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In this paper we develop new fast Fourier-based methods for the Coulomb
problem. We combine the Ewald summation formulas and the fast summation
approach based on the nonequispaced fast Fourier transform (NFFT) in order to
develop efficient methods for calculating the Coulomb energies as well as the acting
forces in charged particle systems subject to mixed periodic boundary conditions.
Therewith, we extend the applicability of NFFT based methods, which already
exist for open as well as for 3d-periodic boundary conditions, to arbitrary combi-
nations of periodic and open boundary conditions. We reconsider the derivation of
the Ewald formulas for 2d- and 1d-periodic systems, introduce the new algorithms
and present high precision numerical results.
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1. Introduction

Let N charges qj ∈ R at positions xj ∈ R3, j = 1, . . . , N , be given, fulfilling the charge
neutrality condition

N∑

j=1
qj = 0 . (1.1)

The total Coulomb energy of the particle system is basically a sum of the form

US := 1
2

N∑

j=1
qjφS(xj), (1.2)
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where for each particle j the potential φS(xj) is given by

φS(xj) :=
∑

n∈S

N∑

i=1

′ qi
‖xij + Ln‖

. (1.3)

Thereby, we denote by ‖·‖ the Euclidean norm and define the difference vectors xij := xi−xj .
The set of translation vectors S ⊆ Z3 is defined according to the given boundary conditions
and L ∈ R+ is the edge length of the simulation box in each dimension subject to periodic
boundary conditions. The prime on the double sum indicates that for n = 0 all terms
with i = j are omitted. For convenience we skipped the prefactor 1

4πε0
which corresponds to

Gaussian units. It is important to note that the sum (1.3) is, assuming charge neutrality (1.1),
only conditionally convergent, i.e., the values of the potentials φS(xj) depend on the order of
summation. The energies of the single particles are defined by

US(xj) := qjφS(xj)

and are sometimes also taken into consideration. In addition to the calculation of the poten-
tials φS(xj) and the total energy US of the system, we are also interested in evaluating the
forces acting on the particles, which are given by

F S(xj) := qjES(xj), with the fields ES(xj) := −∇φS(xj). (1.4)

The well known Ewald summation technique [19], which was originally developed for 3d-
periodic systems, where we set S := Z3 in our notation, is the main basis for a variety of fast
algorithms for the evaluation of (1.2) under 3d-periodic boundary conditions, see [34, 14, 13,
18, 25]. The Ewald summation method [19] makes use of the trivial identity

1
r

= erf(αr)
r

+ erfc(αr)
r

, (1.5)

where α > 0 is generally known as the splitting parameter, erf(x) := 2√
π

∫ x
0 e−t2dt is the well

known error function and erfc(x) := 1− erf(x) is the complementary error function. If (1.5)
is applied in (1.3) the potential φS(xj) is split into two rapidly converging parts. Thereby,
the erf-terms have the finite limit

lim
r→0

erf(αr)
r

= 2α√
π
, (1.6)

so that this part can be transformed into a sum in Fourier space, which allows the application
of fast Fourier methods in order to derive efficient algorithms. The second part, containing
the complementary error function, is absolutely convergent and can be calculated by a direct
summation after truncating the infinite sum.
We describe 2d-periodic boundary conditions by choosing S := Z2×{0} with xj ∈ LT2×R

and 1d-periodic constraints by choosing S := Z × {0}2 with xj ∈ LT × R2. Thereby, we
denote the torus T by T := R/Z ' [−1/2, 1/2). For a graphical illustration see Figure 1.1.
The Ewald formulas for 2d-periodic as well as for 1d-periodic geometries were already

proposed in [23] and [43], respectively, and form the basis of the algorithms proposed in
this paper. In contrast to the case of 3d-periodic boundary conditions, the application of the
Ewald formulas for mixed periodic systems does not straightforwardly lead to fast algorithms.
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Figure 1.1: The simulation box is duplicated along two of three dimensions in the 2d-periodic
case (left) and along one dimension in the 1d-periodic setting (right).

Some Fourier based algorithms, like MMM2D, MMM1D or ELC, see [6, 8, 7] and the fast
and spectrally accurate Ewald summation in slab geometry [35], already exist, see also [51,
52, 11, 10] for algorithms with higher complexity.

We will later refer again to [35], which is the latest development for the 2d-periodic case,
in order to discuss the differences to our method, see Section 4.1. Another approach for long
range interactions on surfaces is proposed in [37]. The decrease of the underlying Fourier
coefficients is rather slow, which may lead to a computational overhead. The same idea has
also been discussed for the 1d-periodic case, see [36], see also Section 4.1 for the exact relation
to our approach.

For open boundary conditions, i.e., S := {0}3 in (1.3), fast Fourier based methods [44, 45]
were suggested, too. The relation of the Fourier based algorithms for open and 3d-periodic
boundary conditions were already investigated in [41]. The proposed algorithms are very
similar, where Fourier coefficients are computed from the continuous transform in the 3d-
periodic case and from a discrete Fourier transform for open boundary conditions. In this
paper we aim to close the gap and propose FFT based algorithms also for 2d- and 1d-periodic
boundary conditions, i.e., we propose a method, such that the long range part can be evaluated
by only one 3d-FFT, respectively 3d-NFFT, without further arithmetical cost. This approach
was already proposed in the short paper [39]. In this paper we also present numerical results,
show that the performance of the new algorithms is similar to the 3d-periodic case and go
into detail about our implementation. Furthermore, we derive the Ewald formulas for 2d-
and 1d-periodic systems, see Theorem 4.1 and Theorem 5.1, respectively. Thereby, we always
start with the splitting (1.5) and then use the technique of convergence factors to derive
the Fourier space representation of the long range part by applying the Poisson summation
formula. We show that the obtained formulas can be used in order to derive the related
algorithms, see Algorithm 4.3 and Algorithm 5.4. The main advantage of our approach is
that the new algorithms are completely of the same structure as the well known algorithms for
3d-periodic and open boundary conditions, see [41]. That is that the short range parts of the
potentials are computed directly and the long range parts are computed by an adjoint NFFT,
followed by a multiplication in Fourier domain and again an NFFT in three dimensions, see
Remark 4.4 and Remark 5.5.

The accuracy in molecular dynamics simulations is commonly measured in terms of root
mean square (rms) errors. In general, the rms error in the forces is considered. We define the
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rms force error by

∆FS :=


 1
N

N∑

j=1

∥∥F S(xj)− F̃ S(xj)
∥∥2




1/2

, (1.7)

where F̃ S(xj) is some approximation of the force F S(xj), as defined in (1.4). In this paper,
we also use the rms energy error, which is analogously given by

∆US :=


 1
N

N∑

j=1

∣∣US(xj)− ŨS(xj)
∣∣2



1/2

. (1.8)

We remark that the fast multipole method can also handle all mentioned types of boundary
conditions very efficiently, see [31]. In order to estimate the rms errors in our numerical
tests we used reference data computed with an implementation [1] of the fast multipole
method [28, 27] that allows mixed periodic constraints.
The outline of this paper is as follows. We start with a short introduction to the non-

equispaced fast Fourier transform (NFFT) in Section 2 and review the idea of fast Ewald
summation based on NFFTs for 3d-periodic systems in Section 3. In Section 4 we consider
the case of periodic boundary conditions in two of three dimensions. To this end, we introduce
(see Subsection 4.1) and prove (see Appendix A) the 2d-Ewald formulas and develop a new
fast algorithm in Subsection 4.2. Furthermore, we present numerical results in Subsection 4.3,
which show its efficiency. In order to rate the very good performance of the new algorithm,
we compare the method to the particle-particle NFFT (P2NFFT) method for 3d-periodic
systems [42] as well as to the method proposed in [35] by considering similar numerical ex-
amples. Note that the P2NFFT algorithm is highly optimized and recently compared with
other methods, such as the particle-particle particle-mesh (P3M) method, the fast multipole
method or multigrid based methods, see [5]. The 1d-periodic case is considered in an analog
manner in Section 5. We present the 1d-Ewald formulas, see Subsection 5.1, develop a new
fast algorithm in Subsection 5.2 and present numerical results in Subsection 5.3. Finally, we
conclude with a short summary.

2. Prerequisite and NFFT
A broad variety of mathematical algorithms and applications depend on the calculation of
the nonequispaced discrete Fourier transform, which is a generalization of the discrete Fourier
transform to nonequispaced nodes. Especially, its fast approximate realization called nonequi-
spaced fast Fourier transform (NFFT) [17, 9, 48, 50, 46, 22, 29] led to the development of a
large number of fast numerical algorithms. In this section we introduce the main notation
and give a short introduction to the NFFT in three variables. To keep the notation short we
define for some M = (M1, . . . ,Md) ∈ 2Nd the index set IM by

IM :=
d⊗

j=1
IMj , where IMj :=

{
−Mj

2 , . . . ,
Mj

2 − 1
}
,

and the cardinality by |IM | :=
∏d
j=1Mj . We do not distinguish between row and column

vectors and denote by x · y := x1y1 + x2y2 + x3y3 the scalar product and by x � y :=
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(x1y1, x2y2, x3y3) ∈ R3 the component wise product of two vectors x,y ∈ R3. For some x ∈ R3

with non-vanishing components we further define the vector x−1 := (x−1
1 , x−1

2 , x−1
3 ) ∈ R3.

Let a trigonometric polynomial f : T3 → C be given by

f(x) =
∑

k∈IM

f̂ke−2πik·x, (2.1)

with the Fourier coefficients f̂k ∈ C, k ∈ IM . The fast evaluation of f at arbitrarily chosen
nodes xj ∈ T3, j = 1, . . . , N ∈ N, i.e., the efficient computation of

fj := f(xj) =
∑

k∈IM

f̂ke−2πik·xj , j = 1, . . . , N, (2.2)

is known as three-dimensional NFFT. We take the approach from [44] and approximate the
trigonometric polynomial f by a sum of translates of a one-periodic function ϕ̃, which is
defined via a tensor product of the periodization of a univariate window function ϕ, i.e., we
set ϕ̃1(x) :=

∑∞
j=−∞ ϕ(x+ j) and define the trivariate function ϕ̃ by ϕ̃(x) := ϕ̃1(x1) · ϕ̃1(x2) ·

ϕ̃1(x3). We obtain
f(x) ≈

∑

l∈Im

glϕ̃(x− l�m−1), (2.3)

where we choose M ≤m ∈ 2N3 (component wise) and denote by m�M−1 the vector valued
oversampling factor. Furthermore, the function ϕ̃ is assumed to be well localized in spatial
and frequency domain. Under these assumptions, it can be shown that

gl := 1
|Im|

∑

k∈IM

f̂k

ck(ϕ̃)e2πik·(l�m−1)

is a reasonable choice of the unknown coefficients gl in (2.3), where ck(ϕ̃) denotes the k-th
Fourier coefficient of ϕ̃. After calculating the coefficients gl by an FFT the function values fj
are computed via (2.3), where the sums are short due to the good localization of ϕ̃ in spatial
domain. The adjoint nonequispaced fast Fourier transform (NFFTH) is an algorithm for the
fast evaluation of

ĥk =
N∑

j=1
fje2πik·xj , k ∈ IM , (2.4)

where now the coefficients fj ∈ C are given. Both algorithms have very similar structures and
can be performed in O(|IM | log |IM | + N) arithmetic operations, see [46, 29]. Thereby, the
prefactors depend on the required accuracy as well as the properties of the window function.
For many possible window functions error bounds in the ∞–norm have already been derived,
see [44, 48] for instance.

3. Fast Ewald summation for 3d–periodic boundary conditions
For an electrical neutral system of N charges qj distributed in a cubic box of edge length L
we define the electrostatic potential subject to 3d–periodic boundary conditions by

φp3(xj) := φZ3(xj) =
∞∑

s=0

∑

n∈Z3
‖n‖2=s

N∑

i=1

′ qi
‖xij + Ln‖

, (3.1)
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i.e., we set S := Z3 within the definitions (1.2) – (1.4) and apply a spherical order of summa-
tion. We obtain [19, 32]

φp3(xj) = φp3,S(xj) + φp3,L(xj) + φp3,self(xj), (3.2)

where for the splitting parameter α > 0 we define the short range part

φp3,S(xj) :=
∑

n∈Z3

N∑

i=1

′qi
erfc(α‖xij + Ln‖)
‖xij + Ln‖

, (3.3)

the long range part

φp3,L(xj) := 1
πL

∑

k∈Z3\{0}

e−π2‖k‖2/(α2L2)

‖k‖2

(
N∑

i=1
qie2πik·xi/L

)
e−2πik·xj/L, (3.4)

and the self potential

φp3,self(xj) := − 2α√
π
qj .

Often a fourth term, the so called dipole correction term, appears in the decomposition (3.2),
cf. [14]. The dipole correction term is the only part depending on the order of summation.
However, if a spherical summation order is applied, the dipole correction term depends only
on the norm of the dipole moment

∑N
j=1 qjxj and, additionally, on the dielectric constant

of the surrounding medium. Therefore, it can be computed efficiently in O(N) arithmetic
operations. If the medium is assumed to be metallic, the dipole term vanishes and (3.2)
applies. It should be mentioned that the formulas above can be generalized to non-cubic
boxes and also non-orthogonal (triclinic) boxes, cf. [19, 13, 26].
As the complementary error function erfc rapidly tends to zero, the short range part of each

potential φp3,S(xj) can be obtained by direct evaluation, i.e., all distances ‖xij + Ln‖ larger
than an appropriate cutoff radius rcut are ignored. If we assume a sufficiently homogenous
particle distribution, each particle only interacts with a fixed number of neighbors. Thus,
the real space sum can be computed with a linked cell algorithm [21] in O(N) arithmetic
operations for this case. In the case of a very heterogenous particle distribution, a combination
with the FMM as pointed out in [16] is possible.
In order to compute the long range parts φp3,L(xj) we truncate the infinite sum and compute

approximations of the sums

Ŝ(k) :=
N∑

i=1
qie2πik·xi/L, k ∈ IM ,

with an adjoint NFFT and evaluate

φp3,L(xj) ≈
∑

k∈IM\{0}

b̂kŜ(k)e−2πik·xj/L, j = 1, . . . , N,

where we define the Fourier coefficients

b̂k := 1
πL

e−π2‖k‖2/(α2L2)

‖k‖2
, (3.5)
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via the NFFT. In matrix vector notation we may write
(
φp3,L(xj)

)N
j=1
≈ ADAàq, (3.6)

where A denotes the matrix representation of the NFFT in three dimensions, D is a diagonal
matrix with entries b̂k, k ∈ IM , and q = (q1, . . . , qN )> ∈ RN .
The force acting on a particle j can be written as

F p3(xj) = F p3,S(xj) + F p3,L(xj) := −qj∇φp3,S(xj)− qj∇φp3,L(xj),

where the short range part F p3,S(xj) is given by

F S
S(xj) := −qj

∑

n∈S

N∑

i=1

′qi

(
2α√
π

e−α2‖xij+Ln‖2 + erfc(α‖xij + Ln‖)
‖xij + Ln‖

)
xij + Ln

‖xij + Ln‖2
(3.7)

with S := Z3 and can be evaluated by direct summation, too. The long range part can be
obtained by differentiation in Fourier space, i.e., we write

F p3,L(xj) = 2πiqj
L

∑

k∈Z3\{0}

b̂kkŜ(k)e−2πik·xj/L (3.8)

and use the NFFT in each dimension for an efficient evaluation. This approach is widely
known as ik differentiation, see [14] for instance. An alternative is the so called analytic
differentiation approach [13], where the ∇ operator is applied to the NFFT window function.
In terms of (2.1) and (2.3) this means that we set

f̂k :=
{
b̂kŜ(k) : k 6= 0,
0 : k = 0

and compute the long range portion of the force F p3(xj) by

F p3,L(xj) ≈ −qj
∑

l∈Im

gl∇ϕ̃(xj − l�m−1). (3.9)

4. Fast Ewald summation for 2d-periodic boundary conditions
4.1. Ewald summation
We consider a system of N charges qj ∈ R at positions xj ∈ LT2 × R. Under periodic
boundary conditions in the first two dimensions we define the potential of each single particle
by

φp2(xj) := φZ2×{0}(xj) =
∞∑

s=0

∑

n∈Z2×{0}
‖n‖2=s

N∑

i=1

′ qi
‖xij + Ln‖

(4.1)

and define the total Coulomb energy via

Up2 := UZ2×{0} = 1
2

N∑

j=1
qjφ

p2(xj), (4.2)

7



i.e., we set S := Z2 × {0} in (1.2) – (1.4) and use the spherical limit as in (3.1).
In the following theorem we consider the 2d-Ewald formula, see [23]. In Appendix A we give

a proof using convergence factors, similar to [32], where the 3d-periodic case is treated. In
this section we denote for y ∈ R3 the vector of its first two components by ỹ := (y1, y2) ∈ R2.

