in percent is plotted together
with the polarization directions of the fastest S-wave
ps1. Another example illustrating the flexibility of
the system is the following plot of the velocity
ratio Vp/Vs1 together with the direction of the
S1-wave polarizations.

plot (C, ’PlotType’, ’velocity’,
’vp./vs1’, ’density’, rho);

hold on
plot (C, ’PlotType’, ’velocity’,’ps1’,

’density’, rho);
hold off

Anisotropic properties of polyphase

aggregates

In this section we are concerned with the problem
of calculating average physical properties of
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Fig. 2. Left: the linear compressibility in GPa21 and right: Young’s modulus in GPa for talc.
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polyphase aggregates. To this end, two ingredients
are required for each phase p:

(1) the property tensor T
p
i1,...,ir

describing the phys-
ical behaviour of a single crystal in the refer-
ence orientation,

(2) the orientation density function (ODF) f p(g)
describing the volume portion DV/V of
crystals having orientation g or a representa-
tive set of individual orientations gm,
m = 1, . . . , M (e.g. measured by EBSD).

As an example we consider an aggregate composed
of two minerals (glaucophane and epidote) using
data from a blueschist from the Ile de Groix,
France. The corresponding crystal reference frames
are defined by

cs_glaucophane = symmetry (’2/m’,
[9.5334, 17.7347, 5.3008],[90.00,
103.597, 90.00] * degree, ’mineral’,
’glaucophane’);

cs_epidote = symmetry (’2/m’, [8.8877,
5.6275, 10.1517],[90.00, 115.383,
90.00] * degree, ’mineral’,
’epidote’);

For glaucophane the elastic stiffness was measured
by Bezacier et al. (2010) who provided the tensor

C_glaucophane = tensor (size: 3 3 3 3)
rank : 4

mineral: glaucophane (2/m, X||a*,
Y||b, Z||c)

tensor in Voigt matrix representation
122.28 45.69 37.24 0 2.35 0
45.69 231.5 74.91 0 -4.78 0
37.24 74.91 254.57 0 -23.74 0
0 0 0 79.67 0 8.89
2.35 -4.78 -23.74 0 52.82 0
0 0 0 8.89 0 51.24

For epidote, the elastic stiffness was measured
by Aleksandrov et al. (1974):

C_epidote = tensor (size: 3 3 3 3)
rank : 4
mineral: epidote (2/m, X||a*, Y||b,

Z||c)

tensor in Voigt matrix
representation

211.5 65.6 43.2 0 -6.5 0
65.6 239 43.6 0 -10.4 0
43.2 43.6 202.1 0 -20 0
0 0 0 39.1 0 -2.3
-6.5 -10.4 -20 0 43.4 0
0 0 0 -2.3 0 79.5

Computing the average tensor from

individual orientations

We start with the case that we have individual orien-
tation data gm, m ¼ 1, . . ., M, that is, from EBSD or
U-stage measurements, and volume fractions
Vm, m ¼ 1, . . ., M. The best-known averaging tech-
niques for obtaining estimates of the effective prop-
erties of aggregates are those developed for elastic
constants by Voigt (1887, 1928) and Reuss (1929).
The Voigt average is defined by assuming that the
induced tensor (in broadest sense, including
vectors) field is everywhere homogeneous or con-
stant, that is, the induced tensor at every position
is set equal to the macroscopic induced tensor of
the specimen. In the classical example of elasticity,
the strain field is considered constant. The Voigt
average is sometimes called the ‘series’ average
by analogy with Ohm’s law for electrical circuits.

The Voigt average specimen effective tensor
kTlVoigt

is defined by the volume average of the indi-
vidual tensors T(gc

m) with crystal orientations gc
m and

volume fractions Vm:

kTlVoigt =
∑M

m=1

VmT(gc
m).
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Fig. 3. Wave velocities of a Talc crystal plotted on seismic colour maps: (a) P-wave velocity together with the P-wave
polarization direction; (b) S-wave anisotropy in percent together with the S1-wave polarization direction; and
(c) the ratio of Vp/Vs1 velocities together with the S1-wave polarization direction.
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Contrarily, the Reuss average is defined by
assuming that the applied tensor field is everywhere
constant, that is, the applied tensor at every position
is set equal to the macroscopic applied tensor of the
specimen. In the classical example of elasticity, the
stress field is considered constant. The Reuss
average is sometimes called the ‘parallel’ average.
The specimen effective tensor kTlReuss

is defined
by the volume ensemble average of the inverses of
the individual tensors T−1(gc

m):

kTlReuss =
∑M

m=1

VmT−1(gc
m)

[ ]−1

.

