
Particle Simulation Based on
Nonequispaced Fast Fourier Transforms

Michael Pippig and Daniel Potts

Chemnitz University of Technology
Department of Mathematics
09107 Chemnitz, Germany

E-mail: {michael.pippig, daniel.potts}@mathematik.tu-chemnitz.de

The fast calculation of long-range interactions is a demanding problem in particle simulation.
The main focus of our approach is the decomposition of the problem in building blocks and
present efficient numerical realizations for these blocks. For that reason we recapitulate the
fast Fourier transform at nonequispaced nodes and the fast summation method. We describe
the application of these algorithms to the evaluation of long-range potentials and compare our
methods with the existing fast multipole method.

Keywords and Phrases. fast discrete summation, fast Fourier transform at nonequispaced
nodes, NFFT, fast multipole method, FMM, Ewald method, FFT-accelerated Ewald sum,
particle-particle particle-mesh (P3M), particle-mesh Ewald (PME), smooth particle-mesh
Ewald (SPME).

1 Introduction

An important concern of applied mathematics is the development of efficient algorithms
for frequently recurring problems. On the other hand one should decompose the practi-
cal problems such that one can use the efficient algorithms and consequently incorporate
advanced implementations.

The aim of this tutorial is to decompose problems from particle simulation into building
blocks. These blocks are the fast Fourier transform (FFT), the fast Fourier transform at
nonequispaced nodes (NFFT) and the fast summation method.

In Section 2 we summarize the main ideas of the NFFT. A severe shortcoming of tradi-
tional Fourier schemes in recent applications is the need for equispaced sampling. During
the last two decades that problem has attracted much attention. The nonequispaced fast
Fourier transform19 overcomes these disadvantages while keeping the number of floating
point operations at N logN . The concept of NFFT is the trade of exactness for efficiency.
Instead of precise computations (up to machine precision for actual implementations), the
proposed methods guarantee a user specified target accuracy. An early review of several
algorithms for nonuniform Fourier transforms3, 6 has been given by A. Ware32. A unified
approach to fast algorithms for the NFFT has been obtained by G. Steidl in30. The main
idea is the use of a window function which is well localized in space as well as in frequency
domain. Then one is able to use an approximation by translates of the scaled window func-
tion and estimate the approximation error, see the tutorial paper29. It became clear, that
this approach is related to the gridding algorithm, which was known in image processing
context and astrophysics years ago. Similar methods where used in particle simulation. A
widely used implementation is available as part of the NFFT package19 and is based on the
FFTW13.

1

In Section 3 we summarize the main ideas of the fast summation method based on
NFFT. This method can be interpreted as nonequispaced convolution. For equispaced
nodes the discrete convolution and its fast computation is typically realized by FFT ex-
ploiting the basic property e2πi(y−x) = e2πiye−2πix. Following these lines, we propose
to compute the “convolution at nonequispaced nodes” by Fourier methods as well, more
precisely by the NFFT. This new method includes convolutions, e.g., with kernels of the
form 1/‖x‖2.

In Section 4 we describe how to use the building blocks from Section 2 and Section
3 for particle simulation. Here we focus on the Coulomb potential for open and periodic
systems. We remark that some FFT-accelerated Ewald17, 15 methods contain similar steps
as the fast summation based on NFFT.

Finally Section 5 contains various different numerical examples, where we compare
our methods with the fast multipole method.

2 Nonequispaced Fourier transforms

This section summarizes the mathematical theory and ideas behind the NFFT based
on29, 19–21. Let the dimension d ∈ N, the torus Td := Rd/Zd ∼ [− 1

2 ,
1
2)d and the sam-

pling set X := {xj ∈ Td : j = 1, . . . ,M} with M ∈ N be given. Furthermore, let the
multi degree N = (N0, N1, . . . , Nd−1)

> ∈ 2Nd and the index set for possible frequencies
IN := {−N0

2 , . . . ,
N0

2 −1}× . . .×{−Nd−1

2 , . . . , Nd−1

2 −1} be given. We define the space
of d-variate trigonometric polynomials TN of multi degree N by

TN := span
{

e−2πik· : k ∈ IN
}
.

The dimension of this space and hence the total number of Fourier coefficients is Nπ =
N0 · . . . · Nd−1. Note, that we abbreviate the inner product between the frequency k and
the time/spatial node x by kx = k>x = k0x0 + k1x1 + . . . + kd−1xd−1. For clarity of
presentation the multi index k addresses elements of vectors and matrices as well.

2.1 Nonequispaced discrete Fourier transform (NDFT)

For a finite number Nπ of given Fourier coefficients f̂k ∈ C, k ∈ IN, one wants to
evaluate the trigonometric polynomial

f (x) :=
∑
k∈IN

f̂ke−2πikx ∈ TN (2.1)

at given nonequispaced nodes xj ∈ Td, j = 1, . . . ,M . Thus, our concern is the computa-
tion of the matrix vector product

f = Af̂ (2.2)

where

f := (f (xj))j=1,...,M , A :=
(
e−2πikxj

)
j=1,...,M ; k∈IN

, f̂ :=
(
f̂k

)
k∈IN

.

2

The straightforward algorithm for this matrix vector product, which is called NDFT,
takes O(MNπ) arithmetical operations. A related matrix vector product is the adjoint
NDFT

f̂ = Aàf , f̂k =

M∑
j=1

fje+2πikxj ,

where Aà = A
>

. Note furthermore, that the inversion formula F−1 = Fà for the (equis-
paced and normalized) Fourier matrix F does not hold in the general situation of arbitrary
sampling nodes for the matrix A.

2.2 Nonequispaced fast Fourier transform (NFFT)

The most successful approach for the fast computation of (2.2), cf.6, 3, 30, 29, 11, 14, is based on
the usage of an oversampled FFT and a window function ϕ which is simultaneously local-
ized in time/space and frequency. Basically, the scheme utilizes the convolution theorem
in the following three informal steps:

1. deconvolve the trigonometric polynomial f ∈ TN in (2.1) with a window function in
frequency domain,

2. compute an oversampled FFT on the result of step 1.,

3. convolve the result of step 2. with the window function in time/spatial domain, i.e.,
evaluate this convolution at the nodes xj .

Throughout the rest of the paper we denote by σ > 1 the oversampling factor and by
n = σN ∈ N the FFT size. Furthermore, for d > 1 let σ = (σ0, . . . , σd−1)> ∈ Rd,
σ0, . . . , σd−1 > 1, n = σ �N, and nπ = n0 · . . . · nd−1 denote the oversampling factor,
the FFT size, and the total FFT size, respectively. For notational convenience we use the
pointwise product σ �N := (σ0N0, σ1N1, . . . , σd−1Nd−1,)

> and the pointwise inverse

N−1 :=
(

1
N0
, 1
N1
, . . . , 1

Nd−1

)>
.

The window function

Starting with a window function ϕ ∈ L2(R), which is well localized in the time/spatial
domain R and in the frequency domain R, respectively, one assumes that its 1-periodic
version ϕ̃, i.e.,

ϕ̃ (x) :=
∑
r∈Z

ϕ (x+ r)

has an uniformly convergent Fourier series and is well localized in the time/spatial domain
T and in the frequency domain Z, respectively. Thus, the periodic window function ϕ̃ may
be represented by its Fourier series

ϕ̃ (x) =
∑
k∈Z

ϕ̂ (k) e−2πikx

3

with the Fourier coefficients

ϕ̂ (k) :=

∫
T

ϕ̃ (x) e+2πikx dx =

∫
R

ϕ (x) e+2πikx dx , k ∈ Z.

We truncate this series at the FFT length n, which causes an aliasing error.
If ϕ is furthermore well localized in time/spatial domain R, it can be truncated with

truncation parameterm ∈ N, m� n and approximated by the function ϕ·χ[−mn ,
m
n] which

has compact support within the interval [−mn ,
m
n]. Furthermore, the periodic window func-

tion can be approximated by the periodic version of the truncated window function. For
d > 1, univariate window functions ϕ0, . . . , ϕd−1, and a node x = (x0, . . . , xd−1)> the
multivariate window function is simply given by

ϕ (x) := ϕ0 (x0)ϕ1 (x1) . . . ϕd−1 (xd−1)

and ϕ̃(x) =
∑

r∈Zd ϕ(x+ r) again denotes the 1-periodic version; an immediate observa-
tion is

ϕ̂ (k) :=

∫
Rd

ϕ (x) e+2πikx dx = ϕ̂0 (k0) ϕ̂1 (k1) . . . ϕ̂d−1 (kd−1) .

