centerSpecimen
(method of ODF)
rotatates an odf with specimen symmetry into its symmetry axes
centerSpecimen(odf,center) trys to find the normal vectors of orthorhombic symmetry for the x mirror and y mirror plane and calculates an rotation needed to rotate the odf back into these mirror planes. the routine starts with an lookaround grid for a given center (default xvector) to find a starting value for newton iteration.
Syntax
Input
odf | |||||||||||||
v0 |
vector3d initial gues for a symmetry axis (default xvector) |
||||||||||||
param,val | Parameters and values that control centerSpecimen
|
Output
odf |
rotated ODF |
rot |
rotation such that rotate(odf_out,r) = odf_in |
v1,v2 |
normal vector of the two fold symmetry axes |
Example
%Starting with an synthetic odf with orthorhombic symmetry CS = crystalSymmetry('cubic') SS = specimenSymmetry('orthorhombic') ori = [orientation.byEuler(135*degree,45*degree,120*degree,CS,SS) ... orientation.byEuler( 60*degree, 54.73*degree, 45*degree,CS,SS) ... orientation.byEuler(70*degree,90*degree,45*degree,CS,SS)... orientation.byEuler(0*degree,0*degree,0*degree,CS,SS)];
CS = crystalSymmetry symmetry: m-3m a, b, c : 1, 1, 1 SS = orthorhombic specimenSymmetry
odf = unimodalODF(SS*ori);
%we define a rotational displacement r2 = rotation.byEuler( 6*degree,4*degree,0*degree) odf = rotate(odf,r2); h = [Miller(0,0,1,CS),Miller(0,1,1,CS),Miller(1,1,1,CS)]; plotPDF(odf,h,'antipodal','complete');
r2 = rotation size: 1 x 1 Bunge Euler angles in degree phi1 Phi phi2 Inv. 6 4 0 0 Warning: Rotating an ODF with specimen symmetry will remove the specimen symmetry

MTEX 5.2.beta1 |