The experimentally measured tensor of aggre-
gates is generally between the Voigt and Reuss
average bounds as the applied and induced tensor
fields distributions are expected to be between
uniform induced (Voigt bound) and uniform
applied (Reuss bound) field limits. Hill (1952)
observed that the arithmetic mean of the Voigt and
Reuss bounds

kTlHill = 1
2
(kTlVoigt + kTlReuss

),

sometimes called the Hill or Voigt–Reuss–Hill
(VRH) average, is often close to experimental
values for the elastic fourth-order tensor. Although
the VRH average has no theoretical justification, it
is widely used in earth and materials sciences.

In the example outlined above of an aggregate
consisting of glaucophane and epidote, we consider
an EBSD dataset measured by Bezacier et al.
(2010). In MTEX such individual orientation data
are represented by a variable of type EBSD which
is generated from an ASCII file containing the indi-
vidual orientation measurements by the command:

ebsd = loadEBSD (’FileName’,
{cs_glaucophane, cs_epidote})

ebsd = EBSD (Groix_A50_5_stitched. ctf)

properties: bands, bc, bs, error, mad
phase orientations mineral symmetry

crystal reference frame
1 055504 glaucophane 2/m X||a*,

Y||b, Z||c
2 63694 epidote 2/m X||a*, Y||b,

Z||c

It should be noted that for both minerals the crystal
reference frames have to be specified in the
command loadEBSD.

The Voigt, Reuss and Hill average tensors can
now be computed for each phase separately by the
command calcTensor:

[TVoigt, TReuss, THill] = calcTensor
(ebsd, C_epidote, ’phase’, 2)

C_Voigt = tensor (size: 3 3 3 3)
rank: 4

tensor in Voigt matrix representation
215 55.39 66.15 -0.42 3.02 -4.69
55.39 179.04 59.12 1.04 -1.06 0.06
66.15 59.12 202.05 0.94 1.16 -0.77
-0.42 1.04 0.94 60.67 -0.86 -0.55
3.02 -1.06 1.16 -0.86 71.77 -0.65
-4.69 0.06 -0.77 -0.55 -0.65 57.81

C_Reuss = tensor (size: 3 3 3 3)
rank: 4

tensor in Voigt matrix representation
201.17 56.48 65.94 -0.28 3.21 -4.68
56.48 163.39 61.49 1.23 -1.58 -0.13
65.94 61.49 189.67 1.29 0.75 -0.64
-0.28 1.23 1.29 52.85 -0.99 -0.38
3.21 -1.58 0.75 -099 65.28 -0.6
-4.68 -0.13 -0.64 -0.38 -0.6 50.6

C_Hill = tensor (size: 3 3 3 3)
rank: 4

tensor in Voigt matrix representation
208.09 55.93 66.05 -0.35 3.11 -4.69
55.93 171.22 60.31 1.13 -1.32 -0.04
66.05 60.31 195.86 1.11 0.96 -0.71
-0.35 1.13 1.11 56.76 -0.93 -0.46
3.11 -1.32 0.96 -0.93 68.52 -0.62
-4.69 -0.04 -0.71 -0.46 -0.62 54.21

If no phase is specified and all the tensors for all
phases are specified, the command

[TVoigt, TReuss, THill] = calcTensor
(ebsd, C_glaucophane, C_epidote)

computes the average over all phases. These calcu-
lations have been validated using the Careware
FORTRAN code (Mainprice 1990). We emphasize
that MTEX automatically checks for the agreement
of the EBSD and tensor reference frames for all
phases. In case different conventions have been
used, MTEX automatically transforms the EBSD
data into the convention of the tensors.