For a single truncation parameter m ∈ N the window function is truncated to the cube
n−1 � [−m,m]d.

We follow the general approach of30, 29 and approximate the complex exponentials in
the trigonometric polynomial (2.1) by

e−2πikx ≈ 1

nπϕ̂ (k)

∑
l∈In,m(x)

ϕ̃
(
x− n−1 � l

)
e−2πi(n−1�l)k (2.3)

where the set

In,m (x) := {l ∈ In : n� x−m1 ≤ l ≤ n� x +m1}

collects these indices where the window function is mostly concentrated (the inequalities
have to be fulfilled modulo n and for each component). After changing the order of sum-
mation in (2.1) we obtain for xj ∈ Td, j = 1, . . . ,M, the approximation

f (xj) ≈
∑

l∈In,m(xj)

(∑
k∈IN

f̂k
nπϕ̂ (k)

e−2πi(n−1�l)k

)
ϕ̃
(
xj − n−1 � l

)
.

This causes a truncation and an aliasing error, see29, 26 for details. As can be readily seen,
after an initial deconvolution step, the expression in brackets can be computed via a d-
variate FFT of total size nπ . The final step consists of the evaluation of sums having at
most (2m+ 1)d terms where the window function is sampled only in the neighborhood of
the node xj .

The algorithm and its matrix notation

The proposed scheme reads in matrix vector notation as

Af̂ ≈ BFDf̂ ,

4

where B denotes the real M × nπ sparse matrix

B :=
(
ϕ̃
(
xj − n−1 � l

)
· χIn,m(xj) (l)

)
j=1,...,M ; l∈In

, (2.4)

where F is the d-variate Fourier matrix of size nπ × nπ ,

F :=
(

e−2πi(n−1�l)k
)
l∈In;k∈In

, (2.5)

and where D is the real nπ ×Nπ ’diagonal’ matrix

D :=

d−1⊗
t=0

(
Ot | diag

(
1

ntϕ̂t (kt)

)
kt∈INt

|Ot

)>
(2.6)

with zero matrices Ot of size Nt × nt−Nt
2 . Obviously, the approximate matrix splitting

can be applied to the adjoint matrix as Aà ≈ D>FàB>, where the multiplication with
the sparse matrix B> is implemented in a ’transposed’ way, summation as outer loop and
only using the index sets In,m (xj).

Algorithm 1 NFFT
Input: d ∈ N dimension,

M ∈ N number of nodes, nodes xj ∈ [− 1
2 ,

1
2)d, j = 1, . . . ,M ,

N ∈ 2Nd multi degree, Fourier coefficients f̂k ∈ C, k ∈ IN,
σ ∈ Rd oversampling factor with σt > 1, t = 0, . . . , d− 1,
m ∈ N window size of ϕ̃.

1. For k ∈ IN compute

ĝk :=
f̂k

nπϕ̂(k)
.

2. For l ∈ In with n = σ �N compute by d-variate (forward) FFT

gl :=
∑
k∈IN

ĝk e−2πik(n−1�l).

3. For j = 1, . . . ,M compute

sj :=
∑

l∈In,m(xj)

gl ϕ̃
(
xj − n−1 � l

)
.

Output: approximate values sj ≈ f(xj) , j = 1, . . . ,M .

Evaluation techniques for window functions

To keep the aliasing error and the truncation error small, several univariate functions ϕ
with good localization in time and frequency domain were proposed. For an oversampling
factor σ > 1, a degree N ∈ 2N, the FFT length n = σN , and a cut-off parameter m ∈ N,
the following window functions are considered:

5

Algorithm 2 NFFTà

Input: d ∈ N dimension,
M ∈ N number of nodes,
nodes xj ∈ [− 1

2 ,
1
2)d, coefficients fj ∈ C, j = 1, . . . ,M ,

N ∈ 2Nd multi degree,
σ ∈ Rd oversampling factor with σt > 1, t = 0, . . . , d− 1,
m ∈ N window size of ϕ̃.

1. For l ∈ In with n = σ �N compute

gl :=

M∑
j=1

l∈In,m(xj)

fj ϕ̃
(
xj − n−1 � l

)
.

2. For k ∈ In compute by d-variate (backward) FFT

ĝk :=
∑
l∈In

gl e+2πik(n−1�l).

3. For k ∈ IN compute

ŝk :=
ĝk

nπϕ̂(k)
.

Output: approximate values ŝk ≈ f̂k, k ∈ IN.

1. for a shape parameter b = 2σ
2σ−1

m
π the dilated Gaussian window6, 30, 5

ϕ(x) = (πb)−1/2 e−(nx)
2/b, (2.7)

ϕ̂(k) =
1

n
e−(

πk
n)2b,

2. for M2m denoting the centered cardinal B-Spline of order 2m the dilated B-Spline
window3, 30

ϕ(x) = M2m(nx), (2.8)

ϕ̂(k) =
1

n


1 for k = 0,

sinc2m
(
kπ

n

)
otherwise,

3. the dilated Sinc window26

ϕ(x) =
N (2σ − 1)

2m
sinc2m

(
πNx (2σ − 1)

2m

)
, (2.9)

ϕ̂(k) = M2m

(
2mk

(2σ − 1)N

)
,

with sinc(x) := sin(x) / x for x 6= 0 and sinc(0) := 1

6

4. and for a shape parameter b = π(2− 1
σ) the dilated Kaiser-Bessel window27

ϕ(x) =
1

π


sinh(b

√
m2 − n2x2)√

m2 − n2x2
for |x| ≤ m

n ,

sin(b
√
n2x2 −m2)√

n2x2 −m2
otherwise,

(2.10)

ϕ̂(k) =

{
1
n I0

(
m
√
b2 − (2πk/n)2

)
for k = −n

(
1− 1

2σ

)
, . . . , n

(
1− 1

2σ

)
,

0 otherwise,

where I0 denotes the modified zero-order Bessel function.

Note, that the latter two have compact support in frequency domain while the second one
has compact support in time domain. Further references on the usage of (generalized)
Kaiser-Bessel window functions include18, 23, where some authors prefer to interchange
the role of time and frequency domain. For these univariate window functions ϕ, the
approximation error of Algorithm 1 obeys

|f (xj)− sj | ≤ Cσ,m‖f̂‖1 ,

where

Cσ,m :=



4 e−mπ(1−1/(2σ−1)) for (2.7), cf.30,

4
(

1
2σ−1

)2m
for (2.8), cf.30,

1
m−1

(
2

σ2m +
(

σ
2σ−1

)2m)
for (2.9), cf.26,

4π (
√
m+m) 4

√
1− 1

σ e−2πm
√

1−1/σ for (2.10), cf.26.

Thus, for fixed σ > 1, the approximation error introduced by the NFFT decays exponen-
tially with the number m of terms in sum (2.3). Using the tensor product approach, the
error estimates above have been generalized for the multivariate setting in7, 5.

In summary, the whole algorithm for the fast approximate computation of (2.1) consists
of the computation of Nπ multiplications, the computation of a d-variate FFT of total size
nπ and the sparse summations. Therefore it requiresO(nπ +nπ log nπ +(2m+1)dM) =
O(nπ log nπ +mdM) arithmetic operations.

In21 we suggest different methods for the compressed storage and application of ma-
trix B, which are all available within our NFFT library19 by choosing particular flags in
a simple way during the initialization phase. These methods include fully precomputed
window function, tensor product based precomputation, linear interpolation from a lookup
table, fast Gaussian gridding (see also14) and no precomputation of the window function.
The choice of precomputation does not yield a different asymptotic performance but rather
yields a lower constant in the amount of computation.