Theorem 4.1. Consider an electrical neutral system of N charges qj ∈ R at positions xj =
(x̃j , xj,3) ∈ LT2 × R, j = 1, . . . , N . Under periodic boundary conditions in the first two
variables the potentials φp2(xj), defined in (4.1), can be written in the form

φp2(xj) = φp2,S(xj) + φp2,L(xj) + φp2,0(xj) + φp2,self(xj),

where for some α > 0 we define the short range part

φp2,S(xj) :=
∑

n∈Z2×{0}

N∑

i=1

′qi
erfc(α‖xij + Ln‖)
‖xij + Ln‖

, (4.3)

the long range parts

φp2,L(xj) := 1
2L

∑

k∈Z2\{0}

N∑

i=1
qi e2πik·x̃ij/L ·Θp2(‖k‖, xij,3), (4.4)

φp2,0(xj) := −2
√
π

L2

N∑

i=1
qiΘp2

0 (xij,3), (4.5)

the self potential

φp2,self(xj) := − 2α√
π
qj ,

and the functions Θp2(k, r), Θp2
0 (r) for k, r ∈ R are defined by

Θp2(k, r) := 1
k

[
e2πkr/L erfc

(
πk

αL
+ αr

)
+ e−2πkr/L erfc

(
πk

αL
− αr

)]
, (4.6)

Θp2
0 (r) := e−α2r2

α
+
√
πr erf(αr).

Proof. See Appendix A.

With the following lemma we show that the function Θp2(k, r) tends to zero exponentially
fast with respect to k, i.e., truncation of the infinite sum in φp2,L(xj) is reasonable.

Lemma 4.2. For arbitrary r ∈ R we have for the function Θp2 given in (4.6)

Θp2(k, r)→ 0 with Θp2(k, r) = o(k−2e−k2) for k →∞.

Proof. The function Θp2 has the integral representation

Θp2(k, r) = 4
√
π

L

∫ α

0

1
t2

exp
(
−π

2k2

L2t2
− r2t2

)
dt, (4.7)
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as it is shown in the proof of Theorem 4.1 (Appendix A). Now, we easily see

Θp2(k, r) ≤ Θp2(k, 0) = 2
k

erfc
(
πk

αL

)
≈ 2αL
k2π3/2 e−

π2k2
α2L2 ,

which is valid for large k, cf. [2, number 7.1.23].

The short range part φp2,S(xj) can be treated analogously to the 3d-periodic case. However,
the efficient computation of the long range part φp2,L(xj) + φp2,0(xj) is more intricate. In
contrast to the 3d-periodic case, we do not have a Fourier space representation regarding all
three dimensions. In order to obtain for each k = ‖k‖ a separation of xi,3 and xj,3 in (4.4)
we want to approximate the function Θp2(k, ·) by a finite Fourier series and then use an FFT
based method. In the following, we discuss three different approaches to compute such an
approximation and point out the relation to existing methods.

Variant I (Periodization): The continuous Fourier transform of the function Θp2(k, ·)
is given by

Θ̂p2(k, ξ) = 2L
π(k2 + L2ξ2)e−π2k2/(α2L2)−π2ξ2/α2

. (4.8)

This can be derived easily by applying the integral representation (4.7) or utilizing (4.22).
If Θp2(k, ·) is sufficiently small outside the simulation box, we may approximate it by its
h-periodic version

∑
n∈Z Θp2(k, ·+hn), where h ≥ 2L, apply the Poisson summation formula

and truncate the resulting infinite sum in order to obtain an approximation of the form

Θp2(k, r) ≈
∞∑

n=−∞
Θp2(k, r + hn) = 1

h

∞∑

l=−∞
Θ̂p2(k, l/h)e2πilr/h

≈ 1
h

M3/2−1∑

l=−M3/2

Θ̂p2(k, l/h)e2πilr/h, (4.9)

where M3 ∈ 2N has to be chosen sufficiently large. In general, the functions Θp2(k, ·) are
sufficiently small outside the simulation box only for relatively large k. For small k > 0 we
may have to choose a relatively large period h� max |xij,3|, which implies the necessity of a
large cutoff M3 ∈ 2N in order to achieve a certain accuracy. Moreover, the k = 0 part has to
be considered separately as lim|r|→∞Θp2

0 (r) = +∞.
Alternatively, we could proceed as follows. First, we truncate the Fourier integral and,

second, we approximate the resulting finite integral via the trapezoidal quadrature rule

Θp2(k, r) =
∫

R
Θ̂p2(k, ξ)e2πirξdξ ≈

∫ K/2

−K/2
Θ̂p2(k, ξ)e2πirξdξ

≈ K

M3

M3/2−1∑

l=−M3/2

Θ̂p2(k, lKM3
)e2πirlK/M3 . (4.10)

Now, the coefficients of the trigonometric sum can be computed via an FFT. Comparision of
(4.9) and (4.10) shows that this approach is equivalent to considering a h = M3/K periodization
of Θp2(k, ·), as described above.
We remark that this method is used in [35]. As pointed out in [35, page 12] this approach

is limited to functions that decay sufficiently fast in the interval [−h/2, h/2). In other words,
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whenever Θp2(k,max |xij,3|) is not sufficiently small we need to choose a relatively large period
h � 2L, which may also result in the choice of a large cutoff M3. Indeed, the authors need
an oversampling factor in this direction by a factor of 6, see [35, Section 4.1]. Nevertheless
we stress that the accuracy of the method depends on this oversampling parameter, but the
convergence rate, see [34, Theorem 3.1], does not, cf. the discussion in [33, Section 3.2.1].
Obviously, for the non-decreasing function φp2,0 another approximation has to be used.

Variant II (Truncation): Another approach is taken in [37, 49]. The infinite Fourier
integral regarding the periodic dimensions is computed using the Poisson summation formula
and truncated Fourier integrals are evaluated for the non-periodic dimension, cf. equation
(2.7) in [37]. In other words, in the long range part of the Ewald sum we take a sufficiently
large cutoff h and approximate the functions Θp2(k, ·) on the interval [−h/2, h/2] by a Fourier
series

Θp2(k, r) ≈
M3/2−1∑

l=M3/2

cle2πilr/h,

where we compute the coefficients cl by

cl := 1
h

∫ h/2

−h/2
Θp2(k, r)e2πilr/hdr.

The coefficients cl are known analytically; cf. equation (2.9) in [37]. In our notation, we have

cl ∼
h

π(k2h2 + l2L2)e−π2k2/(α2L2)−π2l2/(α2h2)Re
[
erfc

(
αh
2 −

πil
αh

)]

− h cos(πl)
π(k2h2 + l2L2)

(
eπkh/L − 1

2e−πkh/L erfc
(
αh
2 −

πk
αL

)
− 1

2eπkh/L erfc
(
αh
2 + πk

αL

))
,

i.e., cl = O(l−2) as l → ∞. Note that the approximated h-periodic function is only smooth
of order zero in r = h/2, which results in a rather slow second order convergence in Fourier
space. Thus, one may have to chooseM3 very large in order to achieve a good approximation.
In contrast to Variant I, this approximation approach can be used for φp2,0 as well.

Variant III (Regularization): In this paper we propose another approach how to ob-
tain a Fourier space representation of the long range part. The key idea is to cutoff Θp2(k, ·)
outside the interval [−L,L] but use a Fourier approximation on the slightly larger interval
[−h/2, h/2]. In the resulting gap [L, h − L] we construct a regularization function that inter-
polates the derivatives up to order p − 1 ∈ N of Θp2(k, ·) at r = L. Therefore, we get a
Fourier approximation of a (p− 1)-times differentiable function which means (p+ 1)-th order
convergence in Fourier space. A detailed explanation of our regularization approach is given
in the next section. In summary, we see some graphical illustrations of the three different
approaches.
The main advantage of our approach is that we construct a function of a high smoothness

while the period h can be chosen relatively small compared to the doubled box length 2L.
In contrast, when applying Variant I we may have to choose h very large, which has to be
compensated by a larger number of sampling nodes M3. On the other hand, the fact that the
approximated functions are C∞ makes this approach spectrally accurate. Using Variant II
allows us to choose h relatively small. But, the functions are only continuous and of no higher
smoothness. Thus, the Fourier coefficients only decrease rather slow, which also results in the
choice of a large cutoff M3.
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Figure 4.1: Variant I (periodization) on the left and Variant II (truncation) on the right side.
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Figure 4.2: Variant III (regularization).

4.2. Fast NFFT based algorithm for 2d-periodic systems
Based on Theorem 4.1 we derive a fast algorithm. The evaluation of the short range part
φp2,S(xj) is done by a direct evaluation. For the computation of the long range part we apply
the fast summation method [44] to the functions Θp2(k, ·).

4.2.1. Computational approach

Due to Lemma 4.2 we can truncate the infinite sum in φp2,L(xj), i.e., for some appropriate
M̃ = (M1,M2) ∈ 2N2 we set

φp2,L(xj) ≈
1

2L
∑

k∈IM̃\{0}

N∑

i=1
qie2πik·x̃ij/LΘp2(‖k‖, xij,3). (4.11)

Without loss of generality we can assume xj,3 ∈ [−L3/2, L3/2], i.e., the particle coordinates
are bounded also in the non-periodic dimension. Thus, all the functions Θp2(‖k‖, ·) have
to be evaluated only within the finite interval [−L3, L3]. Note that we have to double the
interval length since we do not have periodicity in the last dimension. The main idea is to
approximate the functions Θp2(‖k‖, ·) on this interval by a truncated Fourier series. However,
the odd derivatives of Θp2(‖k‖, ·) at the points −L3 and L3 do not match, which yields a
bad convergence rate of the Fourier series. Therefore, we extend the interval at both ends,
where we construct a smooth transition. The same approximation idea is applied to the
kernel function Θp2

0 (r) in (4.5). Note that limx→±∞[e−x2 +
√
πx erf(x)] = limx→±∞ |x| =∞,

i.e., the analytical Fourier transform does not exist. Anyway, the fast summation approach
does not require any localization of the kernel function. In the following, we give the formal
derivation of this idea.
At first, we choose h > 2 · L3 and accordingly some ε ∈ (0, 1/2) such that |xij,3| ≤ L3 =:

h(1/2 − ε) < h/2 for all i, j = 1, . . . , N . This corresponds to a surrounding box that is large
enough to hold all differences of particle coordinates in the last dimension. In addition, since

11



the strong inequality h > 2L3 holds we have some extra space for constructing a regularization.
In order to approximate the long range parts φp2,L(xj) + φp2,0(xj) efficiently we consider for
k ∈ {‖k‖ : k ∈ IM̃} the regularizations

KR(k, r) :=





1
2LΘp2(k, r) : k 6= 0, |h−1r| ≤ 1/2− ε,

−2
√
π

L2 Θp2
0 (r) : k = 0, |h−1r| ≤ 1/2− ε,

KB(k, r) : |h−1r| ∈ (1/2− ε, 1/2],

(4.12)

where we claim that each function KB(k, ·) : [−h/2 + hε,−h/2] ∪ [h/2, h/2− hε]→ R fulfills the
Hermite interpolation conditions

∂j

∂rj
KB(k, h/2− hε) =

{
1

2L
∂j

∂rj
Θp2(k, h/2− hε) : k 6= 0

−2
√
π

L2
dj
drj Θp2

0 (h/2− hε) : k = 0
, (4.13)

∂j

∂rj
KB(k,−h/2 + hε) =

{
1

2L
∂j

∂rj
Θp2(k,−h/2 + hε) : k 6= 0

−2
√
π

L2
dj
drj Θp2

0 (−h/2 + hε) : k = 0
(4.14)

for all j = 0, . . . , p − 1. Hereby, we refer to p ∈ N as the degree of smoothness. In order
to end up with h-periodic, smooth functions KR(k, ·), the functions KB(k, ·) are constructed
such that

∂j

∂rj
KR(k, h/2) = ∂j

∂rj
KR(k,−h/2), j = 0, . . . , p− 1

is also fulfilled. In Section 4.2.2 we show that the functions KB(k, .) can be constructed as
polynomials of degree 2p− 1 by two point Taylor interpolation. Figure 4.3 shows an example
of such a regularization KR(k, ·).

