calcInvTaylor
(method of orientation)
Taylor factor from orientation gradient
Syntax
[M,b,eps] = calcInvTaylor(mori,sS)
Input
mori |
misorientation |
sS |
slipSystem list in crystal coordinates |
Output
M |
taylor factor |
b |
coefficients for the acive slip systems |
eps |
strain tensor list in crystal coordinates |
Example
% define 10 percent strain
eps = 0.1 * strainTensor(diag([1 -0.75 -0.25]))
eps = strainTensor rank: 2 (3 x 3) *10^-2 10 0 0 0 -7.5 0 0 0 -2.5
% define a crystal orientation cs = crystalSymmetry('cubic') ori = orientation('Euler',0,30*degree,15*degree,cs)
cs = crystalSymmetry symmetry: m-3m a, b, c : 1, 1, 1 ori = orientation size: 1 x 1 crystal symmetry : m-3m specimen symmetry: 1 Bunge Euler angles in degree phi1 Phi phi2 Inv. 0 30 15 0
% define a slip system
sS = slipSystem.fcc(cs)
sS = slipSystem symmetry: m-3m CRSS: 1 size: 1 x 1 u v w | h k l 0 1 -1 1 1 1
% compute the Taylor factor
[M,b,mori] = calcTaylor(inv(ori)*eps,sS.symmetrise)
M = 0.2719 b = Columns 1 through 7 0.0000 0.0000 0.0142 0.0332 0.0000 0.0000 0.0198 Columns 8 through 14 0.0000 0.0000 0.0000 0.0204 0.0000 0.0000 0.0000 Columns 15 through 21 0.0000 0.0345 0.0093 0.0000 0.0000 0.0296 0.0000 Columns 22 through 24 0.0000 0.0000 0.1110 mori = misorientation size: 1 x 1 crystal symmetry : m-3m crystal symmetry : m-3m Bunge Euler angles in degree phi1 Phi phi2 Inv. 64.4732 2.0184 296.717 0
MTEX 5.0.3 |