Finally we remark, that similar approximations of the exponentials as in (2.3) are used
in various particle methods, see [4, Formula (24)], [8, Formula (3.5)] or [15, Formula
(7.57)]. However, mainly splines are used as window functions. We note that, e.g., Kaiser-
Bessel functions lead to better results, while using the same window size m, see Figure 2.1

7

0 5 10 15
10

−15

10
−10

10
−5

10
0

(a) d = 1, N = 212.

0 5 10 15
10

−15

10
−10

10
−5

10
0

(b) d = 2, N = 26.

0 5 10 15
10

−15

10
−10

10
−5

10
0

(c) d = 3, N = 24.

Figure 2.1. Error E∞ for increasing cut-off parameter m = 0, . . . , 14 and d = 1, 2, 3. In each case, the degree
N was chosen to be equal along each dimension such that |IN| = 212. We fixed the oversampling factor σ = 2
and M = 10000. Shown are results for the Kaiser-Bessel (◦), the Sinc (×), the B-spline (+), and the Gaussian
window function (4).

and20, where the accuracy is measured by

E∞ := max
1≤j≤M

|fj − sj |/
∑
k∈IN

|f̂k| .

For further NFFT approaches see [20, Appendix D].

3 Fast Summation Algorithms

We are interested in the fast evaluation of sums

h(y) :=

L∑
l=1

αlK(y − xl) =

L∑
l=1

αlK(‖y − xl‖2), (3.1)

at M different target nodes yj , j = 1, . . . ,M , where ‖x‖2 := (x20 + . . . + x2d−1)1/2

denotes the Euclidean norm. This approach was suggested in27, 28, 9. The original idea for
our algorithm came from the consideration of (3.1) for equispaced source nodes xl and
target nodes yj . In this case we have simply to compute the multiplication of a vector with
a Toeplitz matrix or a block–Toeplitz–Toeplitz–block matrix in the multivariate setting.
The standard algorithm to do this uses the FFT, see [27, Section 2]. Here we propose the
summation algorithm based on NFFT for arbitrary distributed source and target nodes.

The kernel function K is in general a non-periodic function, while the use of Fourier
methods requires to replace K by a periodic version. Without loss of generality we may
assume that the source and target nodes are scaled, such that ‖xl‖2, ‖yj‖2 < 1

4 −
εB
2 and

consequently ‖yj − xl‖2 < 1
2 − εB. The parameter εB > 0, which we specify later,

guarantees that K has to be evaluated only at nodes in the ball with radius 1
2 − εB. This

simplifies the later consideration of a 1-periodic version of K.
We deal with kernels K which are C∞ except for the origin, where K or its derivatives

may have singularities. Examples of such kernels are

‖x‖22 log ‖x‖2, log ‖x‖2 and
1

‖x‖β2
(β ∈ N).

8

For the sake of simplicity we define K(0) = 0 whenever a singularity appears at the
origin. This enables us to evaluate (3.1) at source nodes which coincide with a target
node. Of course, our algorithm can be modified for other kernels frequently used in the ap-
proximation by radial basis functions, e.g., the Gaussian22 or the (inverse) multiquadric10

(x2 + c2)±1/2. Our algorithm, in particular our regularization procedure, is simply struc-
tured, can easily be adapted to different kernels K and requires O(L log d

√
L + M) or

O(M log d
√
M + L) arithmetic operations for uniformly distributed source nodes xl or

target nodes yj , respectively.
Beyond a special treatment of K near the boundary, we have to be concerned about the

singularity of K at the origin. We regularize K near 0 and near the boundary {x ∈ Td :
‖x‖2 = 1

2} as follows

KR(x) :=


TI(‖x‖2) if ‖x‖2 ≤ εI,
TB(‖x‖2) if 1

2 − εB < ‖x‖2 <
1
2 ,

TB(1
2) if 1

2 ≤ ‖x‖2,
K(‖x‖2) otherwise,

(3.2)

where 0 < εI <
1
2 − εB < 1

2 . The functions TI and TB will be chosen such that KR is in
the Sobolev space Hp(Td) for an appropriate parameter p ∈ N. Several regularizations of
K are possible, e.g., by algebraic polynomials, splines or trigonometric polynomials, see10.

Here we focus our attention on two point Taylor interpolation, i.e., we are interested in
the unique polynomial of degree 2p− 1 which satisfies the interpolation conditions

P (j)(m− r) = aj , P (j)(m+ r) = bj , j = 0, . . . , p− 1 (3.3)

at the endpoints of an interval [m− r,m+ r], r > 0.
Lemma 3.1. (see [9, Proposition 2.2]) For given aj , bj (j = 0, . . . , p − 1) there exists
a unique polynomial P of degree 2p − 1 which satisfies (3.3). With y := z−m

r this
polynomial can be written as

P (z) =
1

2p

p−1∑
j=0

p−1−j∑
k=0

(
p− 1 + k

k

)
rj

j!2k(
(1 + y)j+k(1− y)paj + (1− y)j+k(1 + y)p(−1)jbj

)
.

(3.4)

Lemma 3.2. The derivative of the polynomial P from (3.4) is given by

P ′(z) =
1

2p

p−1∑
j=0

p−1−j∑
k=0
j+k 6=0

(
p− 1 + k

k

)
rj−1

j!2k

(
(1 + y)j+k−1(1− y)p−1

[
(j + k)(1− y)− p(1 + y)

]
aj

+ (1− y)j+k−1(1 + y)p−1
[
(j + k)(1 + y)− p(1− y)

]
(−1)j−1bj

)
.

(3.5)

We exploit (3.4) with aj = K(j)(εI), bj = (−1)jaj , j = 0, . . . , p− 1,m = 0, r = 2εI
to obtain TI and with aj = K(j)(1

2−εB), bj = δ0,jK(1
2), j = 0, . . . , p−1,m = 1−εB

2 , r =
εB to obtain TB.

9

Next we approximate the smooth function KR by the Fourier series

KR ≈ KRF(x) :=
∑
k∈IN

b̂ke−2πikx, (3.6)

where

b̂k :=
1

Nπ

∑
l∈IN

KR(N−1 � l)e+2πi(N−1�l)k, k ∈ IN . (3.7)

Then our original kernel splits as

K = (K −KR) + (KR −KRF) + KRF = KNE + KER + KRF, (3.8)

where KNE := K −KR and KER := KR −KRF. Since KR is smooth, the approximation
error KER of its Fourier approximation KRF should be small. We neglect this error and
approximate h in (3.1) by

h(y) ≈ h̃(y) := hNE(y) + hRF(y),

where

hNE(y) :=

L∑
l=1

αlKNE(y − xl) , (3.9)

hRF(y) :=

L∑
l=1

αlKRF(y − xl) . (3.10)

Instead of h we evaluate h̃ at the target nodes yj . If either the source nodes xk or the target
nodes yj are “sufficiently uniformly distributed” this can indeed be done in a fast way,
namely:

Near field computation (3.9)

By definition (3.2), the function KNE has a small support contained in the ball of radius
εI around 0 and in the neighborhood of the boundary. The boundary is not interesting for
us since ‖yj − xl‖2 ≤ 1/2 − εB. To achieve the desired complexity of our algorithm
we suppose that either the L source nodes xl or the M target nodes yj are “sufficiently
uniformly distributed”, i.e., we suppose that there exists a small constant ν ∈ N such that
every ball of radius εI contains at most ν of the nodes xl or of the nodes yj , respectively.
This implies that εI depends linearly on 1/ d

√
L, respectively 1/ d

√
M . In the following, we

restrict our attention to the case

εI ∼ d

√
ν

L
.

Then for fixed yj the sum (3.9) contains not more than ν terms so that its evaluation at M
target nodes yj requires only O(νM) arithmetic operations.

We remark that also O(log d
√
M), respectively O(log d

√
L) nodes instead of O(1)

nodes per ball will keep a complexity of O(M log d
√
M + L log d

√
L) of our whole al-

gorithm.

10

Far field summation (3.10) by NFFTà/NFFT

Substituting (3.6) for KRF we obtain

hRF(yj) =

L∑
l=1

αl
∑
k∈IN

b̂ke−2πik(yj−xl) =
∑
k∈IN

b̂k

(
L∑
l=1

αle+2πikxl

)
e−2πikyj .