0

−h/2 + hε h/2 − hε

−h/2 h/2

∂j

∂rj
KB(k, h/2 − hε) =

1
2L

∂j

∂rj
Θp2(k, h/2 − hε)

1
2L

Θp2(k, ·)

KB(k, ·) KB(k, ·)

1

Figure 4.3: Example for KR(k, ·) for k ≥ 1. At the boundaries (gray area) the regularization
adopts the values of the boundary function KB(k, ·). We also marked the points,
where the conditions (4.13) and (4.14) are fulfilled. In our implementation, the
function in the gray area is a polynomial of degree 2p−1 constructed by two-point
Taylor interpolation.
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In summary, the functions KR(k, ·) are h-periodic and smooth, i.e., KR(k, ·) ∈ Cp−1(hT).
Therefore, they can be approximated by a truncated Fourier series up to a prescribed error.
To this end, we approximate for each k ∈ {‖k‖ 6= 0 : k ∈ IM̃} the function

1
2LΘp2(k, r) ≈

∑

l∈IM3

b̂k,le2πilr/h (4.15)

for |r| ≤ h/2 − hε = L3 by the truncated Fourier series of its regularization KR(k, ·). Analo-
gously, for k = 0 we have

− 2
√
π

L2 Θp2
0 (r) ≈

∑

l∈IM3

b̂0,le2πilr/h. (4.16)

Thereby, we choose the frequency cutoff M3 ∈ 2N large enough and compute the Fourier
coefficients b̂k,l in (4.15) as well as b̂0,l in (4.16) by the discrete Fourier transform

b̂k,l := 1
M3

∑

j∈IM3

KR

(
k, jhM3

)
e−2πijl/M3 , l = −M3/2, . . . ,M3/2− 1. (4.17)

This ansatz is closely related to the fast summation method described in [44]. Due to the
fact that we have Θp2

0 (·),Θp2(k, ·) ∈ C∞(R) (k ≥ 1) we are not restricted in the choice of
the parameter p. By choosing M3 large enough we can construct approximations (4.15) of a
required accuracy.
In summary, we obtain the following approximation for the long range parts,

φp2,L(xj) + φp2,0(xj) ≈
∑

k∈IM̃

∑

l∈IM3

b̂‖k‖,l

N∑

i=1
qie2πik·x̃ij/Le2πilxij,3/h

=
∑

(k,l)∈IM

b̂‖k‖,l

(
N∑

i=1
qie2πiv(k,l)·xi

)
e−2πiv(k,l)·xj , (4.18)

where we substitute the truncated Fourier series (4.15), (4.16) into Theorem 4.1 and define
M := (M̃ ,M3) ∈ 2N3 as well as the vectors v(k, l) := (k/L, l/h) ∈ L−1Z2 × h−1Z. The
expressions in the inner brackets

Ŝ(k, l) :=
N∑

i=1
qie2πiv(k,l)·xi , (k, l) ∈ IM (4.19)

can be computed by an NFFTH. This will be followed by |IM | multiplications with b̂‖k‖,l
and completed by an NFFT to compute the outer summation with the complex exponentials.
Therefore, the proposed evaluation of φp2,L(xj) + φp2,0(xj) at the points xj , j = 1, . . . , N ,
requires O(N + |IM | log |IM |) arithmetic operations.
The calculation of the forces is done analogously to the 3d-periodic case. We set S :=

Z2×{0}, define F p2(xj) := F S(xj) via (1.4) and calculate the short range portions F p2,S(xj)
given by (3.7) via a direct summation. In the long range part we can either use the ik
approach, i.e., we set

F p2,L(xj) + F p2,0(xj) ≈ 2πiqj
∑

(k,l)∈IM

b̂‖k‖,l

(
N∑

i=1
qie2πiv(k,l)·xi

)
v(k, l)e−2πiv(k,l)·xj , (4.20)
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or the analytic differentiation, where the ∇ operator is applied to the window function ϕ̃ in
(2.3) within the NFFT, cf. (3.9).
In summary, we obtain Algorithm 4.3 for the fast computation of 2d-periodic Coulomb

interactions. As it can be seen, we compute the regularizations KR(k, ·) and the discrete
Fourier coefficients b̂k,l in a precomputation step. Note, that these coefficients only depend
on L,α and ε or rather h. In a simulation, where these parameters are fixed and only the
particle positions xj are changing such that |xij,3| ≤ L3 always holds, we only need to do
these precomputation step once.

Algorithm 4.3 (2d-periodic P2NFFT).
Input: Positions xj ∈ LT2× [−L3/2, L3/2], charges qj ∈ R (j = 1, . . . , N), splitting parameter
α > 0, short range cutoff rcut > 0, long range cutoff M = (M̃ ,M3) ∈ 2N3, regularization
parameter ε > 0, degree of smoothness p ∈ N.
0.) Precomputations:

a) Set h := (1/2− ε)−1L3.
b) Construct the regularization (4.12) for each k ∈ {‖k‖ : k ∈ IM̃}.
c) Compute the Fourier coefficients (4.17).

1.) Compute the short range parts of the potentials φp2,S(xj) and the short range parts of
the forces F p2,S(xj) by direct evaluation, i.e., restrict the summation in (4.3) and (3.7),
where S := Z2 × {0}, to all ‖xij + Ln‖ ≤ rcut.

2.) Compute the sums Ŝ(k, l) in (4.19) by the adjoint NFFT (2.4).
3.) Apply the NFFT (2.2) to compute the long range parts of the potentials φp2,L(xj) +

φp2,0(xj) by (4.18).
4.) Compute the long range parts of the forces F p2,L(xj)+F p2,0(xj) via the ik differentiation

approach (4.20) or the analytic differentiation, cf. (3.9).
5.) For all j = 1, . . . , N compute

φp2(xj) = φp2,S(xj) + φp2,L(xj) + φp2,0(xj) + φp2,self(xj)
F p2(xj) = F p2,S(xj) + F p2,L(xj) + F p2,0(xj).

6.) Compute the total energy (4.2) and set Up2(xj) := qjφ
p2(xj).

Output: Total energy Up2, single energies Up2(xj) and forces F p2(xj).

Remark 4.4. Algorithm 4.3 has the same structure as the NFFT based method for 3d-
periodic systems, cf. Section 3. Thus, we also obtain a matrix vector notation of the form (3.6)
for the approximation of φp2,L(xj) + φp2,0(xj). In other words, we use the same algorithm,
where we replace the Fourier coefficients b̂k from (3.5) by the new coefficients b̂‖k‖,l in (4.17)
and insert the nodes (x̃ij/L, xij,3/h) ∈ T3 instead of xij/L ∈ T3 into the NFFT algorithms.

4.2.2. Implementation details

The precomputation step of Algorithm 4.3 includes the construction of the regularizations (4.12).
Thereby, we obtain KB(k, ·) by the unique polynomial of degree 2p−1 that fulfills the 2p Her-
mite interpolation conditions (4.13) – (4.14) in two points. An explicit representation of this
polynomial is given by Theorem C.1 in the appendix, where we set m = h/2 and r = hε and
aj , bj equal to the right hand sides of the interpolation conditions (4.13) – (4.14), respectively.
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In order to compute the derivatives in (4.13) – (4.14) we use the following relations. We
define the function

Θ1(k, r) := e2πkr/L erfc
(
πk

αL
+ αr

)
(4.21)

and let Θ±(k, r) := Θ1(k, r) ± Θ1(k,−r). Note that we have Θp2(k, r) = 1
kΘ+(k, r). We

immediately see that

∂

∂r
Θ+(k, r) = 2πk

L
Θ−(k, r),

∂

∂r
Θ−(k, r) = 2πk

L
Θ+(k, r)− 4α√

π
e−α2r2−π2k2/(α2L2),

and, therefore,

∂2

∂r2 Θ+(k, r) = 4π2k2

L2 Θ+(k, r)− 8α
√
πk

L
e−α2r2−π2k2/(α2L2). (4.22)

For the computation of the derivatives of order n ≥ 2 we use the following recursive formula

∂n

∂rn
Θ+(k, r) = 4π2k2

L2
∂(n−2)

∂r(n−2) Θ+(k, r)− ∂(n−2)

∂r(n−2)
8α
√
πk

L
e−α2r2−π2k2/(α2L2).

The second term can be computed easily with the derivatives of the Gaussian window function

∂(n−2)

∂r(n−2)
8α
√
πk

L
e−α2r2−π2k2/(α2L2) = 8α

√
πk

L
e−π2k2/(α2L2) ∂

(n−2)

∂r(n−2) e−α2r2
.

We remark that the numerical evaluation of the function (4.21) for large k, r > 0 is impor-
tant in order to obtain a regularization of the 2d-periodic Ewald splitting. This can be done
straight forward for r ≤ 0, since we have the trivial upper bound Θ1(k, r) ≤ 2. In contrast,
for large values of r > 0 the exponential tends to infinity and exceeds rapidly the range of
representable floating point numbers in double precision. However, since the complementary
error function tends much faster to zero, we expect that the function Θ(k, r) can be consid-
ered numerically equal to zero for kr > 0 large enough. More precisely, for the substitutions
l = πk

Lα > 0 and t = lrα = πkr
L > 0 we can use the standard estimate 0 ≤ (l−

√
t)2 that yields

2
√
t ≤ l + t/l and, finally, we obtain

Θ1 (k, r) = Θ1

(
lLα

π
,
tL

πk

)
= e2t erfc

(
l + t

l

)
≤ e2t erfc

(
2
√
t
)
.

The right hand side holds e2t erfc
(
2
√
t
)
< 10−16 for t ≥ 18, i.e., whenever t := πkr

L ≥ 18 we
can assume Θ1(k, r) to be numerically equal to zero.
Moreover, for t = πkr

L ≥ 19 we have Θ1 (k, r) < e2t erfc
(
2
√
t
)
< 3 · 10−18 and Θ1 (k,−r) ≤

2e−2t < 6.3 · 10−17. Altogether, we get

Θp2(k, r) = 1
k

Θ+(k, r) ≤ Θ1 (k, r) + Θ1 (k,−r) < 10−16 for πkr

L
≥ 19.

In this case we do not need to compute the regularization (4.12), since we can assume that it
is equal to zero up to double precision in the whole regularization interval.
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4.3. Numerical results

In this section we present numerical results of our algorithm for 2d-periodic boundary con-
ditions. We implemented this algorithm as a part of the P2NFFT solver [42] within the
Scalable Fast Coulomb Solver (ScaFaCoS) library [1], i.e., our implementation is publicly
available at [1] and can be compared to various other well established methods with respect
to accuracy and runtime. Recently, this library has been used for a broad comparison of
various fast Coulomb solvers for 3d-periodic boundary conditions [5]. In the following, we
show that our 2d-periodic algorithm can be tuned to high accuracy and offers a runtime
comparable to the well established P3M algorithm for 3d-periodic systems.
For all tests the calculation of the forces was performed using the ik differentiation approach,

cf. (3.8). Whenever rms errors are examined, the comparative data were computed with the
fast multipole method [12, 28, 27] within ScaFaCoS tuned to sufficient accuracy.
Our runtime measurements have been performed on an Intel i5-2400 single core processor

that runs on 3.10 GHz with 8 GB main memory. The software was built with the Gnu C
Compiler at version 4.7.1 and optimization flags “-O3”.

4.3.1. Parameter Choice

In our numerical experiments, see section 4.3.2, we will only consider test cases, where the
charges are located in a cubic box [−L/2, L/2]3. Based on this, we suggest the following heuristic
parameter choice.
In comparision to the 3d-periodic case, we introduced several new parameters in order

to characterize the regularization in the non-periodic dimension. Now, we give a heuristic
approach how to determine the new parameters in dependence on the parameters of the 3d-
periodic case. The key idea of our approach is to keep the number of grid points per box
length at a constant level. Our numerical examples show that this heuristic yields comparable
accuracy for the 3d- and 2d-periodic case.
Assume that the parameters of the 3d-periodic case that are the short range cutoff rcut,

the Ewald splitting parameter α, the (cubic) FFT grid size M = (M,M,M) ∈ 2N3, the
oversampled grid size m = (m,m,m) ∈ 2N3 and the B-Spline order are given such that
the short range part is computationally tractable and the 3d-periodic P2NFFT reaches a
prescribed accuracy goal. In our numerical examples we will use two different approaches in
order to get a suitable parameter set for the 3d-periodic case. The first one is to use the error
estimates of [15] and the second one is based on an adaption of the error estimates [30] for the
3d-periodic Ewald sum; see Examples 4.5 and 4.8 for details. We use most of these parameters
directly for the 2d-periodic case. The only difference is the FFT grid size corresponding to
non-periodic dimensions that is determined as follows. At first, we set the cutoff length of the
periodic dimensions in the long range part of the Ewald formula (4.11) to M̃ := (M,M). The
box size regarding the non periodic dimension can be implicitly expressed by h = 2L + 2hε,
where 2hε is the sum of the lengths of the two segments at the boundaries, which are added
for the regularization. Based on this, we set M3 in (4.15) and (4.16) to

M3 := 2M + P with P ∈ 2N, (4.23)

i.e., we fix the number of grid points located in the interval of length 2L to 2M and spend
some extra P grid points for the regularization domain. For a graphical illustration of the
grid point distribution see Figure 4.4.
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Figure 4.4: Distribution of the grid points over [−h/2, h/2].

Having defined P , the corresponding value for ε is given by

2hε
h

= P

2M + P
⇐⇒ ε = 1

2
P

2M + P
= P

2M3

and h = (1/2− ε)−1L = 2M+P
M · L. Finally, we apply the same oversampling factor as for the

periodic dimensions, i.e., we set m3 = m
MM3.

Note that our heuristic parameter selection substitutes the problem of finding the regular-
ization parameter ε into the problem of finding the number of extra grid points P spent for
regularization. The optimal value P will depend on the required accuracy and the smooth-
ness p of the regularization function. However, it is reasonable that we can achieve the same
accuracy level for increasing system size at constant P and p, i.e., the amount of extra work
for regularization does not depend on the system size, cf. Example 4.7. Therefore, good
values for P and p can be computed for small test systems.
Furthermore, we can see that the asymptotic increase of grid points for large L does not

depend on the regularization. The same accuracy is reached for larger box sizes at a constant
amount of extra work for the regularization. This also means that the complexity of our algo-
rithm is not sensitive to an optimal choice of the number of grid points P in the regularization
domain and the degree of smoothness p. While p does only influences the precomputation
time, the constant P gets less important for large M . Especially, we see that the asymptotic
runtime of the 2d-periodic case is equal to the 3d-periodic case, i.e., O(N logN). However,
we stress that a proof of this error behavior is still missing and gives raise to future research.
The parameter selection can be summarized in the following three easy steps:
i) Determine the near field cutoff rcut, the Ewald splitting parameter α, the grid size

M , the oversampled grid size m, and the B-Spline order by any parameter estimates
suitable for the 3d-periodic case, e.g., [15].

ii) Set the degree of smoothness p not too small (in our tests p := 10 is sufficient) and tune
the regularization grid size P for a small test case with a low number of particles N .

iii) Compute the grid size M3 according to (4.23) and apply the periodic oversampling
factor to the non-periodic dimension, i.e., m = m1/M1 ·M .

Note that only the regularization grid size P needs some tuning, while all other parameters
are either known from the 3d-periodic case or can be computed easily.

4.3.2. Examples

Example 4.5. We consider a so called cloud wall system consisting of N = 300 charges
in a cubic box of edge length L = 10 (see Figure 4.5). The system consists of a diffusive
particle cloud surrounding two oppositely charged walls and was proposed in [5] because of
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Figure 4.5: Cloud wall system with N = 300 charges qj = ±1 in a cubic box, see [5].

its significant long range part. The following tests will give an idea on how the error depends
on the different parameters. In order to get an impression of the involved functions in (4.12)
we plot these functions over the interval [−L,L] for different values of α, see Figure 4.6.
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Figure 4.6: Θp2
0 (r) and Θp2(1, r) with L = 10 for different splitting parameters α.

