calcMDF

(method of orientation)

computes an MDF from individuel orientations or misorientations

The function calcMDF applies one of the following algorithms to compute an MDF from a list of orientations.

  1. direct kernel density estimation
  2. kernel density estimation via Fourier series
  3. Bingham estimation

Syntax

% use kernel density estimation with a 10 degree kernel
mori = grains.boundary.misorientation
mdf = calcMDF(mori,'halfwidth',10*degree)
% compute an uncorrelated MDF
mdf = calcMDF(grains('phase1').meanorientation)
% use grain area as weights for the orientations
mdf = calcMDF(grains('phase1').meanOrientation,'weights',grains('phase1').diameter)
% use a specific kernel
psi = AbelPoissonKernel('halfwidth',10*degree)
mdf = calcMDF(mori,'kernel',psi)
% compute the MDF as a Fourier series of order 16
mdf = calcMDF(mori,'order',16)

Input

ori

orientation

mori

misorientation

param,val Parameters and values that control calcMDF
Parameter Description
'weights'

list of weights for the orientations

'halfwidth'

halfwidth of the kernel function

'resolution'

resolution of the grid where the MDF is approximated

'kernel'

kernel function (default - de la Valee Poussin kernel)

'order'

order up to which Fourier coefficients are calculated

param Options that control the calcMDF behavior
Parameter Description
'silent'

no output

'exact'

no approximation to a corser grid

'Fourier'

force Fourier method

'Bingham'

model bingham mdf

'noFourier'

no Fourier method

Output

mdf

ODF

See also

orientation/calcFourierMDF, orientation/calcKernelMDF, orientation/calcBinghamMDF, ebsd_demo, EBSD2mdf, EBSDSimulation_demo