The expression in the inner brackets can be computed by a d-variate NFFTà of total size
Nπ . This is followed by Nπ multiplications with b̂k and completed by a d-variate NFFT of
total size Nπ to compute the outer sum with the complex exponentials. If m is the cut-off
parameter and σ = (2)t=0,...,d−1 the oversampling factor of the NFFTà/NFFT, then the
proposed evaluation of hRF at the nodes yj , j = 1, . . . ,M requires O(md(L + M) +
σπNπ log(σπNπ)) arithmetic operations. The relation between M,L and N is determined
by the approximation error of the algorithm and is discussed in detail in27, 28, 10.

Note, we can avoid the error ofKER in the near field in (3.8) by splitting kernel function
K as

K = (K −KRF) + KRF = KNE + KER + KRF, (3.11)

and setting KNE := (K −KRF)χ{‖·‖≤εI}, KER := K − KRF − KNE. The first splitting
(3.8) is preferable, if we are able to evaluate the near field regularization TI in a fast way. If
TI can not be computed in a fast way but the Fourier coefficients b̂k are given, the splitting
(3.11) should be used.

The algorithm and its matrix notation

The proposed scheme reads in matrix vector notation as

Kα ≈ ByFDDbD
>FHB>x α+ KNEα , (3.12)

where Bx denotes the real L × nπ sparse matrix depending on the source nodes xl, l =
1, . . . , L as given in (2.4)

Bx :=
(
ϕ̃
(
xl − n−1 � l

)
· χIn,m(xl) (l)

)
l=1,...,L; l∈In

,

By denotes the realM×nπ sparse matrix depending on the target nodes yj , j = 1, . . . ,M
as given in (2.4)

By :=
(
ϕ̃
(
yj − n−1 � l

)
· χIn,m(yj) (l)

)
j=1,...,M ; l∈In

,

F is the d-variate Fourier matrix of size nπ × nπ given in (2.5), D is the real nπ × Nπ
’diagonal’ matrix given in (2.6), which contains the Fourier coefficients of the window
function, Db = diag(b̂k)k∈IN contains the Fourier coefficients of the regularized kernel
KR given in (3.7). Furthermore, KNE contains the near field correction (3.9). From the
representation (3.12) we see, that FDFH with a diagonal matrix D is well known as fast
realization of a convolution on a mesh. The matrix B> is used to smear the charge density
onto a grid, then one can use a convolution on a mesh and finally a back-interpolation via
B.

In summary we obtain Algorithm 3 for the fast evaluation of (3.1).

11

Algorithm 3 Fast sum
Input: d ∈ N dimension,

p ∈ N smoothness of regularized kernel KR,
N ∈ 2Nd multi degree,
εI > 0 nearfield size,
εB > 0 boundary size,
L ∈ N number of source nodes,
M ∈ N number of target nodes,
source nodes xl ∈ [− 1

4 + εB
2 ,

1
4 −

εB
2)d, l = 1, . . . , L,

target nodes yj ∈ [− 1
4 + εB

2 ,
1
4 −

εB
2)d, j = 1, . . . ,M ,

coefficients αl ∈ C, l = 1, . . . , L.

Precomputation:

i) Computation of (b̂k)k∈IN by (3.7) and (3.2).

ii) Computation of KNE(yj − xl) for all j = 1, . . . ,M and l ∈ INE
εI (j),

where INE
εI (j) := {l ∈ {1, . . . , L} : ‖yj − xl‖2 < εI}.

1. For k ∈ IN compute by Algorithm 2 the d-variate NFFTà

âk :=

L∑
l=1

αle+2πikxl .

2. For k ∈ IN compute the products

d̂k := âkb̂k.

3. For j = 1, . . . ,M compute by Algorithm 1 the d-variate NFFT

hRF(yj) :=
∑
k∈IN

d̂ke−2πikyj .

4. For j = 1, . . . ,M compute the near field sums

hNE(yj) =
∑

l∈INE
εI

(j)

αlKNE(yj − xl).

5. For j = 1, . . . ,M compute the near field corrections

h̃(yj) = hNE(yj) + hRF(yj).

Output: approximate values h̃(yj) ≈ h(yj), j = 1, . . . ,M .

Generalization to cuboidal domains

Whenever the restrictions ‖xl‖2, ‖yj‖2 < 1
4 −

εB
2 are not fulfilled we must scale the

nodes. We now explain the resulting changes to Algorithm 3. In order to handle node
distributions with unequal dimensional extend we introduce s = (s0, s1, . . . , sd−1)> ∈ Nd

12

as a component wise scaling such that ‖s−1 � xl‖2, ‖s−1 � yj‖2 < 1
4 −

ε
B

2 and therefore
‖s−1 � (yj − xl)‖ < 1

2 − εB for all l = 1, . . . , L and j = 1, . . . ,M . By the substitution
z := s−1 � x we obtain x = s� z and therefore Ks(z) := K(s� z) = K(x).

Since Ks is not radial symmetric anymore, we define the regularized kernel function
Ks

R in a slightly different way

Ks
R(z) :=


TI(‖s� z‖2) if ‖s� z‖2 ≤ εI,
T z
B(‖z‖2) if 1

2 − εB < ‖z‖ <
1
2 ,

T z
B(1

2) if 1
2 ≤ ‖z‖,

K(‖s� z‖2) otherwise.

While the definition of TI remains the same as in the non-scaled case, we again ex-
ploit (3.4) to obtain T z

B with the altered parameters aj = K(j)((1
2 − εB)‖s�z‖2‖z‖2), bj =

δ0,jK(1
2smax), j = 0, . . . , p − 1,m = 1

2 −
εB
2 , r = εB, where smax := max{st : t =

0, . . . , d−1}. Note that the interpolation polynomial T z
B may change for every node, since

the coefficients aj now depend on z. We only need to evaluate T z
B during a precompu-

tation step to obtain the Fourier coefficients b̂k of the regularized kernel function KRF,
therefore the dependency of the interpolation polynomial on z has no impact on the com-
plexity of our fastsum algorithm. In order to assure differentiability of KRF at the border
{x ∈ Td : ‖x‖2 ≥ 1

2}, we set T z
B(1

2) = b0 constant for all z.
Let sπ := s0 · . . . ·sd−1. We approximate the smooth functionKs

R by the Fourier series

Ks
RF(x) :=

∑
k∈Is�N

b̂ke−2πikx,

where the Fourier coefficients b̂k are given by the d-variate discrete Fourier transform

b̂k =
1

sπNπ

∑
l∈Is�N

Ks
R(s−1 �N−1 � l)e+2πi(s−1�N−1�l)k, k ∈ Is�N.

The remaining part of the fast summation algorithm can be done analogously to the non-
scaled case with the scaled NFFT size s�N instead of N.

4 Application to particle simulation for the Coulomb potential

In this part we apply our fast summation algorithm to the long-range potential 1/r. The
fundamental idea is to split the long-range part of the potential into a smooth long-range
part and a singular short range part. We will use our splitting (3.9) and (3.10). There
exists a variety of methods which use similar splittings such as the P 3M method17. In the
following we will discuss open and periodic systems.

4.1 Open systems

In this part we apply our fast summation algorithm to a system of M charged particles
located at source nodes xl ∈ R3 with charge ql ∈ R. We are interested in the evaluation of
the electrostatic potential φ at target node y ∈ R3,

φ(y) :=

M∑
l=1

qlK(y − xl), (4.1)

13

and the force F acting at particle y ∈ R3 with charge q(y) ∈ R,

F(y) := −q(y)∇φ(y) = −q(y)

M∑
l=1

qlK′(y − xl), (4.2)

where the kernel functions K and K′ corresponding to the Coulomb potential are given by

K(x) =

{
0 if ‖x‖2 = 0,
1/‖x‖2 otherwise, and K′(x) =

{
0 if ‖x‖2 = 0,
x/‖x‖32 otherwise. (4.3)

For equal sets of source and target nodes the sum (4.1) turns into

φ(xj) =

M∑
l=1
l 6=j

ql
‖xj − xl‖2

, j = 1, . . . ,M,

and (4.2) becomes

F(xj) = −qj
M∑
l=1
l 6=j

ql
xj − xl
‖xj − xl‖32

, j = 1, . . . ,M.