In the following we choose the degree of smoothness p = 10, i.e., we construct regularizations
which are 9 times continuously differentiable. To get an idea on how the number of grid points
P used for the regularization influences the accuracy of our approximations we set M = 128
and define M3 with the above described approach using different values for P , see Figure 4.7.
It can be seen that we obtain a better approximation if P is increased. In order to achieve

a required accuracy we have to choose P large enough. Of course, for very large values of P
the error will only decrease insignificantly. In our example, the optimal rms errors stay at
an almost constant level for P ≥ 44 (∆FZ2×{0} ≈ 2 · 10−11). See also Appendix E for the
influence of P on the per particle error distribution within the box.
In Figure 4.8, we choose M = 64 and plot the rms force error over α, where we choose

P ≥ 22. We see that the simple ansatz just to use P = 22 would lead to an unsatisfactory
result as not until P ≈ 30 the best possible rms force error (∆FZ2×{0} ≈ 2 · 10−9) is obtained.
This shows that the task of choosing P large enough is quite complex.
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Figure 4.7: Rms force error (1.7) over α for different values of P ∈ 2N. We choose the short
range cutoff rcut = 4, the smoothness p = 10, M = (128, 128, 256 + P ) = m and
the B-Spline of order 8 as NFFT window function ϕ in Algorithm 4.3.

Obviously, the determination of the sufficiently large value for P also depends on how
the near field cutoff rcut is chosen, on the splitting parameter α and also the NFFT specific
parameters, which influence the errors in the long range part. A complete error analysis has
to be done in order to derive an automatic tuning of this parameter. In our example, we
keep the cutoff radius in the near field rcut fixed, while the far field parameters are changing.
Thus, also the optimal splitting parameter α adopts different values. In Example 4.6 we give
some concrete examples how the choice of P is influenced by other parameters.
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10−9

10−8

10−7

splitting parameter α

∆
F
Z2
×
{0
}

P = 22
P = 24
P = 26
P = 28
P = 30
P = 32

Figure 4.8: Rms force error (1.7) over α for different values of P ∈ 2N. We choose the short
range cutoff rcut = 4, the smoothness p = 10, M = (64, 64, 128 + P ) = m grid
points and the B-Spline of order 8 as NFFT window function ϕ in Algorithm 4.3.

In Figure 4.9 (left hand side) we plot the rms force error 4FZ2×{0} with respect to the
splitting parameter α for different FFT sizes M = (M,M,M3), where M3 is defined as in
(4.23). In the case M = 128 we set P := 44, for M = 64 we add P = 30 grid points for the
regularization. For the other values of M we also tuned P such that the best possible rms
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force error is almost reached.
On the right hand side of Figure 4.9 we see the corresponding errors of the same particle

system treated under 3d-periodic boundary conditions. It can be seen, that we achieve almost
the same optimal rms force errors for both systems, which illustrates the reasonability of our
approach to set the involved parameters. The corresponding values for P as well as for
h ≥ 2L = 20 can be found in the legend.
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Figure 4.9: The rms force error (1.7) over α for different FFT sizes. We choose the short
range cutoff rcut = 4, the smoothness p = 10, m = M = (M,M,M3), where
M3 is defined by (4.23), and the B-Spline of order 8 as NFFT window function
ϕ in Algorithm 4.3. We plot the results of the 2d-periodic (left) as well as of the
3d-periodic computation (right). (Test case: cloud wall system, N = 300.)

Example 4.6. With the following example we aim to give an idea on how other involved
parameters have an influence on how large we have to choose the parameter P ∈ 2N.
In Figure 4.10 we reconsider the behavior of the rms force error with respect to α, where we

set M = 64 and choose different values for P , cf. Figure 4.8. We now compare the obtained
results for the degree of smoothness p = 10 with those obtained setting p = 12. Obviously,
constructing regularizations of a higher smoothness, which may make the precomputation
step more expensive, allows us to spend less grid points P for the regularization intervals in
order to achieve a certain accuracy.
In Figure 4.11 we compare the results for the near field cutoffs rcut = 4 and rcut = 3.5.

The choice of a smaller cutoff radius rcut produces larger errors regarding the near field. The
optimal rms force error increases and is adopted for some larger splitting parameter α. Thus,
for rcut = 3.5 we do not need to spend that many grid points P for the regularization as in
the case rcut = 4. For a larger near field cutoff rcut we would have to further increase P in
order to reach the best possible rms error.

Example 4.7. We compute the energies Up2(xj) as well as the forces F p2(xj) in cloud wall
systems of different size, where the particles are distributed in a cubic box of edge length L.
It can be seen from the data in Table 4.1 that the systems have the same particle density.

Therefore, the computations in the near field with fixed values of the short range cutoff rcut
and the splitting parameter α are comparable. Within the long range part computations
(4.18) we choose M = (M,M,M3) ∈ 2N3, where M3 is defined by (4.23), and apply the
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Figure 4.10: Rms force error (1.7) over α for different values of P ∈ 2N. We choose the short
range cutoff rcut = 4, M = (64, 64, 128 +P ) = m and the B-Spline of order 8 as
NFFT window function ϕ in Algorithm 4.3. The degree of smoothness p is set
to p := 10 (left) and to p := 12 (right), respectively.
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Figure 4.11: Rms force error (1.7) over α for different values of P ∈ 2N. We choose the degree
of smoothness p = 10, M = (64, 64, 128 + P ) = m and the B-Spline of order 8
as NFFT window function ϕ in Algorithm 4.3. The short range cutoff is set to
rcut = 4 (left) and to rcut = 3.5 (right), respectively.

NFFT without oversampling, i.e., we set m := M in (2.3). In addition, we did the same
calculation also with an oversampling factor 2 regarding the non periodic dimension, i.e., we
set m = (M,M, 2 ·M3).
For the P3M method, estimates for the rms force error, which also involve the order of the

B-spline, have already been derived, see [15]. If no oversampling factor is applied and the
cardinal B-spline is chosen as NFFT window function, the structure as well as the performance
of the P3M and the P2NFFT method are very similar, see [5]. Thus, within the ScaFaCoS
library [1], the same parameter tuning is applied. Setting rcut := 4.0, M := 16, choosing the
B-spline of order 8 as NFFT window function, as in the last example, and claiming an rms
force accuracy of ≈ 2 ·10−4, the splitting parameter is tuned to α ≈ 0.7186 in correspondence
to [15].
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For the cloud wall system of size N = 300 we obtained an optimal rms force error of the
size ≈ 2 · 10−4 for 3d- as well as for 2d-periodic boundary conditions choosing M = 16 and
P = 8 (see Figure 4.9). Thus, in the case N = 300 we again use the parameters M = 16 as
well as P = 8 and set rcut = 4 in combination with the proposed optimal splitting parameter
α ≈ 0.7186. For the larger systems we also choose larger values of M , where we assume
a linear dependence between N and M . The number P = 8 of grid points spent for the
regularization is kept constant. As already mentioned above, the values for rcut and α are
also kept constant, which is reasonable since the different systems have the same particle
density.
Note the difference to Example 4.5, where we also increased P with growing M in order

to achieve very high accuracies. In the current example we want to keep the accuracy at a
constant level, where the number of particles grows. We give numerical evidence that this
can be achieved by only increasing the grid size M linearly in N , while the number P of grid
points added for the regularization is set to a constant value.
In Table 4.1 it can be seen that we achieve approximation errors of comparable size among

all systems, which shows that the parameters were chosen appropriately. For comparison to
the 3d-periodic method, we also treated the same particle system under 3d-periodic boundary
conditions, where we set M = m := (M,M,M). Thereby, we chose the cardinal B-spline
of order 8 and construct regularizations of smoothness p = 10. Note that in [5] one can see
that the dependency of runtime and accuracy in the P3M method and the non-oversampled
P2NFFT with B-Spline window function can be considered as equal.

∆FZ2×{0} ∆FZ3

N L h M M3 m3 = 2M3 m3 = M3

300 10 25 16 40 1.3755e-04 1.3771e-04 1.6261e-04
2400 20 45 32 72 1.5042e-04 1.5115e-04 1.6261e-04

19200 40 85 64 136 1.5674e-04 1.5815e-04 1.6261e-04
153600 80 165 128 264 1.5973e-04 1.6192e-04 1.6261e-04

1228800 160 325 256 520 1.6125e-04 1.6415e-04 1.6261e-04

Table 4.1: Rms force errors in the cloud wall systems under 2d-periodic boundary conditions
(with oversampling factor 2 and without oversampling in the third dimension) as
well as under 3d-periodic boundary conditions. These errors have been obtained
with short range cutoff rcut = 4 and splitting parameter α ≈ 0.7186. In all com-
putations we spent P = 8 grid points for the regularization.

Note that using oversampling in the non periodic dimension only produces insignificantly
smaller rms force errors. This is remarkable since the existing error estimates for NFFT based
fast summation methods are only valid for oversampling factors greater than 1. This shows
the necessity of a new error analysis custom-built for the application discussed in this paper.
In Figure 4.12 we plot the corresponding runtimes. We see that the oversampling slightly

increases the runtime and that the 3d-periodic computation requires less computational effort
than the 2d-periodic calculation without oversampling, which is due to the differing mesh size
regarding the third dimension.
Note that the unexpectedly small increase of runtime due to oversampling results from

the optimized support of pruned FFTs of the PFFT software library, see [40] for details.
Furthermore, the increased box size h implies that the NFFT can handle the non-periodic
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Figure 4.12: Computation times with oversampling factor 2 regarding the non periodic di-
mension (o) and without oversampling (*) for the 2d-periodic case as well as for
the 3d-periodic computation (4).
left: Attended times for the total computation. We also plot exemplary behav-
iors where the runtime grows proportional to N (red �) and N logN (blue �).
right: Computation time scaled by the number of particles.
We achieved rms force errors of the size ≈ 1.6 · 10−4.

dimensions more efficiently, which gives an explanation for the unexpectedly small difference
in runtime between the 3d-periodic computation and the 2d-periodic calculation without
oversampling. However, we skip the details of this NFFT specific optimization and refer to
[42, Appendix A] for more details.
In summary, we remark that in contrast to the 3d-periodic case, where the Fourier co-

efficients are given analytically by (3.5), we have to precompute all the coefficients b̂k,l in
(4.17). Of course, this leads to a huge amount of precomputation steps for large values of M ,
which is not included in the stated runtimes. However, if one is interested in doing a large
simulation with fixed parameters, where only the particles are moving within a fixed box, all
precomputations have to be done only once.

Example 4.8. This example serves as a comparison between our proposed method and the
2d-periodic spectrally accurate Ewald method [35]. Therefore, we chose the test system given
in [35, Sect. 4.3.], i.e., we start with N = 1000 uniformly randomly distributed particles
xj ∈ [0, 1]3 located in a cubic box of edge length L = 1. The charges are chosen oppositely
qj = (−1)j such that

∑N
j=1 qj = 0 and Q =

∑N
j=1 q

2
j = N . Afterward, we scale up the

number of particles in the steps N = 1000 + 11000n, n = 0, . . . , 9. Thereby, we increase the
box size at the rate L = 3√N , i.e., we keep the particle density at a constant level. Note that
[35, Sect. 4.3.] chose a constant box size L = 1 for their tests. However, this only implies
a rescaling of the real space cutoff rcut and the Ewald splitting parameter α at rate 3√N in
order to get equivalent numerical results.
In the following, we compute the parameters, achieved rms errors and runtimes of Algo-

rithm 4.3 in order to achieve an rms energy error ∆UZ2×{0} ≈ 10−9. Since we have |qj | = 1
the rms energy error as defined in (4.2) coincides with the rms potential error used in [35].
In order to get comparable runtimes we set the real space cutoff rcut = 0.62 as given in [35,
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Sect. 4.3.].
At first, we must determine the appropriate Ewald splitting parameter α and a suitable

grid size M . Therefore, we adopt the parameter tuning given in [35] such that it works with
our 3d-periodic NFFT based Ewald summation; see Appendix D for details. Note, that the
tuning in Appendix D also gives an easy way to determine the oversampled grid size m and
the order of the B-Spline. In essence we can apply the error estimates of [30] if the order of
the B-Spline is large enough and we apply a moderate amount of oversampling. Note that
the B-Spline order and the oversampling factor m�M−1 only depend on the accuracy but
not on the system size. We found out that the B-spline order 14 in combination with the
oversampled grid size m = 1.23 ·M is appropriate for the given test case.
Once the parameter set for the 3d-periodic case is given, we can apply the heuristic given in

Section 4.3.1 in order to determine the grid size parameters corresponding to the non-periodic
dimension. Finally, we must figure out the two parameters that determine the approximation
error of the regularization. Hereby, we choose the degree of smoothness p not too small and
tune the regularization grid size P such that the rms energy error is well converged. Again,
p and P depend only on the accuracy but not on the system size. Therefore we can tune
both parameters for the smallest system with N = 1000 particles, which results in sufficient
accuracy for, e.g., p = 10 and P = 32.
In summary, the parameter selection scheme presented in Section 4.3.1 becomes:
i) Determine the near field cutoff rcut, the Ewald splitting parameter α, the grid size M ,

the oversampled grid size m, and the B-Spline order by the parameter estimates given
in Appendix D.

ii) Set the degree of smoothness p := 10 and tune the regularization grid size P for the
smallest test case with N = 1000 particles,

iii) Adjust the grid size M3 according to (4.23) and apply the periodic oversampling factor
to the non-periodic dimension m = m1/M1 ·M .