Computing the average tensor from an ODF

Next we consider the case that the texture is given
by an ODF f. The ODF may originate from texture
modelling (Bachmann et al. 2010), pole figure
inversion (Hielscher & Schaeben 2008) or density
estimation from EBSD data (Hielscher et al.
2010). All these diverse sources may be handled
by MTEX.

Given an ODF f, the Voigt average kTlVoigt
of a

tensor T is defined by the integral

kTlVoigt =
∫

SO(3)

T(g)f (g)dg (6)
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whereas the Reuss average kTlReuss
is defined as

kTlReuss =
∫

SO(3)

T−1(g)f (g)dg

[ ]−1

. (7)

Equations (6) and (7) can be computed in two
different ways. First, we can use a quadrature rule:
for a set of orientations gm and weights vm, the
Voigt average is approximated by

kTlVoigt ≈
∑M

m=1

T(gm)vmf (gm).

Clearly, the accuracy of the approximation
depends on the number of nodes gm and the smooth-
ness of the ODF. An alternative approach to
compute the average tensor, avoiding this depen-
dency, uses the expansion of the rotated tensor
into generalized spherical harmonics, Dℓ

kk′ (g). Let
Ti1,...,ir be a tensor of rank r. It is well known (cf.
Kneer 1965; Bunge 1968; Ganster & Geiss 1985;
Humbert & Diz 1991; Mainprice & Humbert
1994; Morris 2006) that the rotated tensor
Ti1,...,ir (g) has an expansion into generalized spheri-
cal harmonics up to order r,

Ti1 ,...,ir
(g) =

∑r

ℓ=0

∑ℓ
k,k′=−ℓ

T̂ i1,...,ir (l, k, k′)Dℓ
kk′ (g). (8)

The explicit calculations of the coefficients
T̂ i1,...,ir (l, k, k′) are given in the Appendix. Assume
that the ODF has an expansion into generalized
spherical harmonics of the form

f (g) =
∑r

ℓ=0

∑ℓ
k,k′=−ℓ

f̂ (l, k, k′)Dℓ
kk′ (g).

The average tensor with respect to this ODF can
then be computed by the formula

1

8p2

∫
SO(3)

Ti1,...,ir (g)f (g)

= 1

8p2

∫
SO(3)

Ti1,...,ir (g) f (g)dg

=
∑r

ℓ=0

1

2ℓ+ 1

∑ℓ
k,k′=−ℓ

T̂ i1 ,...,ir (l, k, k′)f̂ (l, k, k′).

By default MTEX uses the Fourier approach,
which is much faster than using numerical inte-
gration (quadrature rule) which requires a discreti-
zation of the ODF. Numerical integration is
applied only in the cases when MTEX cannot

determine the Fourier coefficients of the ODF in
an efficient manner. At the present time, only the
Bingham distributed ODFs pose this problem. All
the necessary calculations are done automatically,
including the correction for different crystal refer-
ence frames.

Let us consider once again the aggregate consist-
ing of glaucophane and epidote and the correspond-
ing EBSD dataset as mentioned in the first section.
For any phase, we can then estimate an ODF by

odf_epidote = calcODF (ebsd, ’phase’, 2)
odf_epidote = ODF (ODF estimated from

Groix_A50_5 _stitched. ctf)
mineral : epidote
crystal symmetry : 2/m, X||a*, Y||b,

Z||c
specimen symmetry: triclinic

Portion specified by Fourier
coefficients:
degree: 28
weight: 1

Next, we can compute the average tensors directly
from the ODF

[TVoigt, TReuss, THill] = calcTensor
(odf_epidote, C_epidote)
C_Voigt = tensor (size: 3 3 3 3)

rank: 4

tensor in Voigt matrix representation
212.64 56.81 65.68 -0.25 2.56 -4
56.81 179.21 59.64 0.93 -0.83 -0.27
65.68 59.64 201.3 0.87 1.12 -0.71
-0.25 0.93 0.87 61.33 -0.79 -0.35
2.56 -0.83 1.12 -0.79 71.1 -0.48
-4 -0.27 -0.71 -0.35 -0.48 59.29