Furthermore we are interested in the computation of the total electrostatic potential energy

U :=
1

2

M∑
j=1

qjφ(xj),

which can be evaluated straightforward after the computation of the potentials φ(xj), j =
1, . . . ,M . To get the potentials φ(xj) we apply Algorithm 3 on (4.1) by choosing equal
sets of source and target nodes and αl = ql, l = 1, . . . ,M . For the near field corrections
of this algorithm we require repeated evaluations of the near field interpolation polynomial
TI. Instead of using (3.4) it is more efficient to calculate the coefficients once explicitly for
smoothness p = 2, . . . , 12 and evaluate the polynomial with a Horner scheme. E.g., for
smoothness p = 5 we get the following explicit representation

TI(‖x‖2) =
315

128εI
+

(
−105

32ε3I
+

(
189

64ε5I
+

(
−45

32ε7I
+

35

128ε9I
‖x‖22

)
‖x‖22

)
‖x‖22

)
‖x‖22.

For the fast calculation of the forces F(y) we follow the main steps of Algorithm 3. First
we observe that Algorithm 3 decomposes potential φ(y) into

φ(y) ≈ φNE(y) + φRF(y), (4.4)

where the near field part φNE is given by

φNE(y) =

M∑
l=1

‖y−xl‖2<εI

ql (K(y − xl)− TI(‖y − xl‖2))

and the far field part φRF reads as

φRF(y) =
∑
k∈IN

b̂k

(
M∑
l=1

qle+2πikxl

)
e−2πiky.

14

Combination of (4.2) and (4.4) yields

F(y) = −q(y)∇φ(y) ≈ −q(y)(∇φNE(y) +∇φRF(y)).

Taking into account that

∇φRF(y) = −2πi
∑
k∈IN

b̂kk

(
M∑
l=1

qle+2πikxl

)
e−2πiky,

we are able to compute the inner sum of the far field part∇φRF with only one NFFTà and
the outer vector sum with three NFFTs, one for each component. This is a remarkable im-
provement to the algorithm proposed in25 where four NFFTàs and four NFFTs are needed
to calculate the far field part of the forces. The gradient of the near field part reads as

∇φNE(y) =

M∑
l=1

‖y−xl‖2<εI

ql (K′(y − xl)−∇TI(‖y − xl‖2)) .

This vector sum can be evaluated straightforward. One way to obtain the gradient of TI is
to use (3.5) and the chain rule with z = ‖x‖2. We obtain for ‖x‖ 6= 0

∇TI(‖x‖2) =
1

2p
x

‖x‖2

p−1∑
j=0

p−1−j∑
k=0
j+k 6=0

(
p− 1 + k

k

)
rj−1

j!2k

(
(1 + y)j+k−1(1− y)p−1

[
(j + k)(1− y)− p(1 + y)

]
aj

+ (1− y)j+k−1(1 + y)p−1
[
(j + k)(1 + y)− p(1− y)

]
(−1)j−1bj

)
,

where y = ‖x‖2−m
r and ∇TI(0) = 0. Alternatively we represent the gradient of TI, e.g.,

for smoothness p = 5, by

∇TI(‖x‖2) =

(
−105

16ε3I
+

(
189

16ε5I
+

(
−1080

128ε7I
+

35

16ε9I
‖x‖22

)
‖x‖22

)
‖x‖22

)
x.

In summary we can apply Algorithm 3 with the matrix representation given in (3.12).

4.2 Periodic systems

In this section we present a straightforward method, that accelerates the traditional Ewald
summation technique by NFFT. This combination was first presented in16 and is very simi-
lar to the FFT-accelerated Ewald sum, namely, the so-called particle-particle particle-mesh
(P3M), particle-mesh Ewald (PME) and smooth particle-mesh Ewald (SPME), see4. Ad-
ditionally we will see, that the accelerated Ewald summation can be reinterpreted into a
method very similar to our fastsum Algorithm 3.

We consider a system of charged particles coupled via the Coulomb potential, a cubic
simulation box with edge length B, containing M charged particles, each with a charge
ql ∈ R, located at xl ∈ BT3. Periodic boundary conditions in a system without cut-off is

15

represented by replicating the simulation box in all directions of space. The electrostatic
potential φ at y ∈ BT3, can be written as a lattice sum, see [12, Chapter 12] and31,

φ(y) :=

M∑
l=1

qlK̃(y − xl), (4.5)

and the force F at particle y ∈ BT3 with charge q(y) ∈ R is given by

F(y) := −q(y)∇φ(y) = −q(y)

M∑
l=1

qlK̃′(y − xl), (4.6)

where the kernel functions

K̃(x) =
∑
r∈Z3

K(x + rB) and K̃′(x) =
∑
r∈Z3

K′(x + rB)

are periodizations of the kernel functions (4.3) corresponding to the Coulomb potential.
For equal sets of source and target nodes the evaluation of the potential (4.5) and the force
(4.6) reads as

φ(xj) =
∑
r∈Z3

M∑
l=1

l 6=j for r=0

ql
‖xj − xl + rB‖2

, j = 1, . . . ,M (4.7)

and

F(xj) = −qj
∑
r∈Z3

M∑
l=1

l 6=j for r=0

ql
xj − xl + rB

‖xj − xl + rB‖32
, j = 1, . . . ,M ,

respectively. Furthermore we are interested in the computation of the total electrostatic
potential energy

U :=
1

2

M∑
j=1

qjφ(xj),

which can be evaluated straightforward after the computation of the potentials φ(xj),
j = 1, . . . ,M like in the non-periodic case. The well-known Ewald formula for the com-
putation of (4.7) splits the electrostatic potential φ into three parts

φ = φreal + φreci + φself , (4.8)

where the contribution from real space φreal, reciprocal space φreci and the self-energy
φself are given by

φreal(xj) =
∑
r∈Z3

M∑
l=1

l 6=j for r=0

ql
erfc(α‖xj − xl + rB‖2)

‖xj − xl + rB‖2
,

φreci(xj) =
1

πB

∑
k∈Z3\{0}

e−π
2‖k‖22/(αB)2

‖k‖22

M∑
l=1

qle
−2πik(xj−xl)/B , (4.9)

φself(xj) = −2qj
α√
π
.

16

Thereby, the complementary error function is defined by erfc(z) = 2√
π

∫∞
z

e−t
2

dt. Choos-

ing optimal parameters, Ewald summation scales as O(M3/2). In order to overcome this
increase in time we apply the NFFT for the calculation of the reciprocal-space potential
φreci and we obtain a method similar as our fast summation method. To this end, we
compute the Fourier transformed charge density

S(k) =

M∑
l=1

qle
+2πikxl/B

by NFFTà and after truncation of the sum (4.9) we obtain by NFFT

φreci(xj) ≈
1

πB

∑
k∈IN\{0}

e−π
2‖k‖22/(αB)2

‖k‖22
S(k)e−2πikxj/B .

We now reinterpret the approximation steps of Ewald summation in order to use the
steps of our Algorithm 3. Following (3.2) we define the slightly different regularization
KR of the kernel function K by

KR(x) := TI(‖x‖2) ≈
{
TI(‖x‖2) if ‖x‖2 ≤ εI,
K(‖x‖2) otherwise,

where the near field regularization TI is given by

TI(z) =

{
2α/
√
π if z = 0,

erf(αz)/z otherwise.

Here the error function is defined by erf(z) = 2√
π

∫ z
0

e−t
2

dt and the parameter α must
be chosen large enough to ensure TI(x) ≈ K(x) for all ‖x‖2 ≥ εI. Since the periodic
regularization K̃R(x) :=

∑
r∈Z3 KR(x + r) is smooth at the domain border, we do not

need a regularization TB. Instead of (4.8) we use (3.8) to split the electrostatic potential φ
from (4.5) into the two parts

φ(y) ≈ φNE(y) + φRF(y),

where the near field part φNE is given by

φNE(y) =

M∑
l=1

‖y−xl‖2<εI

ql

(
K̃(y − xl)− TI(‖y − xl‖2)

)

and the far field part φRF reads as

φRF(y) =
∑
k∈IN

b̂k

(
M∑
l=1

qle+2πikxl/B

)
e−2πiky/B .