Table 4.2 shows the parameter sets and the resulting numerical errors for increasing box
length L. Compare also to the parameter sets of the 3d-periodic Ewald summation given in
Table D.1 in the appendix. We see that the rms potential error ∆UZ2×{0} is below 10−9 as
expected. Furthermore, the errors of the 2d-periodic case are comparable to the errors of the
3d-periodic case given in Table D.1. Note that [35] proposed to use 4 times the grid size of
the periodic dimension for the non-periodic dimension in order to reach accuracies up to 10
digits. In contrast, our algorithm starts with m3/M1 ≈ 3.69 and converges to 2m1/M1 ≈ 2.5 for
increasing system size. In addition, we need a small oversampling factor of 1.23 in the periodic
dimensions. We stress that the support of the Gaussian window used in [35, Sect. 4.3.] is
set to 15. I.e., we get an slightly better localization of our window function although our
algorithm does not provide spectral accuracy.
The corresponding runtimes are given in Figure 4.13. In contrast to [35, Sect. 4.3] our

measurement include the computation of the short range part and the force computations.
We stress that we showed in Table 4.2 that these runtimes are sufficient to reach the required
accuracy, while [35, Sect. 4.3] measured the runtimes based on a theoretic parameter selection.
We see that the overall run time is almost equal for 2d- and 3d-periodic boundary conditions.
In agreement with [35] the run time is dominated by the O(N) terms in the considered
range of system size. The near field computation is slightly faster for the 2d-periodic case.
In fact particles at the boundary of the third simulation box dimension have less interacting
neighbors due to the open boundary condition. In contrast, the long range part computations
are slightly slower of the 2d-periodic case, since the have to spent additional mesh points for
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N L h M m ∆UZ2×{0} ∆FZ2×{0}

1000 1.0 3.0 (26,26,78) (32,32,96) 8.59e-10 6.05e-08
12000 2.29 5.68 (54,54,134) (68,68,166) 4.82e-10 3.45e-08
23000 2.84 6.81 (66,66,158) (82,82,196) 5.06e-10 3.62e-08
34000 3.24 7.62 (74,74,174) (92,92,216) 5.14e-10 3.63e-08
45000 3.56 8.15 (82,82,188) (102,102,232) 5.22e-10 3.69e-08
56000 3.83 8.7 (88,88,200) (110,110,246) 5.11e-10 3.59e-08
67000 4.06 9.27 (92,92,210) (114,114,260) 5.11e-10 3.57e-08
78000 4.27 9.5 (98,98,218) (122,122,270) 5.19e-10 3.95e-08
89000 4.46 9.98 (102,102,228) (126,126,282) 5.13e-10 4.33e-08
100000 4.64 10.2 (106,106,234) (132,132,288) 5.23e-10 4.92e-08

Table 4.2: List of parameters and achieved accuracies for randomly distributed particles under
2d-periodic boundary conditions with target accuracy ∆UZ2×{0} = 10−9, real space
cutoff rcut = 0.62, Ewald splitting parameter α = 7.489225, oversampled grid size
m ≈ 1.23M , B-spline order 14, degree of smoothness p = 10, and regularization
grid size P = 32.

regularization and oversampling. Again, the FFT and NFFT are optimized in a way that they
ignore unnecessary FFT inputs and outputs that occur in the non-periodic dimensions and
due to oversampling; see [40] and [42, Appendix A] for more details. Therefore, the runtimes
of the 2d-periodic long range part is less than one may expect from parameter Table 4.2.
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Figure 4.13: Total computation times (solid), as well as computation times of short range
parts (dotted), and long range parts (dashed) for the 2d-periodic case (o) and
3d-periodic case (4).
left: Attended times for the total computation. We also plot exemplary behaviors
where the runtime grows proportional to N (red �) and N logN (blue �).
right: Computation time scaled by the number of particles.
We achieved rms energy errors of the size ≈ 5 · 10−10 and rms force errors of the
size ≈ 4 · 10−8.
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5. Fast Ewald summation for 1d-periodic boundary conditions

5.1. Ewald summation

We consider a system of N charges qj ∈ R at positions xj ∈ LT × R2. If periodic boundary
conditions are assumed only in the first coordinate we define the potential of each single
particle j by

φp1(xj) := φZ×{0}2(xj) =
∞∑

s=0

∑

n∈Z×{0}2
|n1|=s

N∑

i=1

′ qi
‖xij + Ln‖

(5.1)

and define the Coulomb energy

Up1 := UZ×{0}2 = 1
2

N∑

j=1
qjφ

p1(xj), (5.2)

i.e., we set S := Z×{0}2 in (1.2) – (1.4) and consider the spherical limit analogously to (3.1).
In this section we denote for some y = (y1, y2, y3) ∈ R3 the vector of its last two components
by ỹ := (y2, y3) ∈ R2. In the following we denote by

Γ(s, x) :=
∫ ∞

x
ts−1e−tdt (5.3)

the upper incomplete gamma function. For the case s = 0 the well known identity

Γ(0, x) = −γ − ln x−
∞∑

k=1
(−1)k x

k

k!k (5.4)

holds for all positive x, see [2, number 5.1.11]. Thereby, γ is the Euler-Mascheroni constant.
The function Γ(0, ·) is also known as the exponential integral function. We easily see

lim
x→0

Γ(0, x) + ln x+ γ = 0. (5.5)

In the following Theorem, we consider the 1d-Ewald formula, see [43]. In Appendix B we give
a proof using convergence factors, analogously to the proof of Theorem 4.1 (see Appendix A).

Theorem 5.1. Consider an electrical neutral system of N charges qj ∈ R at positions xj =
(xj,1, x̃j) ∈ LT × R2, j = 1, . . . , N . Under periodic boundary conditions in the first variable
the potential φp1(xj), defined in (5.1), can be written as

φp1(xj) = φp1,S(xj) + φp1,L(xj) + φp1,0(xj) + φp1,self(xj),

where for the splitting parameter α > 0 we define the short range part

φp1,S(xj) :=
∑

n∈Z×{0}2

N∑

i=1

′qi
erfc(α‖xij + Ln‖)
‖xij + Ln‖

, (5.6)
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the long range parts

φp1,L(xj) := 2
L

∑

k∈Z\{0}

N∑

i=1
qi e2πik(xi,1−xj,1)/L ·Θp1(k, ‖x̃ij‖)

φp1,0(xj) := − 1
L

N∑

i=1
‖x̃ij‖6=0

qi
[
γ + Γ(0, α2‖x̃ij‖2) + ln(α2‖x̃ij‖2)

]
,

the self potential

φp1,self(xj) := − 2α√
π
qj ,

and the function Θp1(k, r) for k, r ∈ R is defined by

Θp1(k, r) =
∫ α

0

1
z

e
−π2k2
L2z2 e−r2z2dz . (5.7)

Proof. See Appendix B.

The function Θp1(k, r) can be expressed by the incomplete modified Bessel function of
the second kind [24], see Section 5.2.2. This function is known to be infinitely continuously
differentiable and, thus, we can construct regularizations of similar structure as (4.12) in order
to construct a fast algorithm. In this case the final algorithm requires a smooth bivariate
regularization, which can be obtained easily from a one dimensional construction as the
Fourier coefficients are radial in x̃ij . Then, the evaluation is done with the multivariate fast
summation method [45].
By the following Lemma 5.2 we show that the function Θp1(k, r) for fixed r tends to

zero exponentially fast for growing k, which allows the truncation of the infinite sum in
φp1,L(xj). Furthermore, Lemma 5.3 shows that also the kernel in φp1,0(xj) is a smooth
function, which allows the application of the fast summation method. Note that we have
limx→±∞ γ + Γ(0, x2) + ln(x2) = ∞. Thus, an analytical Fourier transform does not exist,
equivalently to the kernel function in the k = 0 term of the 2d-periodic Ewald sum. However,
using the fast summation approach, the function is truncated and embedded in a smooth and
periodic function, which does not require localization of the kernel function.

Lemma 5.2. For arbitrary r ∈ R we have for the function Θp1 given in (5.7)

Θp1(k, r)→ 0 with Θp1(k, r) = o(k−2e−k2) for k →∞.

Proof. By the definition (5.7) we immediately see

Θp1(k, r) ≤ Θp1(k, 0) = 1
2Γ
(

0, π
2k2

α2L2

)
.

The claim follows by applying the asymptotic expansion Γ(0, x) ≈ e−x
x , cf. [2, number 6.5.32],

which holds for large x := π2k2

α2L2 .
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Lemma 5.3. For the univariate function

ϑ(x) :=
{

0 : x = 0,
Γ(0, x2) + ln(x2) + γ : else

we have ϑ ∈ C∞(R).

Proof. Since limt→0 Γ(0, t) + ln(t) + γ = 0 the function is continuous. As (5.4) holds for all
x > 0 we obtain

γ + Γ(0, x2) + ln(x2) =
∞∑

k=1

(−1)k+1x2k

k!k , x 6= 0.

From this representation we easily conclude

lim
x→+0

dn

dxn
(
γ + Γ(0, x2) + ln(x2)

)
= lim

x→−0

dn

dxn
(
γ + Γ(0, x2) + ln(x2)

)
6= ±∞.

5.2. Fast NFFT based algorithm for 1d-periodic systems

Similar as in the previous section we derive the fast algorithm now based on Theorem 5.1.
The evaluation of the short range part φp1,S(xj) is done by a direct evaluation again.

5.2.1. Computational approach

Due to Lemma 5.2 we can truncate the infinite sum in φp1,L(xj), i.e., for some appropriate
M1 ∈ 2N we set

φp1,L(xj) ≈
2
L

∑

k∈IM1\{0}

N∑

i=1
qie2πikxij,1/LΘp1(k, ‖x̃ij‖). (5.8)

In the following we assume that x̃j ∈ [−L2/2, L2/2] × [−L3/2, L3/2], i.e., x̃ij ∈ [−L2, L2] ×
[−L3, L3]. Thus, the particle distances regarding the non-periodic dimensions ‖x̃ij‖ are
bounded above by

√
L2

2 + L2
3. In the following we choose some h > 2

√
L2

2 + L2
3 and accord-

ingly some ε ∈ (0, 1/2) such that ‖x̃ij‖ ≤
√
L2

2 + L2
3 =: h(1/2− ε) < h/2 for all i, j = 1, . . . , N .

For the k = 0 term we define

Θp1
0 (r) := γ + Γ(0, α2r2) + ln(α2r2).

In order to approximate the long range part φp1,L(xj) + φp1,0(xj) efficiently we consider for
k ∈ {0, . . . ,M1/2} the regularizations

KR(k, r) :=





2
L

Θp1(k, r) : k 6= 0, |h−1r| ≤ 1/2− ε,

− 1
L

Θp1
0 (r) : k = 0, |h−1r| ≤ 1/2− ε,

KB(k, r) : |h−1r| ∈ (1/2− ε, 1/2],
KB(k, h/2) : |h−1r| > 1/2,

, (5.9)
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where each functionKB(k, ·) : [h/2−hε, h/2]→ R is constructed such thatKR(k, ‖·‖) : hT2 → R
is in the Sobolev space Cp−1(hT2), i.e., KB(k, ·) fulfills the interpolation conditions

∂j

∂rj
KB(k, h/2− hε) =

{
2
L
∂j

∂rj
Θp1(k, h/2− hε) : k 6= 0

− 1
L

dj
drj Θp1

0 (h/2− hε) : k = 0
for j = 0, . . . , p− 1 (5.10)

as well as
∂j

∂rj
KB(k, h/2) = 0 for j = 1, . . . , p− 1. (5.11)

Note that KR(k, ‖ · ‖) is constant for all the points {y ∈ hT2 : ‖y‖ ≥ h/2}. Therefore, the
conditions (5.11) ensure smoothness of KR(k, ‖ · ‖) in the points {y ∈ hT2 : ‖y‖ = h/2}.
Furthermore, (5.11) does not include any restriction on the function value of KR(k, h/2),
since it does not influence the smoothness of KR(k, ‖ ·‖). In Section C we show how functions
KB(k, ‖.‖) can be constructed as polynomials of degree 2p−2 by a specialized two point Taylor
interpolation. By our construction the functions KR(k, ‖ · ‖) are h-periodic in each direction
and smooth, i.e., KR(k, ‖ · ‖) ∈ Cp−1(hT2). For a graphical illustration of a regularization
KR(k, ·) see Figure 5.1.

∂j

∂rj
KB(k, h/2) = 0

∂j

∂rj
KB(k, h/2 − hε) =

2
L

∂j

∂rj
Θp1(k, h/2 − hε)

h/2 − hε

−h/2 + hε h/2

−h/2

2
L

Θp1(k, ·)

1

Figure 5.1: Example for KR(k, ·) for k ≥ 1. Over the gray area the regularization adopts the
values of the boundary function KB(k, ·), which we compute via a modified two
point Taylor interpolation as derived in Theorem C.2. In the corners (striped area)
KR(k, ·) has the constant value KB(k, h/2). We also marked the points, where the
conditions (5.10) and (5.11) are fulfilled.

To this end, we approximate for each k ∈ IM1 \ {0} the function
2
L

Θp1(k, ‖y‖) ≈
∑

l∈IM̃

b̂k,le2πil·y/h (5.12)

for ‖y‖ ≤ h/2−hε by a trigonometric polynomial. In the case k = 0 we use the approximation

− 1
L

Θp1
0 (α2‖y‖2) ≈

∑

l∈IM̃

b̂0,le2πil·y/h. (5.13)
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Thereby, we choose M̃ = (M2,M3) ∈ 2N2 large enough and compute the Fourier coefficients
b̂k,l by

b̂k,l := 1
|IM̃ |

∑

j∈IM̃

KR

(
k, ‖j � M̃

−1‖h
)

e−2πij·(l�M̃
−1) (5.14)

for all k ∈ IM1 . In summary we obtain the following approximation for the long range parts

φp1,L(xj) + φp1,0(xj) ≈
∑

k∈IM1

∑

l∈IM̃

b̂|k|,l

N∑

i=1
qie2πikxij,1/Le2πil·x̃ij/h

=
∑

(k,l)∈IM

b̂|k|,l

(
N∑

i=1
qie2πiv(k,l)·xi

)
e−2πiv(k,l)·xj , (5.15)

where we use the truncated Fourier series (5.12), (5.13) in Theorem 5.1 and define M :=
(M1,M̃) ∈ 2N3 as well as the vectors v(k, l) := (k/L, l/h) ∈ L−1Z× h−1Z2.
The expressions in the inner brackets

Ŝ(k, l) :=
N∑

i=1
qie2πiv(k,l)·xi , (k, l) ∈ IM (5.16)

can be computed by an NFFTH. This will be followed by |IM | multiplications with b̂|k|,l
and completed by an NFFT to compute the outer summation with the complex exponentials.
The proposed evaluation of φp1,L(xj) + φp1,0(xj) at the points xj , j = 1, . . . , N , requires
O(N + |IM | log |IM |) arithmetic operations.
For the calculation of the forces we set S := Z× {0}2, define F p1(xj) := F S(xj) via (1.4)

and calculate the short range portions F p1,S(xj), as defined in (3.7), by a direct summation.
In the long range part we can either use the ik approach, i.e., we set

F p1,L(xj) + F p1,0(xj) ≈ 2πiqj
∑

(k,l)∈IM

b̂|k|,l

(
N∑

i=1
qie2πiv(k,l)·xi

)
v(k, l)e−2πiv(k,l)·xj , (5.17)

or the analytic differentiation, cf. (3.9).
In summary, we obtain Algorithm 4.3 for the fast computation of 1d-periodic Coulomb

interactions.

Algorithm 5.4 (1d-periodic P2NFFT).
Input: Positions xj ∈ LT × [−L2/2, L2/2] × [−L3/2, L3/2], charges qj ∈ R (j = 1, . . . , N),
splitting parameter α > 0, short range cutoff rcut > 0, long range cutoff M = (M1,M̃) ∈ 2N3,
regularization parameter ε > 0, degree of smoothness p ∈ N.
0.) Precomputations:

a) Set h := (1/2− ε)−1
√
L2

2 + L2
3.

b) Construct the regularization (5.9) for each k ∈ {0, . . . ,M1/2}.
c) Compute the Fourier coefficients (5.14).

