The Elasticity Tensor
how to calculate and plot the elasticity properties
MTEX offers a very simple way to compute elasticity properties of materials. This includes Young's modulus, linear compressibility, Christoffel tensor, and elastic wave velocities.
On this page ... |
Import an Elasticity Tensor |
Young's Modulus |
Linear Compressibility |
Christoffel Tensor |
Elastic Wave Velocity |
Import an Elasticity Tensor
Let us start by importing the elastic stiffness tensor of an Olivine crystal in reference orientation from a file.
fname = fullfile(mtexDataPath,'tensor','Olivine1997PC.GPa'); cs = crystalSymmetry('mmm',[4.7646 10.2296 5.9942],'mineral','Olivin'); C = loadTensor(fname,cs,'propertyname','elastic stiffness','unit','Pa','interface','generic')
C = tensor propertyname: elastic stiffness unit : Pa rank : 4 (3 x 3 x 3 x 3) mineral : Olivin (mmm) tensor in Voigt matrix representation: 320.5 68.2 71.6 0 0 0 68.2 196.5 76.8 0 0 0 71.6 76.8 233.5 0 0 0 0 0 0 64 0 0 0 0 0 0 77 0 0 0 0 0 0 78.7
Young's Modulus
Young's modulus is also known as the tensile modulus and measures the stiffness of elastic materials It is computed for a specific direction x by the command YoungsModulus.
x = xvector; E = YoungsModulus(C,x)
E = 286.9284
It can be plotted by passing the option YoungsModulus to the plot command.
setMTEXpref('defaultColorMap',blue2redColorMap); plot(C,'PlotType','YoungsModulus','complete','upper')

Linear Compressibility
The linear compressibility is the deformation of an arbitrarily shaped specimen caused by an increase in hydrostatic pressure and can be described by a second rank tensor. It is computed for a specific direction x by the command linearCompressibility.
beta = linearCompressibility(C,x)
beta = 0.0018
It can be plotted by passing the option linearCompressibility to the plot command.
plot(C,'PlotType','linearCompressibility','complete','upper')

Christoffel Tensor
The Christoffel Tensor is symmetric because of the symmetry of the elastic constants. The eigenvalues of the 3x3 Christoffel tensor are three positive values of the wave moduli which corresponds to \rho Vp^2 , \rho Vs1^2 and \rho Vs2^2 of the plane waves propagating in the direction n. The three eigenvectors of this tensor are then the polarization directions of the three waves. Because the Christoffel tensor is symmetric, the polarization vectors are perpendicular to each other.
% It is computed for a specific direction x by the % command <tensor.ChristoffelTensor.html ChristoffelTensor>. T = ChristoffelTensor(C,x)
T = Christoffel tensor propertyname: elastic stiffness rank : 2 (3 x 3) mineral : Olivin (mmm) 320.5 0 0 0 78.7 0 0 0 77
Elastic Wave Velocity
The Christoffel tensor is the basis for computing the direction dependent wave velocities of the p, s1, and s2 wave, as well as of the polarization directions. Therefore, we need also the density of the material, e.g.,
rho = 2.3
rho = 2.3000
which we can write directly into the ellastic stiffness tensor
C = addOption(C,'density',rho)
C = tensor propertyname: elastic stiffness unit : Pa density : 2.3 rank : 4 (3 x 3 x 3 x 3) mineral : Olivin (mmm) tensor in Voigt matrix representation: 320.5 68.2 71.6 0 0 0 68.2 196.5 76.8 0 0 0 71.6 76.8 233.5 0 0 0 0 0 0 64 0 0 0 0 0 0 77 0 0 0 0 0 0 78.7
Then the velocities are computed by the command velocity
[vp,vs1,vs2,pp,ps1,ps2] = velocity(C,xvector)
vp = 11.8046 vs1 = 5.8496 vs2 = 5.7860 pp = vector3d size: 1 x 1 antipodal: true x y z 1 0 0 ps1 = vector3d size: 1 x 1 antipodal: true x y z 0 1 0 ps2 = vector3d size: 1 x 1 antipodal: true x y z 0 0 1
In order to visualize these quantities, there are several possibilities. Let us first plot the direction dependent wave speed of the p-wave
plot(C,'PlotType','velocity','vp','complete','upper')

Next, we plot on the top of this plot the p-wave polarization direction.
hold on plot(C,'PlotType','velocity','pp','complete','upper') hold off

Finally, we visualize the speed difference between the s1 and s2 waves together with the fast shear-wave polarization.
plot(C,'PlotType','velocity','vs1-vs2','complete','upper') hold on plot(C,'PlotType','velocity','ps1','complete','upper') hold off

set back default colormap
setMTEXpref('defaultColorMap',WhiteJetColorMap)
MTEX 4.5.2 |