Since the Fourier coefficients b̂k of K̃R can be calculated analytically,

b̂k =

{
0 if ‖k‖2 = 0,
1
πB

e−π
2‖k‖22/(αB)2

‖k‖22
otherwise,

17

we do not need to compute an inverse discrete Fourier transformation of KR in the pre-
computation step as in (3.7). Analogously to Algorithm 3 the far field part φRF can be
evaluated by one NFFTà and one NFFT, while the near field part only includes nearest
neighbors of every target node. Therefore we get an algorithm with the same complexity
as our fastsum algorithm for non-periodic systems. For equal sets of source and target
nodes the resulting algorithm coincides with the NFFT-accelerated Ewald summation.

As in the non-periodic case we get

F(y) = −q(y)∇φ(y) ≈ −q(y)(∇φNE(y) +∇φRF(y)),

where the far field part ∇φRF(y) can be computed by one NFFTà and three NFFTs. The
near field part ∇φNE(y) reads as

∇φNE(y) =

M∑
l=1

‖y−xl‖2<εI

ql (K′(y − xl)−∇TI(‖y − xl‖2)) .

This vector sum can be evaluated straightforward. Since

d

dz

erf(αz)

z
=

1

z

(
2α√
π

e−α
2z2 − erf(αz)

z

)
the gradient of TI is given by

∇TI(‖x‖2) =

{
0 if ‖x‖2 = 0,

x
‖x‖22

(
2α√
π

e−α
2‖x‖22 − erf(α‖x‖2)

‖x‖2

)
otherwise.

For equal sets of source and target nodes we get

F(xj) ≈ FNE(xj) + FRF(xj),

where
FNE(xj) =− qj∇φNE(xj)

=− qj
M∑
l=1
l 6=j

ql
xj − xl
‖xj − xl‖22

(
erfc(α‖xj − xl‖2)

‖xj − xl‖2
+

2α√
π

e−α
2‖xj−xl‖22

)
,

FRF(xj) =− qj∇φRF(xj)

=
2iqj
B2

∑
k∈IN\{0}

e−π
2‖k‖22/(αB)2

‖k‖22
kS(k)e−2πikxj/B .

This splitting coincides with the well known results of Ewald summation.
In summary we can apply Algorithm 3 with the matrix representation given in (3.12).

5 Numerical Results

5.1 Generation of pseudo random sampling sets

To guarantee a minimum distance between all nodes we used Hammersley and Halton
pseudo random node distributions33. Let p ∈ N prime. Every non-negative integer j ∈

18

N ∪ {0} can be uniquely represented as

j = a0 + a1p+ a2p
2 + . . .+ arp

r, ai ∈ {0, . . . , p− 1} , i = 0, . . . , r, r ∈ N.

We define

Φp(j) :=
a0
p

+
a1
p2

+
a2
p3

+ . . .+
ar
pr+1

.

For d given primes p1 < p2 < . . . < pd the d-variate Hammersley distribution is given by
the following M nodes(

j

M
,Φp1(j),Φp2(j), . . . ,Φpd−1

(j)

)>
, j = 0, . . . ,M − 1

and the d-variate Halton distribution consists of the M nodes

(Φp1(j),Φp2(j), . . . ,Φpd(j))
>
, j = 0, . . . ,M − 1.

Note that it is possible to increase a given set of Halton distributed nodes, while the number
of Hammersley distributed nodes must be fixed because of the dependency of the first
component of every node on M . Both distributions were implemented in2. The software
package called HAMMERSLEY contains algorithms to generate Hammersley and Halton
distributions on the square [0, 1]

2 and the cube [0, 1]
3. Furthermore it includes routines

for mapping the square [0, 1]
2 to the sphere {x ∈ R3 : ‖x‖2 = 1} and mapping the cube

[0, 1]
3 to the ball {x ∈ R3 : ‖x‖2 ≤ 1}.

5.2 Error definitions

We performed the computations of the total energy U , the potentials φ(xj) and the forces
F(xj) for different node distributions with the direct algorithm, the fast multipole method
from FCS software library1 and the NFFT based algorithms. In this section we use the
names of the applied methods to label numerical results, e.g., Udirect, UFMM and UNFFT

holds the results of the energy computations based on the three algorithms, respectively.
We used the following error measurements to compare the results produced by the three
methods.

The relative errors of the total potential energy with respect to the applied method read
as

EFMM
U :=

UFMM

Udirect
, ENFFT

U :=
UNFFT

Udirect
.

Let φ = (φ(x1), . . . , φ(xM))>. The relative errors of the potential with respect to the
applied method are given by

EFMM
φ :=

‖φdirect − φFMM‖2
‖φdirect‖2

, ENFFT
φ :=

‖φdirect − φNFFT‖2
‖φdirect‖2

.

For F(x) = (F0(x), F1(x), F2(x))>, and Ft := (Ft(x0), . . . , Ft(xM))>, t = 0, 1, 2, we
define the average relative errors of the forces with respect to the applied method via

EFMM
F :=

1

3

2∑
t=0

‖Fdirect
t − FFMM

t ‖1
‖Fdirect

t ‖1
, ENFFT

F :=
1

3

2∑
t=0

‖Fdirect
t − FNFFT

t ‖1
‖Fdirect

t ‖1
.

19

5.3 Test cases
We computed all test cases on the nowadays retired JUMP cluster at Research Center
Jülich. Each of its 41 nodes got 32 Power4+ processors at 1.7 GHz and 128 GB memory.
Our test runs were performed on one processor of one completely allocated node. The FCS
software library1 (timestamp 16.08.2007) and the NFFT library were compiled with IBM’s
xlf and xlc compilers at optimization level -O5 and with the flag -q64 to support the 64 bit
architecture of JUMP.

We performed the NFFT based fastsum algorithm with equal oversampling factors
σt = 2, t = 0, 1, 2, the truncation parameter m = 2, choose the Kaiser-Bessel window
function, the regularization parameter p = 5 and set the initialization flags PRE PHI HUT,
PRE LIN PSI, FFT OUT OF PLACE, FFTW MEASURE and FFTW DESTROY INPUT
to obtain the following results.

The upper bound of the relative error of the total energy UFMM was set to 0.001 for
the FMM based calculations. For the NFFT based computations we tried to adjust the
parameters to obtain the same upper bound on UNFFT. All measured times include the
computation of the energy, the potentials and the forces.

Hammersley distribution within a cube
For this test caseM nodes satisfy a Hammersley distribution with parameters p1 = 2, p2 =
3 on [0, 1]

3. The randomly chosen charges ql ∈ {−1, 1} fulfill
M∑
l=1

ql ∈ {−1, 0, 1} .

 0

 0.2

 0.4

 0.6

 0.8

 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.1. Hammersley distribution within a cube for 500 nodes.

Hammersley distribution within a ball
For this test case a Hammersley distribution with parameters p1 = 2, p2 = 3 on [0, 1]

3 is
mapped to the ball

(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 ≤ (0.5)2.

20

M N εI = εB tdirect tFMM tNFFT

500 (32,32,32)> 3/32 0.01 0.01 0.11
5 000 (32,32,32)> 3/32 0.86 0.25 0.38

50 000 (64,64,64)> 3/64 87.09* 3.00 4.63

Table 5.1. Runtimes t in seconds of direct, FMM and NFFT based computations, respectively. The nodes satisfy
a Hammersley distribution in a cube. Times with ∗ are estimated.

M EFMM
U ENFFT

U EFMM
φ ENFFT

φ EFMM
F ENFFT

F

500 1.544e-15 3.094e-04 1.603e-15 8.086e-04 1.689e-15 1.917e-03
5 000 1.668e-07 9.205e-05 2.571e-06 5.626e-04 7.270e-06 9.513e-04

50 000 2.388e-08 3.006e-04 3.222e-07 5.454e-04 8.060e-07 1.240e-03

Table 5.2. Errors EU of total potential energy, Eφ of the potential and EF of the forces for FMM and NFFT,
respectively. The nodes satisfy a Hammersley distribution in a cube.