1.) Compute the short range parts of the potentials φp1,S(xj) and the short range parts of
the forces F p1,S(xj) by direct evaluation, i.e., restrict the summation in (5.6) and (3.7),
where S := Z× {0}2, to all ‖xij + Ln‖ ≤ rcut.
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2.) Compute the sums Ŝ(k, l) in (5.16) by the adjoint NFFT (2.4).
3.) Apply the NFFT (2.2) to compute the long range parts of the potentials φp1,L(xj) +

φp1,0(xj) by (5.15).
4.) Compute the long range parts of the forces F p1,L(xj)+F p1,0(xj) via the ik differentiation

approach (5.17) or the analytic differentiation, cf. (3.9).
5.) For all j = 1, . . . , N compute

φp1(xj) = φp1,S(xj) + φp1,L(xj) + φp1,0(xj) + φp1,self(xj)
F p1(xj) = F p1,S(xj) + F p1,L(xj) + F p1,0(xj).

6.) Compute the total energy (5.2) and set Up1(xj) := qjφ
p1(xj).

Output: Total energy Up1, single energies Up1(xj) and forces F p1(xj).

Remark 5.5. Algorithm 5.4 has the same structure as the NFFT based method for 3d-
periodic systems, cf. Section 3. Thus, we also obtain a matrix vector notation of the form (3.6)
for the approximation of φp1,L(xj) + φp1,0(xj). In other words, we use the same algorithm,
where we replace the Fourier coefficients b̂k from (3.5) by the new coefficients b̂|k|,l in (5.14)
and insert the nodes (xij,1/L, x̃ij/h) ∈ T3 instead of xij/L ∈ T3 into the NFFT algorithms.

5.2.2. Implementation details

The precomputation step of Algorithm 5.4 includes the construction of the regularizations (5.9).
Thereby, we obtain KB(k, ·) by the unique polynomial of degree 2p− 2 that fulfills the 2p− 1
interpolation conditions (5.10) – (5.11). An explicit representation of this polynomial is given
by Theorem C.2 in the appendix, where we set m = h(1/2− ε/2), r = hε/2 and aj , bj equal to
the right hand side of the interpolation conditions (5.10) – (5.11), respectively. In order to
compute the derivatives in (5.10) – (5.11) we use the following relations. At first, we consider
the function Θp1(k, r) as defined in (5.7) and show that it can be expressed in terms of an
incomplete modified Bessel function of the second kind [24] defined by

Kν(x, y) :=
∫ ∞

1
t−ν−1e−xt−y/tdt, ν ∈ R, x ≥ 0, y ≥ 0.

Indeed, with the substitution t = α2/z2 in (5.7) we get

Θp1(k, r) =
∫ α

0

1
z

e
−π2k2
L2z2 e−r2z2dz t=

α2/z2

= 1
2

∫ ∞

1
t−1e−

π2k2
α2L2 t−α2r2t−1

dt = 1
2K0

(
π2k2

α2L2 , α
2r2
)
.

Note that the relation [24]
∂Kν(x, y)

∂y
= −Kν+1(x, y) (5.18)

gives an easy way to compute the necessary partial derivatives. In the following Lemma 5.6
we give a formula for the partial derivatives of K0(x, y2) with respect to y, which are needed
for the differentiation of the function Θp2(k, ·).
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Lemma 5.6. For x ∈ R fixed and k ∈ N0 we have

∂2k

∂y2kK0(x, y2) =
k∑

l=0
αk,lKk+l(x, y2)y2l (5.19)

∂2k+1

∂y2k+1K0(x, y2) =
k∑

l=0
βk,lKk+1+l(x, y2)y2l+1, (5.20)

where the coefficients αk,l and βk,l are given recursively by

α0,0 = 1

βk,l =
{
−2αk,k : l = k

−2αk,l + 2(l + 1)αk,l+1 : else

αk,l =





βk−1,0 : k ≥ 1, l = 0
−2βk−1,l−1 : k ≥ 1, l = k

−2βk−1,l−1 + (2l + 1)βk−1,l : k ≥ 1, else.

Proof. Apply the chain rule and relation (5.18). The claim follows by induction in k.

Note that we can precompute the expressions of the derivatives of the function Kν(x, ·2)
with Lemma 5.6 up to a sufficiently high order. So, we do not have to compute them recur-
sively, which is better in terms of cost of the precomputation step.
Unfortunately, the evaluation of the incomplete Bessel function Kν poses several numerical

difficulties and publicly available implementations are rare. In the following, we show how
we accomplished the sufficiently accurate evaluation. We started with the iterative algorithm
given in [47] for the computation of the incomplete modified Bessel function of the second
kind Kν(x, y) for arbitrary order ν ∈ R. In our algorithm, we evaluate this function with
an absolute accuracy of ε = 10−15. However, this iteration gets numerical problems for large
values of x and y due to the exponential damping within the integral. Therefore, we compute
the following upper bounds on Kν(x, y) and assume Kν(x, y) to be numerically equal to zero
whenever one of these bounds is already very small. A first upper bound is given by

Kν(x, y) ≤
∫ ∞

1

e−xt

tν+1 dt = 1
xν

Γ(−ν, x). (5.21)

For x < y it was suggested [47] to evaluate the faster convergent complement integral

Kν(x, y) = 2(x/y)ν/2Kν(2√xy)−K−ν(y, x), (5.22)

where the (complete) modified Bessel function of the second kind Kν(·) is defined by

Kν(z) := 1
2

∫ ∞

0

e−z/2(t+1/t)

tν+1 dt,

cf. [24]. By (5.22) we obtain another upper bound for Kν(x, y) in the case x < y, namely,

Kν(x, y) < 2(x/y)ν/2Kν(2√xy) < 2Kν(2√xy) (5.23)

This gives often a better estimate than (5.21) as it depends also on y.
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Another numerical difficulty appears in (5.14) for k 6= 0 when KR must be evaluated near
the origin. This corresponds to the evaluation of K0(x, y) with small x and y, where the
evaluation of the function is numerically demanding and the accuracy ε can not always be
achieved. However, we have

∂nK0(x, y)
∂yn

∣∣∣∣
y=0

= (−1)nKn(x, 0) = (−1)nxn
∫ ∞

x
e−tt−n−1dt = (−1)nxnΓ(−n, x) (5.24)

with the upper incomplete gamma function Γ, as defined in (5.3). Therewith, we obtain for
fixed x and m ∈ N

K0(x, y) =
m∑

n=0

(−1)n

n! xnΓ(−n, x)yn +RmK0(x, 0)

where for some 0 < ξ < 1

RmK0(x, 0) = (−1)m+1Km+1(x, ξy)
(m+ 1)! ym+1.

Applying (5.21) we compute the upper bound

|RmK0(x, 0)| ≤ Km+1(x, 0)ym+1

(m+ 1)! ≤ e−xym+1

(m+ 1)!x.

Thus, for x and y small we calculate the value of the truncated Taylor series in (5.24), where
we choose m large enough to fulfill |RmK0(x, 0)| < ε.
In order to compute the Fourier coefficients b̂0,l, we also have to evaluate the functions

Γ(0, α2r2) and ln(α2r2) as well as their derivatives. In the following Lemma we show how the
derivatives of Γ(0, x2) can be computed recursively.

Lemma 5.7. For k ∈ N we have

d2k

dx2kΓ(0, x2) = 2e−x2

(
k∑

l=1

(2k − 1)!
(k − l)! x

−2l + pk(x)
)

(5.25)

d2k+1

dx2k+1 Γ(0, x2) = −2e−x2

(
k∑

l=0

(2k)!
(k − l)!x

−(2l+1) + qk(x)
)

(5.26)

where pk and qk are polynomials of degree 2k − 2 and 2k − 1, respectively, fulfilling the
recursion

p1(x) = 2

qk(x) = 2xpk(x)− d
dxpk(x)

pk+1(x) = 2xqk(x)− d
dxqk(x) + 2(2k)!

k! .

Proof. Induction in k ∈ N.

Again, in order to save time within the precomputation step we can use this recursion in
combination with a computer algebra system in order to precompute the analytic expressions
of the derivatives of Γ(0, ·2) up to a sufficient order.
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5.3. Numerical Results

In this section we present numerical results of our algorithm for 1d-periodic systems. We set
up the tests analogously to the 2d-periodic case, see Section 4.3 for details.

5.3.1. Parameter Choice

In our numerical experiments in the 1d-periodic setting we will also only consider test cases,
where the charges are located in a cubic box [−L/2, L/2]3. The heuristic parameter choice from
the 2d-periodic case from Section 4.3.1 is adapted as follows.
We denote byM := M1 ∈ 2N the cutoff length in the long range part of the Ewald formulas,

see (5.8). The box size regarding the non periodic dimension can be implicitly expressed by
h = 2

√
2L+ 2hε, where 2hε is the sum of the lengths of the two segments at the boundaries,

which are added for the regularization. Based on this, we set M̃ = (M2,M3) ∈ 2N in (5.12)
and (5.13) to

M2 = M3 := 2
[√

2M
]

+ P with P ∈ 2N, (5.27)

where the brackets denote that we round to the next integer value. Having defined P , the
corresponding value for ε is given by

ε = 1
2

P

2
[√

2M
]

+ P
= P

2M3

and h = (1/2 − ε)−1√2L = 2[√2M]+P
M · L. Finally, we apply the same oversampling factor as

for the periodic dimensions, i.e., we set m2 = m3 = m
MM3.

The parameter selection can be summarized in the following three easy steps:
i) Determine the near field cutoff rcut, the Ewald splitting parameter α, the grid size

M , the oversampled grid size m, and the B-Spline order by any parameter estimates
suitable for the 3d-periodic case, e.g., [15].

ii) Set the degree of smoothness p not too small (in our tests p := 10 is sufficient) and tune
the regularization grid size P for a small test case with a low number of particles N .

iii) Compute the grid size (M2,M3) according to (5.27) and apply the periodic oversampling
factor to the non-periodic dimensions, i.e., m = m1/M1 ·M .

Again, only the regularization grid size P needs some tuning, while all other parameters are
either known from the 3d-periodic case or can be computed easily.

5.3.2. Examples

Example 5.8. As in Example 4.5 we consider the cloud wall system with N = 300 charged
particles and compute the energies as well as the forces subject to 1d-periodic boundary
conditions. Again, in order to get an impression of the involved functions we plot Θp1(1, ·) as
well as Θp1

0 (·) over the interval [−L,L] for different splitting parameters α, see Figure 5.2.
The number of grid points P , which are spent for the regularization domain are set according

to the corresponding 2d-periodic example, see Figure 4.9 for the results. In this example, we
choose the parameter P as follows.

P := 2
[√

2 · Pp2
2

]
≈
√

2 · Pp2, (5.28)
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Figure 5.2: Θp1
0 (r) and Θp1(1, r) with L = 10 for different splitting parameters α.

where we denote by Pp2 the corresponding value for P , which we used for the 2d-periodic
computation. In the 2d-periodic case we set P = 30 in the caseM = 64, where we constructed
regularizations of smoothness p = 10. For the 1d-periodic computations we set

P := 2
[√

2 · 30
2

]
= 42 and M2 = M3 := 224.

In Figure 5.3 we compare the corresponding rms force error for some values of P . Indeed, we
see that for the 1d-periodic setting the optimal rms force error is achieved for P ≈ 42. Thus,
the proposed choice of M2 = M3 as well as P seems reasonable.
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Figure 5.3: The rms force error (1.7) over α for different values of P ∈ 2N. We choose the
short range cutoff rcut = 4, the smoothness p = 10 and the B-Spline of order 8
as NFFT window function ϕ. We plot the results of the 1d-periodic case, where
we set m = M = (64,M2,M3) via (5.27), (left) as well as of the 2d-periodic
computation, where we set m = M = (64, 64,M3) via (4.23) (right). (Test case:
cloud wall system, N = 300.)

In Figure 5.4 we plot the rms force error 4FZ×{0}2 with respect to the splitting parameter
α for different long range cutoffs M = (M,M2,M3) ∈ 2N3, where we define M2 and M3 by
(5.27) as well as P by (5.28) based on our results for the 2d-periodic case.
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On the right hand side we see the corresponding errors produced by the 3d-periodic com-
putation. With the chosen parameters we obtain rms errors comparable to the 3d-periodic
case for M ∈ {16, 32, 64, 128}, where we do not need an oversampling in the non periodic
dimensions. Unfortunately, for M = 256 we could not reach the accuracy of the 3d-periodic
algorithm. This may be due to the numerically complicated evaluation of the incomplete
modified Bessel function in the precomputation step.
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Figure 5.4: The rms force error (1.7) over α for different FFT sizes. We choose the short
range cutoff rcut = 4, p = 10, m = M = (M,M2,M3) via (5.27) and the B-Spline
of order 8 as NFFT window function ϕ in Algorithm 5.4. We plot the results of
the 1d-periodic (left) as well as of the 3d-periodic computation (right).

Example 5.9. We apply our Algorithm to the particle systems we already considered in
Example 4.7. Equivalently, we set rcut = 4 and α ≈ 0.7186 in correspondence to [15]. For
the computation with N = 300 particles we set M = 16 and use P = 12 grid points for the
regularization, which corresponds to setting ε ≈ 0.103448.
As the particle systems have the same particle density we keep the short range cutoff rcut

and the splitting parameter α fixed and again increase the value of M linearly in N . The
parameter P = 12 is used for all particle systems.
The obtained errors can be found in Table 5.1. Again, we computed the errors produced

by Algorithm 5.4 without as well as with oversampling in the non-periodic dimensions, where
we set the oversampling factor to 2, i.e., m := (M, 2M2, 2M3). In Figure 5.5 we plot the
corresponding runtimes. Note that the number of grid points depends linearly on N . Since
the regularization grid size P is kept constant and the rms errors stay at a constant level,
our method scales like O(N logN). The unexpected increase of runtime for N = 256 results
from the limitation to 8 GB main memory of the test machine. Again, the FFT and NFFT
are optimized in a way that they ignore unnecessary FFT inputs and outputs that occur in
the non-periodic dimensions; see [40] and [42, Appendix A] for more details. Therefore, the
runtimes of the 1d-periodic P2NFFT is less than one may expect.

Example 5.10. As in Example 4.8 we consider a set of increasing systems of randomly
distributed particles with charges qj ∈ {−1, 1} and compute the energies as well as the forces
subject to 1d-periodic boundary conditions.
In the following, we compute the parameters, achieved rms errors and runtimes of Algo-

rithm 4.3 in order to achieve an rms energy error ∆UZ2×{0} ≈ 10−9. Since we have |qj | = 1
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∆FZ×{0}2 ∆FZ3

N L 2
√

2L h M M2/3 m2/3 = 2M2/3 m2/3 = M2/3

300 10 28.28 36.25 16 58 1.2979e-04 1.7382e-04 1.6261e-04
2400 20 56.57 63.75 32 102 1.4587e-04 1.6804e-04 1.6261e-04
19200 40 113.14 121.25 64 194 1.5229e-04 1.5873e-04 1.6261e-04

153600 80 226.27 233.75 128 374 1.5757e-04 1.6269e-04 1.6261e-04
1228800 160 452.55 460.00 256 736 1.5951e-04 1.6242e-04 1.6261e-04

Table 5.1: Rms force errors in the cloud wall systems under 1d-periodic boundary conditions
(with oversampling factor 2 and without oversampling in the two non periodic
dimensions) as well as under 3d-periodic boundary conditions. These errors have
been obtained with short range cutoff rcut = 4 and splitting parameter α ≈ 0.7186.
In all computations we spent P = 12 grid points for the regularization.