C_Reuss = tensor (size: 3 3 3 3)
rank: 4

tensor in Voigt matrix representation
197.91 57.92 65.4 -0.09 2.53 -4
57.92 163.68 61.84 1.13 -1.27 -0.4
65.4 61.84 188.53 1.21 0.7 -0.58
-0.09 1.13 1.21 53.39 -0.9 -0.26
2.53 -1.27 0.7 -0.9 64.34 -0.42
-4 -0.4 -0.58 -0.26 -0.42 51.7

C_Hill = tensor (size: 3 3 3 3)
rank: 4

tensor in Voigt matrix representation
205.28 57.36 65.54 -0.17 2.54 -4
57.36 171.45 60.74 1.03 -1.05 -0.33
65.54 60.74 194.92 1.04 0.91 -0.64
-0.17 1.03 1.04 57.36 -0.84 -0.31
2.54 -1.05 0.91 -0.84 67.72 -0.45
-4 -0.33 -0.64 -0.31 -0.45 55.49

Note that there is a difference between the average
tensors calculated directly from the EBSD data
and the average tensors calculated from the
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estimated ODF. These differences result from the
smoothing effect of the kernel density estimation
(cf. van den Boogaart 2001). The magnitude of the
difference depends on the actual choice of the
kernel. It is smaller for sharper kernels, or more pre-
cisely for kernels with leading Fourier coefficients
close to1. An example for a family of well-suited
kernels can be found in Hielscher (2010).

Conclusions

An extensive set of functions have been developed
and validated for the calculation of anisotropic
crystal physical properties using Cartesian tensors
for the MTEX open-source MatLab toolbox. The
functions can be applied to tensors of single or
polycrystalline materials. The average tensors of
polycrystalline and multi-phase aggregates using
the Voigt, Reuss and Hill methods have been
implemented using three methods: (a) the weighted
summation for individual orientation data (e.g.
EBSD); (b) the weighted integral of the ODF; and
(c) using the Fourier coefficients of the ODF.
Special attention has been paid to the crystallo-
graphic reference frame used for orientation data
(e.g. Euler angles) and Cartesian tensors, as these
reference frames are often different in low-
symmetry crystals and dependent on the provenance
of the orientation and tensor data. The suite of
MTEX functions can be used to construct project-
specific MatLab M-files and to process orientation
data of any type in a coherent workflow from the
texture analysis to the anisotropic physical proper-
ties. A wide range of graphical tools provides publi-
cation quality output in a number of formats.
The construction of M-files for specific problems
provides a problem-solving method for teaching
elementary to advanced texture analysis and
anisotropic physical properties. The open-source
nature of this project (http://mtex.googlecode.com)
allows researchers to access all the details of their
calculations, check intermediate results and further
the project by adding new functions on Linux,
Mac OSX or Windows platforms.
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Appendix: Fourier coefficients of the

rotated tensor

In this section we are concerned with the Fourier
coefficients of tensors, since they are required
in equation (8). Previous work on this problem can
be found in Jones (1985). Here we present
explicit formulae for the Fourier coefficients
T̂m1,...,mr

(J, L, K) in terms of the tensor coefficients
Tm1 ,...,mr

(g). In particular, we show that the order of
the Fourier expansion is bound by the rank of
the tensor.

Let us first consider the case of a rank-one tensor
Tm. Given an orientation g [ SO(3), the rotated
tensor may be expressed as

Tm(g) = TnRmn(g)

where Rij(g) is the rotation matrix corresponding to
the orientation g. Since the entries of the rotation
matrix R(g) are related to the generalized spherical
harmonics D1

ℓk(g) by

Rmn(g) = D1
ℓkUmℓUnk,

U =

1�
2

√ i 0 − 1�
2

√ i

− 1�
2

√ i 0 1�
2

√ i

0 i 0

⎛
⎜⎝

⎞
⎟⎠,

we obtain

Tm(g) = TnD1
ℓkUmℓUnk.

The Fourier coefficients T̂m (1, ℓ, k) of Tm(g) are
therefore given by

T̂m (1, ℓ, k) = TnUmℓUnk.