The randomly chosen charges ql ∈ {−1, 1} fulfill

M∑
l=1

ql ∈ {−1, 0, 1} .

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.2. Hammersley distribution within a ball for 500 nodes.

Cylindrical Halton distribution

For this test case a Halton distribution with parameters p1 = 2, p2 = 3, p3 = 5 on the
cylinder

0 ≤ x0 ≤ 10, (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 1

21

M N εI = εB tdirect tFMM tNFFT

500 (32,32,32)> 3.5/32 0.01 0.01 0.11
5 000 (32,32,32)> 3.5/32 0.86 0.24 0.34

50 000 (64,64,64)> 3.5/64 87.06 3.47 4.20
500 000 (128,128,128)> 3.5/128 8903.23 46.77 59.48

Table 5.3. Runtimes t in seconds of direct, FMM and NFFT based computations, respectively. The nodes satisfy
a Hammersley distribution in a ball.

M EFMM
U ENFFT

U EFMM
φ ENFFT

φ EFMM
F ENFFT

F

500 9.677e-16 5.584e-05 1.751e-15 4.189e-04 2.328e-15 1.092e-03
5 000 1.339e-06 4.903e-05 5.471e-06 3.190e-04 1.454e-05 6.404e-04

50 000 1.113e-07 4.087e-04 2.579e-07 2.507e-04 7.650e-07 7.416e-04
500 000 1.075e-09 3.726e-04 7.366e-08 2.962e-04 2.195e-07 7.613e-04

Table 5.4. Errors EU of total potential energy, Eφ of the potential and EF of the forces for FMM and NFFT,
respectively. The nodes satisfy a Hammersley distribution in a ball.

is scaled into the cube [0, 1]3. The randomly chosen charges ql ∈ {−1, 1} fulfill

M∑
l=1

ql ∈ {−1, 0, 1} .

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.3. Cylindrical Halton distribution for 500 nodes.

22

M N εI = εB tdirect tFMM tNFFT

500 (32,32,32)> 3/32 0.01 0.04 0.12
5 000 (32,32,32)> 3/32 0.86 0.25 0.60

50 000 (256,64,64)> 3.5/64 87.19 3.80 9.94

Table 5.5. Runtimes t in seconds of direct, FMM and NFFT based computations, respectively. The nodes satisfy
a Halton distribution in a cylinder.

M EFMM
U ENFFT

U EFMM
φ ENFFT

φ EFMM
F ENFFT

F

500 1.401e-06 1.201e-04 1.295e-05 4.374e-04 1.535e-05 3.973e-04
5 000 2.938e-07 2.161e-04 2.030e-06 3.914e-04 4.497e-06 2.491e-04

50 000 6.025e-08 1.065e-04 2.663e-08 3.011e-04 7.379e-08 1.302e-03

Table 5.6. Errors EU of total potential energy, Eφ of the potential and EF of the forces for FMM and NFFT,
respectively. The nodes satisfy a Halton distribution in a cylinder.

Spherical Hammersley distribution

For this test case a two-dimensional Hammersley distribution on the square [0, 1]
2 with

parameter p1 = 2 is mapped to the sphere

(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 = (0.5)2

The randomly chosen charges ql ∈ {−1, 1} fulfill

M∑
l=1

ql ∈ {−1, 0, 1} .

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.4. Spherical Hammersley distribution for 500 nodes.

23

M N εI = εB tdirect tFMM tNFFT

500 (32,32,32)> 3/32 0.01 0.01 0.11
5 000 (32,32,32)> 3/32 0.86 0.17 0.23

50 000 (64,64,64)> 3/64 87.13 2.58 3.41

Table 5.7. Runtimes t in seconds of direct, FMM and NFFT based computations, respectively. The nodes satisfy
a Hammersley distribution on a sphere.

M EFMM
U ENFFT

U EFMM
φ ENFFT

φ EFMM
F ENFFT

F

500 0.000e+00 1.338e-04 1.740e-15 6.655e-04 2.983e-15 1.697e-03
5 000 9.167e-08 1.957e-04 1.202e-06 4.101e-04 1.478e-06 3.644e-04

50 000 2.460e-08 4.866e-04 5.522e-08 2.422e-04 5.200e-08 1.545e-04

Table 5.8. Errors EU of total potential energy, Eφ of the potential and EF of the forces for FMM and NFFT,
respectively. The nodes satisfy a Hammersley distribution on a sphere.

Two Hammersley distributed balls

For this test case 63
64M Hammersley distributed nodes on the cube [0, 1]

3 with parameters
p1 = 2, p2 = 3 are mapped to the ball (x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 ≤ (0.5)2.
A second set of 1

64M Hammersley distributed nodes on the cube [0, 1]
3 with parameters

p1 = 2, p2 = 3 is mapped to a smaller ball such that the density of nodes is equal to the
first. We set the distance between the balls to 10. Finally the whole set of nodes is scaled
into the cube [0, 1]

3. The random charges ql ∈ {−1, 1} fulfill

M∑
l=1

ql ∈ {−1, 0, 1} .

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.5. Hammersley distribution hammersley two balls with 500 nodes.

24

M N εI = εB tdirect tFMM tNFFT

500 (32,32,32)> 2/32 0.01 0.01 0.12
5 000 (32,32,32)> 2/32 0.86 0.26 1.15

50 000 (384,48,48)> 3.2/48 87.21 22.44 17.01

Table 5.9. Runtimes t in seconds of direct, FMM and NFFT based computations, respectively. The nodes satisfy
a Hammersley distribution in two balls.

M EFMM
U ENFFT

U EFMM
φ ENFFT

φ EFMM
F ENFFT

F

500 6.111e-15 2.410e-04 9.988e-15 4.439e-04 1.794e-14 2.286e-04
5 000 1.188e-07 5.444e-04 8.945e-07 6.288e-04 8.189e-08 2.322e-04

50 000 5.916e-08 7.673e-04 1.115e-07 6.624e-04 7.228e-09 1.033e-03

Table 5.10. Errors EU of total potential energy, Eφ of the potential and EF of the forces for FMM and NFFT,
respectively. The nodes satisfy a Hammersley distribution in two balls.

NaCl grid structure

Let M ∈ N \ {1} be a cubic number of nodes. For u, v, w ∈ {0, . . . , 3
√
M − 1} we set

l =
(

3
√
Mu+ v

)
3
√
M + w + 1

and the nodes xl and charges ql are given by

xl =
1

3
√
M − 1

(u, v, w)
>
, ql = (−1)

u+v+w+1
.

 0

 0.2

 0.4

 0.6

 0.8

 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.6. NaCl grid structure for 512 nodes.

25

M N εI = εB tdirect tFMM tNFFT

512 (32,32,32)> 4/32 0.01 0.01 0.12
5 832 (32,32,32)> 2.5/32 1.17 0.13 0.33

50 653 (64,64,64)> 2.5/64 106.73* 2.41 3.21

Table 5.11. Runtimes t in seconds of direct, FMM and NFFT based computations, respectively. The nodes are
located like a NaCl grid. Times with ∗ are estimated.

M EFMM
U ENFFT

U EFMM
φ ENFFT

φ EFMM
F ENFFT

F

512 1.648e-15 2.316e-05 1.454e-15 2.892e-05 8.933e-15 2.799e-03
5 832 3.132e-07 4.491e-05 1.406e-05 5.430e-05 5.102e-04 9.325e-04

50 653 3.094e-07 5.422e-05 1.054e-05 7.071e-05 9.372e-04 1.451e-03

Table 5.12. Errors EU of total potential energy, Eφ of the potential and EF of the forces for FMM and NFFT,
respectively. The nodes are located like a NaCl grid.