103 104 105 106

10−2

10−1

100

101

102

103

104

#charges

ti
m
e
[s
]

∼ N
∼ N logN

103 104 105 106

10−4

10−3

10−2

#charges

ti
m
e/
#
ch
a
rg
es

[s
]

Figure 5.5: Computation times with oversampling factor 2 regarding the non periodic dimen-
sions (o) and without oversampling (*) for the 1d-periodic case as well as for the
3d-periodic computation (4).
left: Attended times for the total computation. We also plot exemplary behaviors
where the runtime grows proportional to N (red �) and N logN (blue �).
right: Computation time scaled by the number of particles.
We achieved rms force errors of the size ≈ 1.6 · 10−4.

the rms energy error as defined in (4.2) coincides with the rms potential error used in [35].
In order to get comparable runtimes we set the real space cutoff rcut = 0.62 as given in [35,
Sect. 4.3.].
Now, the parameter selection scheme presented in Section 5.3.1 becomes:
i) Determine the near field cutoff rcut, the Ewald splitting parameter α, the grid size M ,

the oversampled grid size m, and the B-Spline order by the parameter estimates given
in Appendix D.

ii) Set the degree of smoothness p := 10 and tune the regularization grid size P for the
smallest test case with N = 1000 particles,

iii) Adjust the grid size (M2,M3) according to (5.27) and apply the periodic oversampling
factor to the non-periodic dimensions m = m1/M1 ·M .
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N L h M m ∆UZ×{0}2 ∆FZ×{0}2

1000 1.0 4.15 (26,108,108) (32,134,134) 8.41e-10 5.94e-08
12000 2.29 7.8 (54,184,184) (68,228,228) 6.11e-10 4.08e-08
23000 2.84 9.39 (66,218,218) (82,270,270) 5.72e-10 3.81e-08
34000 3.24 10.6 (74,242,242) (92,298,298) 5.95e-10 3.85e-08
45000 3.56 11.3 (82,260,260) (102,320,320) 6.48e-10 4.17e-08
56000 3.83 12.0 (88,276,276) (110,340,340) 6.59e-10 4.23e-08
67000 4.06 12.8 (92,290,290) (114,358,358) 6.52e-10 4.17e-08
78000 4.27 13.3 (98,304,304) (122,374,374) 6.30e-10 4.34e-08
89000 4.46 13.8 (102,316,316) (126,390,390) 6.24e-10 4.72e-08
100000 4.64 14.3 (106,326,326) (132,402,402) 6.32e-10 5.26e-08

Table 5.2: List of parameters and achieved accuracies for randomly distributed particles un-
der 1d-periodic boundary conditions with target accuracy ∆UZ×{0}2 = 10−9, real
space cutoff rcut = 0.62, Ewald splitting parameter α = 7.489225, and oversam-
pled grid size m ≈ 1.23M , B-spline order 14, degree of smoothness p = 10, and
regularization grid size P = 44.

Table 5.2 shows the parameter sets and the resulting numerical errors for increasing box
length L. Compare also to the parameter sets of the 3d-periodic Ewald summation given in
Table D.1 in the appendix. We see that the rms potential error ∆UZ2×{0} is below 10−9 as
expected. Furthermore, the errors of the 1d-periodic case are comparable to the errors of the
3d-periodic case given in Table D.1. In contrast to the 2d-periodic case, our algorithm starts
with larger m3/M1 ≈ 5.15 and converges to 2

√
2m1/M1 ≈ 3.5 for increasing system size. Again,

we need a small oversampling factor of 1.23 in the periodic dimension.
The corresponding runtimes are given in Figure 5.6. Again our measurement include the

computation of the short range part and the force computations. We see that the overall run
time is comparable for 1d- and 3d-periodic boundary conditions. However, the 1d-periodic
run time is dominated by the O(N logN) long range computations. Note that the jumps
in the run time of the long range computations is due to the increased FFT run time (but
still O(N logN)) whenever m is not factorizable into small prime factors. The near field
computation is slightly faster for the 1d-periodic case. In fact particles at the boundary of
the second and third simulation box dimension have less interacting neighbors due to the open
boundary conditions. In contrast, the long range part computations are more demanding for
the 1d-periodic case, since the have to spent additional mesh points for regularization and
oversampling. Again, the FFT and NFFT are optimized in a way that they ignore unnecessary
FFT inputs and outputs that occur in the non-periodic dimensions and due to oversampling;
see [40] and [42, Appendix A] for more details. Therefore, the runtimes of the 1d-periodic
long range part is less than one may expect from parameter Table 5.2.

6. Conclusion
In this paper we proposed new fast algorithms for the computation of the energies and the
forces in three-dimensional particle systems subject to 2d- and 1d-periodic boundary condi-
tions. These algorithms are based on the Ewald summation formulas, which we combined
with the NFFT based fast summation method. Therefore, we obtain the same structure as
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Figure 5.6: Total computation times (solid), as well as computation times of short range
parts (dotted), and long range parts (dashed) for the 1d-periodic case (o) and
3d-periodic case (4).
left: Attended times for the total computation. We also plot exemplary behaviors
where the runtime grows proportional to N (red �) and N logN (blue �).
right: Computation time scaled by the number of particles.
We achieved rms energy errors of the size ≈ 6 · 10−10 and rms force errors of the
size ≈ 5 · 10−8.

the well known NFFT based methods for open as well as for 3d-periodic boundary condi-
tions. The new algorithms have been implemented as a part of the P2NFFT solver within
the ScaFaCoS library [1], which is publicly available.
Beside the well known parameters of the P3M, we introduce the oversampled grid size m,

and two parameters that characterize the regularization, namely the degree of smoothness
p and the regularization grid size P . We give numerical evidence that the error estimates
[15] of the P3M still hold for our algorithms, provided that P and p are chosen large enough.
Furthermore, we have seen that the accuracy is not sensitive to these two parameters. Already
for p = 10 we were able to find suitable values for P in order to get close to machine precision.
Moreover, choosing P to larger than necessary does not affect the complexity of our algorithm.
This is because the same accuracy can be reached for increasing system size at constant P .
Since all parameters that influence the complexity can be chosen based on the P3M error
estimates, we expect an arithmetic complexity of O(N logN). However, the development of
exact error estimates is beyond the scope of this paper and subject to future research.
We showed that the proposed methods for mixed periodicity can keep up with the well

established algorithms for 3d-periodic boundary conditions (P3M [25]) in terms of accuracy
and runtime. Furthermore, our 2d-periodic algorithm can keep up with the spectrally accurate
Ewald method [35] but we are able to use a smaller grid in the non-periodic dimension. For
1d-periodic boundary conditions we presented for the first time an efficient Fourier based
algorithm tuned to high accuracy.
A further objective might be to derive error estimates, similar to the P3M [30, 15], which

allow an automatic tuning of the involved parameters, and to reduce the amount of precom-
putation steps.
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Appendix

A. Proof of Theorem 4.1

In contrast to the case of periodicity in all three dimensions, it can be shown that a convergence
factor of the form e−s‖xij+Ln‖ instead of e−s‖Ln‖ can be used in order to calculate the spherical
limit (4.1). For a proof see [6] or [4]. Thereby, the factor e−s‖xij+Ln‖ can be replaced
by e−s‖xij+Ln‖2 . This can be understood easily by taking into consideration the general
discussions on convergence factors in [32]. From [32, (2.2)] we see that the two convergence
factors mentioned above are both suitable in terms of weighting the single parts of the sum
with respect to ‖xij + Ln‖. As in [38] we apply the convergence factor e−s‖xij+Ln‖2 for the
calculation of the potential (3.1), i.e., we compute the limit

φp2(xj) = lim
s→0

∑

n∈Z2×{0}

N∑

i=1

′ qie−s‖xij+Ln‖2

‖xij + Ln‖
.

For the calculation of φp2(xj) we first apply (1.5) for the splitting parameter α > 0 and obtain
by exploiting (1.6)

φp2(xj) = φp2,S(xj) +
∑

n∈Z2×{0}

N∑

i=1
qi

erf(α‖xij + Ln‖)
‖xij + Ln‖

+ φp2,self(xj).

In order to calculate the remaining long range part we define

φs(xj) :=
∑

n∈Z2×{0}

N∑

i=1
qie−s‖xij+Ln‖2 erf(α‖xij + Ln‖)

‖xij + Ln‖
,

which is absolutely convergent for all s > 0 and uniformly convergent on s ≥ 0, cf. [32]. Then,
we consider the limit lims→0 φs(xj). In the following, we apply the identity

erf(α‖xij + Ln‖) = 2√
π
‖xij + Ln‖

∫ α

0
e−‖xij+Ln‖2z2dz (A.1)

in φs(xj) and use the Poisson summation formula

∑

n∈Z2

e−β‖x+Ln‖2 = 1
L2

∑

k∈Z2

π

β
e−π2‖k‖2/(L2β)e2πik·x/L

for a Gaussian kernel in two variables, which is valid for β > 0 and uniformly convergent on
R2. Applying (A.1) we can write φs(xj) for s > 0 as an absolutely and uniformly convergent
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sum of absolutely and uniformly convergent integrals. Thus, we may change the order of
summation and integration to get

φs(xj) = 2√
π

∫ α

0

N∑

i=1
qie−(s+z2)x2

ij,3
∑

ñ∈Z2

e−(s+z2)‖x̃ij+Lñ‖2dz

= 2√
π

∫ α

0

N∑

i=1
qie−(s+z2)x2

ij,3
∑

k∈Z2

π

L2(s+ z2)e
−π2‖k‖2

L2(s+z2) e2πik·x̃ij/Ldz.

As the Fourier series is uniformly convergent and the terms of the sum are continuous functions
on [0, α] we obtain

φs(xj) = 2√
π

∑

k∈Z2

N∑

i=1
qi
π

L2 e2πik·x̃ij/L
∫ α

0

1
s+ z2 e

−π2‖k‖2

L2(s+z2) e−x
2
ij,3(s+z2)dz. (A.2)

In the following we separate the k = 0 term and consider the sum

2√
π

∑

k∈Z2\{0}

N∑

i=1
qi
π

L2 e2πik·x̃ij/L
∫ α

0

1
s+ z2 e

−π2‖k‖2

L2(s+z2) e−x
2
ij,3(s+z2)dz.

If the limit for s → 0 of each single summand exists, we are allowed to change the order of
summation and calculating the limits. In the following, we will show that these limits exist.
We have

lim
s→0

∫ α

0

1
s+ z2 e

−π2‖k‖2

L2(s+z2) e−x
2
ij,3(s+z2)dz =

∫ α

0

1
z2 e

−π2‖k‖2

L2z2 e−x
2
ij,3z

2
dz.

This can be proved as follows. For s > 0 we define the function fs by fs(z) := z2 + s and set
f(z) := z2. Then the convergence fs → f is uniform on [0, α]. The function

h(y) :=





1
y e
−π2‖k‖2

L2y e−x
2
ij,3y : z 6= 0,

0 : z = 0

is continuous and, therefore, uniformly continuous on [0, α]. Thus, the convergence h ◦ fs →
h◦f is also uniform on [0, α] and the limit can be applied to the integrand. For the computation
of the integral on the right hand side we substitute y := z−1 and obtain

∫ α

0

1
z2 e

−π2‖k‖2

L2z2 e−x
2
ij,3z

2
dz =

∫ ∞
1/α

exp
(
−π2‖k‖2y2

L2 − x2
ij,3
y2

)
dy

=
∫ ∞

1/α
exp

[
−
(
π‖k‖y
L + xij,3

y

)2
+ 2π‖k‖xij,3

L

]
dy (A.3)

=
∫ ∞

1/α
exp

[
−
(
π‖k‖y
L − xij,3

y

)2
− 2π‖k‖xij,3

L

]
dy. (A.4)

For the substitutions

t1 := π‖k‖y
L

+ xij,3
y

and t2 := π‖k‖y
L

− xij,3
y
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we obtain

dt1 + dt2 =
(
π‖k‖
L
− xij,3

y2

)
dy +

(
π‖k‖
L

+ xij,3
y2

)
dy = 2π‖k‖

L
dy.

Thus, using (A.3) and (A.4), we get

∫ α

0

1
z2 e

−π2‖k‖2

L2z2 e−x
2
ij,3z

2
dz = L

2π‖k‖

[
e2π‖k‖xij,3/L

∫ ∞
π‖k‖
αL

+αxij,3
e−t21dt1

+ e−2π‖k‖xij,3/L
∫ ∞
π‖k‖
αL
−αxij,3

e−t22dt2

]
= L
√
π

4π Θp2(‖k‖, xij,3)

and, therefore, the limit of φs(xj) can be written in the form

lim
s→0

φs(xj) = φp2,L(xj) + lim
s→0

2
√
π

L2

N∑

i=1
qie−sx

2
ij,3

∫ α

0

e−x
2
ij,3z

2

s+ z2 dz.

Now, we use the substitution y := z√
s
and obtain

I(s) :=
∫ α

0

e−x
2
ij,3z

2

s+ z2 dz =
∫ α√

s

0

e−sx
2
ij,3z

2

√
s(1 + z2)

dz.

Replacing the term f(s) := e−sx
2
ij,3z

2
by its Taylor representation f(s) =

∞∑
n=0

(−1)n(xij,3z)2n sn
n!

we have

I(s) =
∞∑

n=0

(−1)nx2n
ij,3s

n

n!
√
s

∫ α√
s

0

z2n

1 + z2 dz. (A.5)

In the following steps we make use of the identity

∫ β

0

z2n

1 + z2 dz = (−1)n arctan β + (−1)n+1
n−1∑

k=0
(−1)k β

2k+1

2k + 1 , (A.6)

which is valid for β > 0, n ∈ N0 and can easily be verified by induction. Furthermore, we use
the Taylor representation

√
παz · erf(αz) + e−α2z2 = 1 +

∞∑

n=0

(−1)n(αz)2n+2

(n+ 1)!(2n+ 1)

holding for α > 0 and each z ∈ R. Applying (A.6) with β = α√
s
we get

sn√
s

∫ α√
s

0

z2n

1 + z2 dz = (−1)nsn√
s

arctan
(
α√
s

)
+ (−1)n+1

n−1∑

k=0
(−1)k α2k+1sn

(2k + 1)sk+1

=




O(
√
s) + α2n−1

(2n−1) +O(s) for s→ 0 : n > 0,
1√
s

arctan
(
α√
s

)
: n = 0.
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Inserting this result into (A.5) we obtain

I(s) = 1√
s

arctan
(
α√
s

)
+
∞∑

n=1

(−1)nx2n
ij α

2n−1

n!(2n− 1) +O(
√
s)

= 1√
s

arctan
(
α√
s

)
+
∞∑

n=0

(−1)n+1x2n+2
ij α2n+1

(n+ 1)!(2n+ 1) +O(
√
s)

= 1√
s

arctan
(
α√
s

)
−
√
πxij,3 · erf(αxij,3)− 1

α
e−α

2x2
ij,3 + 1

α
+O(

√
s)

and by exploiting the charge neutrality (1.1) we get

lim
s→0

φs(xj) = φp2,L(xj) + lim
s→0

2
√
π

L2

N∑

i=1
qie−sx

2
ij,3I(s)

= φp2,L(xj)−
2
√
π

L2

N∑

i=1
qi

(
e−α

2x2
ij,3

α
+
√
πxij,3 · erf(αxij,3)

)

= φp2,L(xj) + φp2,0(xj) .

