Programming with Nonequispaced FFT

Solution 1

C Library Hands On

Exercise 1:

The routine simple_test_nfft_1d() initialises a plan for a one-dimensional nfft with $N=14$ Fourier coefficients and $M=19$ nodes, generates random nodes $x_{j} \in\left[-\frac{1}{2}, \frac{1}{2}\right]$, $j_{j}=0, \ldots, 18$, and precomputes the matrix $\mathbf{B} \in \mathbb{R}^{19 \times 32}$. Random Fourier coefficients $\hat{f}_{k} \in \mathbb{C}, k=-7, \ldots, 6$ are generated as well and the trigonometric polynomial $f(x)=$ $\sum_{k=-7}^{6} \hat{f}_{k} \mathrm{e}^{-2 \pi \mathrm{i} k x}$ is evaluated at the nodes x_{j} by the routine ndft_trafo (direct way), and by nfft_trafo using the approximation scheme as outlined in the lecture. Coefficients and function values are displayed. Also, the adjoint transforms are executed - clearly showing that the NFFT is, in contrast to the FFT, a non-unitary transform.

The output on JuDGE looks like:

1) computing an one dimensional ndft, nfft and an adjoint nfft

```
given Fourier coefficients, vector f_hat, adr=0x685130
    0. +3.0E-01+8.8E-01i,+5.3E-01+9.2E-01i,+5.2E-01+8.1E-01i,+1.9E-01+8.9E-01i,
    4. +5.7E-01+7.7E-02i,+8.2E-01+9.8E-01i,+1.2E-01+8.9E-01i,+7.8E-01+1.0E-01i,
    8. +2.5E-01+2.0E-02i,+3.8E-01+6.8E-01i,+6.8E-01+7.5E-01i,+6.2E-03+6.2E-01i,
    12. +1.3E-01+6.2E-01i,+7.7E-01+1.9E-01i,
ndft, vector f, adr=0x685220
    0. +9.1E-01+3.4E-01i,+9.1E-01+3.1E-01i,+2.5E-01+2.7E-01i,+3.2E+00-8.6E-01i,
    4. -4.7E-01-1.0E+00i,-4.8E-01+9.3E-01i,-4.6E-01+9.3E-01i,+6.7E+00+7.6E+00i,
    8. +3.1E+00+6.9E+00i,+4.7E+00+2.5E+00i,-3.9E-01-1.2E+00i,+6.2E-01-1.5E+00i,
    12. +1.3E+00+4.4E-01i, -3.9E-01+7.7E-02i,+1.3E-01+2.0E+00i, -3.4E-02+4.5E-01i,
    16. -1.7E+00-7.9E-01i,+7.8E-01+8.6E-02i,-6.2E-01-1.2E+00i,
took 0.000000e+00 seconds.
nfft, vector f, adr=0x685220
    0. +9.1E-01+3.4E-01i,+9.1E-01+3.1E-01i,+2.5E-01+2.7E-01i,+3.2E+00-8.6E-01i,
    4. -4.7E-01-1.0E+00i, -4.8E-01+9.3E-01i, -4.6E-01+9.3E-01i,+6.7E+00+7.6E+00i,
    8. +3.1E+00+6.9E+00i,+4.7E+00+2.5E+00i, -3.9E-01-1.2E+00i,+6.2E-01-1.5E+00i,
    12. +1.3E+00+4.4E-01i, -3.9E-01+7.7E-02i,+1.3E-01+2.0E+00i, -3.4E-02+4.5E-01i,
    16. -1.7E+00-7.9E-01i,+7.8E-01+8.6E-02i,-6.2E-01-1.2E+00i,
adjoint ndft, vector f_hat, adr=0x685130
    0. +9.9E-01+1.5E+01i,+1.5E+01+1.1E+01i,+6.9E+00+1.9E+01i,+1.3E+01+2.2E+01i,
    4. +1.1E+01+1.4E+01i,+2.1E+01+2.6E+01i,+1.0E+01+1.9E+01i,+1.8E+01+1.6E+01i,
    8. +7.5E+00+1.3E+01i,+1.2E+01+2.3E+01i,+1.4E+01+1.2E+01i,+8.0E+00+3.3E+00i,
    12. +2.6E+00+1.2E+01i,+1.5E+01+4.2E+00i,
adjoint nfft, vector f_hat, adr=0x685130
    0. +9.9E-01+1.5E+01i,+1.5E+01+1.1E+01i,+6.9E+00+1.9E+01i,+1.3E+01+2.2E+01i,
    4. +1.1E+01+1.4E+01i,+2.1E+01+2.6E+01i,+1.0E+01+1.9E+01i,+1.8E+01+1.6E+01i,
    8. +7.5E+00+1.3E+01i,+1.2E+01+2.3E+01i,+1.4E+01+1.2E+01i,+8.0E+00+3.3E+00i,
    12. +2.6E+00+1.2E+01i,+1.5E+01+4.2E+00i,
```


Exercise 2:

The initialisation with no precomputation of \mathbf{B}, compressed storage, and explicit storage are given by

```
nfft_init_guru(&p, 2, N, N[0]*N[1], n, 4,
    PRE_PHI_HUT| MALLOC_F_HAT| MALLOC_X| MALLOC_F |
    FFTW_INIT| FFT_OUT_OF_PLACE,
    FFTW_ESTIMATE| FFTW_DESTROY_INPUT);
nfft_init_guru(&p, 2, N, N[0]*N[1], n, 4,
    PRE_PHI_HUT| PRE_PSI| MALLOC_F_HAT| MALLOC_X| MALLOC_F |
    FFTW_INIT| FFT_OUT_OF_PLACE,
    FFTW_ESTIMATE| FFTW_DESTROY_INPUT);
```

and

```
nfft_init_guru(&p, 2, N, N[0]*N[1], n, 4,
    PRE_PHI_HUT| PRE_FULL_PSI| MALLOC_F_HAT| MALLOC_X| MALLOC_F |
    FFTW_INIT| FFT_OUT_OF_PLACE,
    FFTW_ESTIMATE| FFTW_DESTROY_INPUT);
```

For a transform with $N_{0}=70$ and $N_{1}=90$, i.e. $N_{0} N_{1}=6300$ Fourier coefficients, $n_{0}=$ $140, n_{1}=180$ and $M=25200$ evaluation nodes, the computation times are something like

Results on JuDGE:

transform	cpu time (secs.)
ndft	$8.2 \mathrm{e}+00$
nfft, no precomputation	$6.8 \mathrm{e}-02$
nfft, PRE_PSI	$1.6 \mathrm{e}-02$
nfft, PRE_FULL_PSI	$2.0 \mathrm{e}-02$