5.4 Conclusions

We computed the total energy, the potentials and the forces for several charged particle dis-
tributions with open boundary conditions. The runtimes of our NFFT based fast summation
showed that it is able to compete with the highly optimized, kernel dependent FMM. We
want to emphasize that the NFFT based algorithm is not restricted to the Coulomb po-
tential since it can be easily adapted to various kernel functions. Testcases with equally
distributed systems are the cubic Hammersley distribution, the Hammersley distribution
within a ball and the NaCl grid structure. Especially for the last one we see in Table 5.12
that the errors of both algorithms are comparable. As examples for unequally distributed
systems we chose the Halton distribution within a cylinder, the Hammersley distribution
on a sphere and two Hammersley distributed balls. Although we did not optimize our algo-
rithm for such inhomogeneous systems, the runtimes show an remarkable improvement in
comparison to the direct algorithm. The generalization to cuboidal domains of the NFFT
based fast summation was successfully tested for the cylindrical Halton distribution and
the two Hammersley distributed balls, as one can see in Table 5.5 and Table 5.9.

6 Summary

We suggested fast summation algorithms of the form

Kα ≈ ByFDDbD
>FHB>x α+ KNEα

and applied this method to particle simulation for the Coulomb potential. This decompo-
sition into separate building blocks simplifies the implementation. Note that particle-mesh
methods are based on similar steps, see [15, Chapter 7]
• smear the charge density onto a grid, i.e., multiplication with B>x , see step 1 of

Algorithm 2
• Fourier transform the density, see step 2 of Algorithm 2 with FFT

26

• convolution in Fourier space, or solution of a differential equation in Fourier space
• Fourier transform back, see step 2 of Algorithm 1 with FFT
• Back-interpolation, or approximation, i.e., multiplication with By, see step 3 of

Algorithm 1
• Near field computation, i.e., multiplication with KNE

A parallelization can be done step by step for the modules FFT, NFFT and finally the fast
summation algorithm. A promising highly scalable FFT implementation has been tested
up to 262144 cores of a BlueGene/P at Research Center Jülich24.

Acknowledgments

The work was partly supported by the BMBF grant 01IH08001B. We are grateful to Toni
Volkmer who produced the numerical results. Therefore we also thank the Jülich Super-
computing Center for providing the computational resources on JUMP. Furthermore, we
thank Dr. Holger Dachsel and Dr. Ivo Kabadshow for their advise on the FCS software
library. We remark that a new version of FCS is available for download.

References

1. FCS software library. http://www.fz-juelich.de/jsc/fcs.
2. HAMMERSLEY. The Hammersley Quasirandom Sequence. http://people.

scs.fsu.edu/˜burkardt/cpp_src/hammersley/hammersley.html.
3. G. Beylkin: On the fast Fourier transform of functions with singularities. Appl.

Comput. Harmon. Anal., 2:363 – 381, 1995.
4. M. Deserno and C. Holm: How to mesh up Ewald sums. I. A theoretical and numerical

comparison of various particle mesh routines. J. Chem. Phys., 109:7678 – 7693,
1998.

5. A.J.W. Duijndam and M.A. Schonewille: Nonuniform fast Fourier transform. Geo-
physics, 64:539 – 551, 1999.

6. A. Dutt and V. Rokhlin: Fast Fourier transforms for nonequispaced data. SIAM J.
Sci. Stat. Comput., 14:1368 – 1393, 1993.

7. B. Elbel and G. Steidl: Fast Fourier transform for nonequispaced data. In C.K. Chui
and L.L. Schumaker (eds.): Approximation Theory IX, pp. 39 – 46, Nashville, 1998.
Vanderbilt University Press.

8. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen: A
smooth particle mesh Ewald method. J. Chem. Phys., 103:8577 – 8593, 1995.

9. M. Fenn: Fast Fourier transform at nonequispaced nodes and applications. Disser-
tation, Universität Mannheim, 2006.

10. M. Fenn and G. Steidl: Fast NFFT based summation of radial functions. Sampl.
Theory Signal Image Process., 3:1 – 28, 2004.

11. J.A. Fessler and B.P. Sutton: Nonuniform fast Fourier transforms using min-max in-
terpolation. IEEE Trans. Signal Process., 51:560 – 574, 2003.

12. D. Frenkel and B. Smit: Understanding molecular simulation: From algorithms to
applications. Academic Press, 2002.

27

13. M. Frigo and S.G. Johnson: FFTW, C subroutine library. http://www.fftw.
org.

14. L. Greengard and J.Y. Lee: Accelerating the nonuniform fast Fourier transform.
SIAM Rev., 46:443 – 454, 2004.

15. M. Griebel, S. Knapek, and G. Zumbusch: Numerical simulation in molecular dy-
namics, vol. 5 of Texts in Computational Science and Engineering. Springer, Berlin,
2007.

16. F. Hedman and A. Laaksonen: Ewald summation based on nonuniform fast Fourier
transform. Chem. Phys.Lett., 425:142 – 147, 2006.

17. R.W. Hockney and J.W. Eastwood: Computer simulation using particles. Taylor &
Francis, Inc., Bristol, PA, USA, 1988.

18. J.I. Jackson, C.H. Meyer, D.G. Nishimura, and A. Macovski: Selection of a convolu-
tion function for Fourier inversion using gridding. IEEE Trans. Med. Imag., 10:473
– 478, 1991.

19. J. Keiner, S. Kunis, and D. Potts: NFFT 3.0, C subroutine library. http://www.
tu-chemnitz.de/˜potts/nfft.

20. J. Keiner, S. Kunis, and D. Potts: Using NFFT3 - a software library for various noneq-
uispaced fast Fourier transforms. ACM Trans. Math. Software, 36:Article 19, 1 –
30, 2009.

21. S. Kunis and D. Potts: Time and memory requirements of the nonequispaced FFT.
Sampl. Theory Signal Image Process., 7:77 – 100, 2008.

22. S. Kunis, D. Potts, and G. Steidl: Fast Gauss transform with complex parameters
using NFFTs. J. Numer. Math., 14:295 – 303, 2006.

23. S. Matej, J.A. Fessler, and I.G. Kazantsev: Iterative tomographic image reconstruc-
tion using Fourier-based forward and back-projectors. IEEE Trans. Med. Imag.,
23:401 – 412, 2004.

24. M. Pippig: Scaling parallel fast Fourier transform on BlueGene/P. In B. Mohr and
W. Frings (eds.): Jülich BlueGene/P Scaling Workshop 2010, pp. 27 – 30, Jülich, May
2010. Forschungszentrum Jülich. Technical Report.

25. G. Pöplau, D. Potts, and U. van Rienen: Calculation of 3D space-charge fields of
bunches of charged particles by fast summation. In A. Anile, G. Alı̀, and G. Mas-
caly (eds.): Scientific Computing in Electrical Engineering, pp. 241 – 246, Berlin
Heidelberg, Germany, 2006. Springer.

26. D. Potts: Schnelle Fourier-Transformationen für nichtäquidistante Daten und Anwen-
dungen. Habilitation, Universität zu Lübeck, http://www.tu-chemnitz.de/
˜potts, 2003.

27. D. Potts and G. Steidl: Fast summation at nonequispaced knots by NFFTs. SIAM J.
Sci. Comput., 24:2013 – 2037, 2003.

28. D. Potts, G. Steidl, and A. Nieslony: Fast convolution with radial kernels at nonequi-
spaced knots. Numer. Math., 98:329 – 351, 2004.

29. D. Potts, G. Steidl, and M. Tasche: Fast Fourier transforms for nonequispaced data:
A tutorial. In J.J. Benedetto and P.J.S.G. Ferreira (eds.): Modern Sampling Theory:
Mathematics and Applications, pp. 247 – 270, Boston, MA, USA, 2001. Birkhäuser.

30. G. Steidl: A note on fast Fourier transforms for nonequispaced grids. Adv. Comput.
Math., 9:337 – 353, 1998.

31. G. Sutmann: Molecular dynamics - vision and reality. In J. Grotendorst, S. Blügel,

28

and D. Marx (eds.): Computational Nanoscience: Do It Yourself!, vol. 31 of NIC Se-
ries, pp. 159 – 194, Jülich, Feb. 2006. Forschungszentrum Jülich, John von Neumann
Institute for Computing, ISBN 3-00-017350-1. Lecture Notes.

32. A.F. Ware: Fast approximate Fourier transforms for irregularly spaced data. SIAM
Rev., 40:838 – 856, 1998.

33. T.T. Wong, W.S. Luk, and P.A. Heng: Sampling with Hammersley and Halton Points.
Journal of graphics tools, 2:9 – 24, 1997.

29