B. Proof of Theorem 5.1
As in Theorem 4.1 we apply the convergence factor e−s‖xij+Ln‖2 for the calculation of the
potential (5.1). After using the splitting (1.5) we obtain

φp1(xj) = φp1,S(xj) +
∑

n∈Z×{0}2

N∑

i=1
qi

erf(α‖xij + Ln‖)
‖xij + Ln‖

+ φp1,self(xj).

We define

φs(xj) :=
∑

n∈Z×{0}2

N∑

i=1
qie−s‖xij+Ln‖2 erf(α‖xij + Ln‖)

‖xij + Ln‖

and use the Poisson summation formula
∑

n∈Z
e−β(x+nL)2 = 1

L

∑

k∈Z

√
π

β
e−π2k2/(L2β)e2πikx/L

to obtain

φs(xj) = 2√
π

∑

k∈Z

N∑

i=1
qi

√
π

L
e2πik(xi,1−xj,1)/L

∫ α

0

1√
s+ z2

e
−π2k2
L2(s+z2) e−‖x̃ij‖2(s+z2)dz,

analogously to (A.2). Again, for k 6= 0 we compute the limit for s → 0 under the integrals
and obtain by similar steps as in the proof of Theorem 4.1

lim
s→0

φs(xj) = φp1,L(xj) + lim
s→0

2
L

N∑

i=1
qie−sξ

2
ij

∫ α

0

e−ξ
2
ijz

2

√
s+ z2

dz,
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where we set ξij := ‖x̃ij‖. In order to compute the remaining limit for k = 0 we make use of
the substitution y := z√

s
again and get

I(s) :=
∫ α

0

e−ξ
2
ijz

2

√
s+ z2

dz =
∫ α√

s

0

e−sξ
2
ijz

2

√
1 + z2

dz.

Replacing the exponential by its Taylor representation in s we have

I(s) =
∞∑

n=0

(−1)nξ2n
ij s

n

n!

∫ α√
s

0

z2n
√

1 + z2
dz.

In the following, we use that for β > 0 and n ∈ N we have

∫ β

0

x2ndx√
1 + x2

= (−1)n (2n− 1)!!
(2n)!!

(
√

1 + β2
n∑

k=1
(−1)k (2k − 2)!!

(2k − 1)!!β
2k−1 + ln(β +

√
1 + β2)

)
.

where (2n)!! := (2n) · (2n− 2) · · · · · 2 and (2n− 1)!! := (2n− 1) · (2n− 3) · · · · · 1 for n ∈ N.
The proof can be done via induction in n. We get

∫ α√
s

0

1√
1 + z2

dz = ln
(
α√
s

+
√
s+ α2
√
s

)

for n = 0 and in the case n > 0 we obtain

sn
∫ α√

s

0

z2n
√

1 + z2
dz = (−1)n

√
s+ α2
√
s

sn
(2n− 1)!!

(2n)!!

n∑

k=1
(−1)k (2k − 2)!!

(2k − 1)!!
α2k−1√s

sk

+ (−1)nsn (2n− 1)!!
(2n)!! ln

(
α√
s

+
√
s+ α2
√
s

)

=O(s) +
√
s+ α2 · α

2n−1

2n + (−1)nsn (2n− 1)!!
(2n)!! ln

(
α√
s

+
√
s+ α2
√
s

)

for s→ 0. Applying (5.4), (5.5) as well as the charge neutrality condition (1.1) we get

lim
s→0

φs(xj) = φp1,L(xj) + lim
s→0

2
L

N∑

i=1
qie−sξ

2
ijI(s),

= φp1,L(xj) + 2
L

N∑

i=1
qi

∞∑

n=1

(−1)nξ2n
ij α

2n

n!2n

= φp1,L(xj)−
1
L

N∑

i=1
‖x̃ij‖6=0

qi
[
γ + Γ(0, α2‖x̃ij‖2) + ln(α2‖x̃ij‖2)

]
.
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C. Two point Taylor interpolation
In order to construct the smooth (p-times differentiable) transitions in (4.12) we have to
regularize different functions; see also Figure 4.3. Thereby, we know the function values and
the derivatives in the boundary points (in the following denoted by aj and bj) and compute
a regularization (in the following denoted by P ). The following theorems give the precise
definition of the regularizing functions.

Theorem C.1. Let an interval [m − r,m + r], r > 0, and the interpolation values aj =
K(j)(m− r), bj = K(j)(m+ r), j = 0, . . . , p− 1, be given. For y = x−m

r the polynomial

P (x) =
p−1∑

j=0

p−1−j∑

k=0

(
p− 1 + k

k

)
1

j!2p2k
[
rj(1− y)p(1 + y)k+jaj + (−r)j(1 + y)p(1− y)k+jbj

]

=
p−1∑

j=0
B(p, j, y)rjaj +

p−1∑

j=0
B(p, j,−y)(−r)jbj

of degree 2p − 1 satisfies the interpolation conditions P (j)(m − r) = aj , P
(j)(m + r) = bj ,

j = 0, . . . , p− 1. Hereby, the basis polynomials B(p, j, y) are given by

B(p, j, y) :=
p−1−j∑

k=0

(
p− 1 + k

k

)
1

j!2p2k (1− y)p(1 + y)k+j .

Proof. See [3, Corollary 2.2.6] or [20, Proposition 3.2].

The following theorem gives the precise definition of the slightly different regularizing func-
tions that are used Section 5.2 for the 1d-periodic case; see also Figure 5.1. It differs form the
theorem above such that the function value in the second interpolation point is unknown.

Theorem C.2. Let an interval [m − r,m + r], r > 0, and the interpolation values aj =
K(j)(m− r), j = 0, . . . , p− 1, and bj = K(j)(m+ r), j = 1, . . . , p− 1, be given. For y = x−m

r
the polynomial

Q(x) :=
p−2∑

j=0
I(p− 1, j, y)rj+1aj+1 +

p−2∑

j=0
I(p− 1, j,−y)(−r)j+1bj+1

−
p−2∑

j=0
I(p− 1, j,−1)rj+1aj+1 −

p−2∑

j=0
I(p− 1, j, 1)(−r)j+1bj+1 + a0

of degree 2p− 2 satisfies the interpolation conditions Q(j)(m− r) = aj , j = 0, . . . , p− 1, and
Q(j)(m+ r) = bj , j = 1, . . . , p− 1. Thereby, the polynomials I(p, j, y) are given by

I(p, j, y) :=
p−1−j∑

k=0

(
p− 1 + k

k

)
1

j!2p2k
p∑

l=0

p!
(p− l)!

(k + j)!
(k + 1 + j + l)! (1− y)p−l(1 + y)k+j+1+l.

Proof. According to Theorem C.1 the polynomial

P̃ (x) =
p−2∑

j=0
B(p− 1, j, y)rjaj+1 +

p−2∑

j=0
B(p− 1, j,−y)(−r)jbj+1
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satisfies the interpolation conditions P̃ (j)(m− r) = aj+1, P̃
(j)(m+ r) = bj+1, j = 0, . . . , p− 2.

For k, l ∈ N we obtain by partial integration for l times

∫
(1− x)l(1 + x)kdx =

l∑

j=0

l!
(l − j)!

k!
(k + 1 + j)! (1− x)l−j(1 + x)k+1+j + C,C ∈ R

and therewith ∫
B(p, j, y)dx = rI(p, j, y) + C,C ∈ R.

Thus, the antiderivatives of P̃ (x) are given by Q(x) := Q̃(x) + C, C ∈ R with

Q̃(x) :=
p−2∑

j=0
I(p− 1, j, y)rj+1aj+1 +

p−2∑

j=0
I(p− 1, j,−y)(−r)j+1bj+1.

Finally, we choose the constant C = a0 − Q̃(m− r) in order to satisfy Q(m− r) = a0.

D. Parameter estimation for 3d-periodic Ewald summation
For sake of simplicity we only consider cubic simulation boxes of length L. We assume that
the real space cutoff rcut is chosen such that the short range part (3.3) is computational
tractable and we want to tune all other parameters such that the rms energy error ∆US
defined in (1.8) is below some prescribed error bound. For uncorrelated particle positions
it is well known that the Ewald splitting parameter α and the radial Fourier space cutoff
kcut of the classical 3d-periodic Ewald summation can be determined by inversion of the very
accurate error estimates given in [30] resulting in

α = 1
rcut

√
W
(

2
∆US

Q

√
rcut
NL3

)
, (D.1)

kcut =
√

3Lα
2π

√√√√W
(

4
3L2

(
2

Nαπ

)2/3(
Q

2
∆US

)4/3
)
. (D.2)

Hereby, Q =
∑N

j=1 q
2
j is the sum of all squared charges, L is the box length and W(·) is the

Lambert-W function defined as the inverse of f(w) = wew. Note that we inserted ∆US/2 into
the error formulae of [30] in order to guarantee that the sum of the real space and Fourier
space error is below the rms energy error ∆US . The corresponding size M of a cubic Fourier
space grid must be chosen large enough to include all the grid points ‖k‖ ≤ kcut, e.g.,

M = 2dkcute+ 2. (D.3)

Although they do not provide any proof, [35] give some numerical evidence that these formulae
can also be used in the 2d-periodic case. This encourages us to determine the Ewald splitting
parameter α by (D.1) as well as the number of Fourier coefficients corresponding to periodic
dimensions by (D.2) and (D.3) for the 2d- and even for the 1d-periodic case.
Since we want to use NFFTs in order to speed up the computation of the Fourier space

contribution (3.4), we need to tune the oversampled grid size m and the order of the B-Spline
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radial grid cubic grid
N L M m ∆UZ3 ∆FZ3 ∆UZ3 ∆FZ3

1000 1.0 (26,26,26) (32,32,32) 9.70e-10 5.28e-08 4.63e-10 3.48e-08
12000 2.29 (54,54,54) (68,68,68) 9.56e-10 5.22e-08 4.81e-10 3.55e-08
23000 2.84 (66,66,66) (82,82,82) 9.95e-10 5.38e-08 4.87e-10 3.56e-08
34000 3.24 (74,74,74) (92,92,92) 9.85e-10 5.32e-08 4.92e-10 3.57e-08
45000 3.56 (82,82,82) (102,102,102) 9.69e-10 5.25e-08 4.88e-10 3.55e-08
56000 3.83 (88,88,88) (110,110,110) 9.72e-10 5.30e-08 4.89e-10 3.55e-08
67000 4.06 (92,92,92) (114,114,114) 9.87e-10 5.31e-08 5.02e-10 3.57e-08
78000 4.27 (98,98,98) (122,122,122) 9.63e-10 5.48e-08 4.91e-10 3.89e-08
89000 4.46 (102,102,102) (126,126,126) 9.79e-10 5.83e-08 4.98e-10 4.31e-08
100000 4.64 (106,106,106) (132,132,132) 9.74e-10 6.24e-08 4.94e-10 4.88e-08

Table D.1: List of parameters and achieved accuracies for NFFT based fast Ewald summation
with target accuracy ∆UZ3 = 10−9, real space cutoff rcut = 0.62, Ewald splitting
parameter α = 7.489225, and B-spline order 14. The oversampled grid size m and
the order of the B-Spline have been tuned only for the smallest test case N = 1000.
For the larger test cases we set m ≈ 1.23M .

order such that the NFFT approximation error is not visible anymore in comparison to the
truncation error in Fourier space due to kcut. We claim that these two parameters must be
tuned only for a small test system. For larger particle numbers the same accuracy can be
achieved by keeping the B-Spline order and the vector valued oversampling factor m�M−1

constant. In Table D.1 we give numerical evidence that this parameter tuning works very well
for random particle distribution defined in Example 4.8. In order to highlight the exactness
of the predicted accuracy we computed the NFFT on the radial grid ‖k‖ ≤ kcut and show the
corresponding energy error in columns 5. In contrast using the full cubic grid results in an
even better accuracy than predicted; see column 7 of Table D.1. For the sake of completeness
we also list the force errors for both Fourier space cutoff schemes.

E. Error per particle distribution
In the following we show that choosing an appropriate regularization grid size P results in
an equal error distribution over the whole box. Especially, the errors do not increase at the
border of the simulation box. Therefore, we investigate the per particle energy and force
errors of N = 1000 randomly equally distributed particles; see Example 4.8 for definition of
the test system. Figure E.1 shows the distribution of the energy error and force errors per
particle in dependence on the non-periodic coordinate. Thereby we chose the parameters that
have been identified in Example 4.8 for an target accuracy of ∆UZ2×{0} = 10−9. We see that
our choice of P = 32 guarantees an almost equal distribution of the energy errors in the box.
However, the error of the forces increases slightly at the border of the simulation box. This
is due to the fact that we tuned P only for an optimal energy error. Figure E.2 shows that
larger P = 36 gives also an equal distribution of the force errors. In contrast, for smaller
P = 28 the errors increase a lot at the boundary of the simulation box. We observed exactly
the same behavior for the two non-periodic dimension in the 1d-periodic case. Furthermore,
we observed that the error distribution along periodic dimensions is also equal over the whole
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box. In summary we see that choosing the regularization grid size P large enough means
increasing P until the boundary effects of the errors disappear.
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Figure E.1: Energy and force error distribution over N = 1000 randomly distributed particles
xj under 2d-periodic boundary conditions. The regularization grid size P = 32
was tuned for an optimal energy error.
left: Energy error per particle as function over the non-periodic coordinate xj,3.
right: Force error in the third component as function over the non-periodic coor-
dinate xj,3 for P = 32.
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Figure E.2: Force error distribution over N = 1000 randomly distributed particles xj under
2d-periodic boundary conditions.
left: Force error in the third component as function over the non-periodic coor-
dinate xj,3 for regularization grid size P = 28.
right: Force error in the third component as function over the non-periodic coor-
dinate xj,3 for regularization grid size P = 36.
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