Next we switch to the case of a rank-two tensor
Tm1m2

(g). In this case we obtain

Tm1m2
(g)

= Tn1n2
Rm1n2

(g)Rm2n2
(g)

= Tn1n2
D1

ℓ1k1
(g)Um1ℓ1

Un1k1
D1

ℓ2k2
(g)Um2ℓ2

Un2k2
.
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With the Clebsch Gordan coefficients
k j1m1 j2m2|JMl (cf. Varshalovich et al. 1988), we
have

D
j1
ℓ1k1

(g)D
j2

ℓ2k2
(g)

=
∑j1+j2

J=0

k j1ℓ1 j2ℓ2|JLlk j1k1 j2k2|JKlDJ
LK(g)

(9)

and hence

Tm1m2
(g) =

∑2

J=0

Tn1n2
Um1ℓ1

Un1k1
Um2ℓ2

Un2k2

k1ℓ11ℓ2|JLlk1k11k2|JKlDJ
LK(g).

Finally, for the Fourier coefficients of Tmm′ , we
obtain

T̂m1m2
(J, L, K) =Tn1n2

Um1ℓ1
Un1k1

Um2ℓ2
Un2k2

k1ℓ11ℓ2|JLlk1k11k2|JKl.

For a third-rank tensor we have

Tm1m2m3
(g) = Tn1n2n3

Rm1n1
(g)Rm2n2

(g)Rm3n3
(g)

= Tn1n2n3
D1

ℓ1k1
Um1ℓ1

Un1k1
D1

ℓ2k2

Um2ℓ2
Un1k2

D1
ℓ3k3

Um3ℓ3
Un1k3

.

Using equation (9) we obtain

Tm1m2m3
(g)

= Tn1n2n3
D1

ℓ1k1
Um1ℓ1

Un1k1
D1

ℓ2k2
Um2ℓ2

Un1k2
D1

ℓ3k3

Um3ℓ3
Un1k3

=
∑2

J1=0

Tn1n2n3
Um1ℓ1

Un1k1
Um2ℓ2

Un1k2
Um3ℓ3

Un1k3

k1ℓ11ℓ2|J1L1lk1k11k2|J1K1lDJ1

L1K1
(g)D1

ℓ3k3

=
∑2

J1=0

∑J1+1

J2=0

Tn1n2n3
Um1ℓ1

Un1k1
Um2ℓ2

Un1k2
Um3ℓ3

Un1k3

k1ℓ11ℓ2|J1L1lk1k11k2|J1K1l

kJ1L11ℓ3|J2L2lkJ1K11k3|J2K2lDJ2

L2K2
(g).

The coefficients of Tm1m2m3
are therefore given

by

T̂m1m2m3
(J2, L2, K2)

=
∑2

J1=J2−1

Tn1n2n3
Um1ℓ1

Un1k1
Um2ℓ2

Un1k2
Um3ℓ3

Un1k3

k1ℓ11ℓ2|J1L1lk1k11k2|J1K1l
kJ1L11ℓ3|J2L2lkJ1K11k3|J2K2l.

Finally, we consider the case of a fourth-rank
tensor Tm1 ,m2 ,m3 ,m4

. Here we have

Tm1 ,m2 ,m3 ,m4

= Tn1,n2,n3 ,n4
D1

m1 ,n1
D1

m2,n2
D1

m3,n3
D1

m4 ,n4

= Tn1,n2,n3 ,n4

∑2

J1=0

∑2

J2=0

k1m11m2|J1M1lk1n11n2|J1N1l

DJ1

M1,N1
k1m31m4|J2M2lk1n31n4|J2N2lDJ2

M2,N2

= Tn1,n2,n3 ,n4

∑4

J0=0

∑2

J1=0

∑2

J2=0

k1m11m2|J1M1l

k1n11n2|J1N1lk1m31m4|J2M2lk1n31n4|J2N2l

kJ1M1J2M2|J0M0lkJ1N1J2N2|J0N0lDJ0

M0 ,N0

and hence

T̂m1 ,m2 ,m3 ,m4
(J0, M0, N0)

=
∑2

J1=0

∑2

J2=0

k1m11m2|J1M1lk1n11n2|J1N1l

k1m31m4|J2M2lk1n31n4|J2N2l
kJ1M1J2M2|J0M0lkJ1N1J2N2|J0N0l.
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Christoffel, E. B. 1877. Über die Fortpflanzung van
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