doHClustering
(method of orientation)
sort orientations into clusters
Syntax
[c,center] = doHCluster(ori,'numCluster',n) [c,center] = doHCluster(ori,'maxAngle',omega)
Input
ori | |
n |
number of clusters |
omega |
maximum angle |
Output
c |
list of clusters |
center |
center of the clusters |
Example
% generate orientation clustered around 5 centers cs = crystalSymmetry('m-3m'); center = orientation.rand(5,cs); odf = unimodalODF(center,'halfwidth',5*degree) ori = odf.calcOrientations(3000);
odf = ODF crystal symmetry : m-3m specimen symmetry: 1 Radially symmetric portion: kernel: de la Vallee Poussin, halfwidth 5° center: Rotations: 5x1 weight: 1
% find the clusters and its centers tic; [c,centerRec] = calcCluster(ori,'method','hierarchical','numCluster',5); toc
Elapsed time is 8.238126 seconds.
% visualize result
oR = fundamentalRegion(cs)
plot(oR)
oR = orientationRegion crystal symmetry: 432 face normales: 1 x 14 vertices: 1 x 24

hold on plot(ori,c) caxis([1,5]) plot(center,'MarkerSize',10,'MarkerFaceColor','k','MarkerEdgeColor','k') plot(centerRec,'MarkerSize',10,'MarkerFaceColor','r','MarkerEdgeColor','k') hold off
plot 2000 random orientations out of 3000 given orientations

%check the accuracy of the recomputed centers
min(angle_outer(center,centerRec)./degree)
ans = 0.5085 0.3337 0.1550 0.2295 0.5120
odfRec = calcODF(ori) [~,centerRec2] = max(odfRec,5) min(angle_outer(center,centerRec2)./degree)
odfRec = ODF crystal symmetry : m-3m specimen symmetry: 1 Harmonic portion: degree: 28 weight: 1 centerRec2 = orientation size: 1 x 5 crystal symmetry : m-3m specimen symmetry: 1 Bunge Euler angles in degree phi1 Phi phi2 Inv. 266.642 7.89342 96.8518 0 285.083 26.6036 40.6344 0 167.746 29.411 162.114 0 257.985 21.1798 123.46 0 241.044 51.5182 145.292 0 ans = 0.9014 0.1792 0.2107 0.6782 0.4447
MTEX 4.6.beta.1 |