Programming with Nonequispaced FFT

Lab 1

Basics and Matlab

Exercise 1:

Let $f: \mathbb{R} \rightarrow \mathbb{C}$ and its Fourier transform

$$
\hat{f}(k):=\int_{\mathbb{R}} f(x) \mathrm{e}^{-2 \pi \mathrm{i} k x} \mathrm{~d} x, \quad k \in \mathbb{R}
$$

obey $|f(x)| \leq(1+|x|)^{-1-\varepsilon}$ and $|\hat{f}(k)| \leq(1+|k|)^{-1-\delta}$ for some $\delta, \varepsilon>0$, respectively. Prove, that the Poisson summation formula

$$
\sum_{r \in \mathbb{Z}} f(x+r)=\sum_{k \in \mathbb{Z}} \hat{f}(k) \mathrm{e}^{2 \pi \mathrm{i} k x}
$$

holds pointwise and both sums converge absolutely.

Exercise 2:

Prove the following statements.

1. For $f \in C^{p}(\mathbb{T})$ it holds that

$$
c_{k}\left(f^{(p)}\right)=(2 \pi \mathrm{i} k)^{p} c_{k}(f), \quad k \in \mathbb{Z} .
$$

2. For real-valued $f \in L^{2}(\mathbb{T})$ the Fourier-coefficients satisfy

$$
\overline{c_{-k}(f)}=c_{k}(f), \quad k \in \mathbb{Z}
$$

3. For even $f \in L^{2}(\mathbb{T})$, i.e. $f(x)=f(-x)$, the Fourier-coefficients satisfy

$$
c_{-k}(f)=c_{k}(f), \quad k \in \mathbb{Z}
$$

4. The normalised and unshifted Fourier-matrix is unitary, i.e.,

$$
\tilde{\mathbf{F}}_{N}^{\mathrm{H}} \tilde{\mathbf{F}}_{N}=\mathbf{I}_{N} \quad \text { for } \tilde{\mathbf{F}}_{N}:=\frac{1}{\sqrt{N}}\left(\mathrm{e}^{-2 \pi \mathrm{i} k j / N}\right)_{j, k=0}^{N-1} .
$$

Exercise 3:

Prove the following convolution theorems.

1. For $f, g \in L^{2}(\mathbb{T}), c_{k}(f)=\left\langle f, \mathrm{e}^{2 \pi \mathrm{i} k \cdot}\right\rangle, c_{k}(g)=\left\langle g, \mathrm{e}^{2 \pi \mathrm{i} k \cdot}\right\rangle, k \in \mathbb{Z}$ and

$$
\left(f *_{p} g\right)(x):=\int_{\mathbb{T}} f(t) g(x-t) \mathrm{d} t
$$

holds that

$$
c_{k}\left(f *_{p} g\right)=c_{k}(f) c_{k}(g), \quad k \in \mathbb{Z} .
$$

2. For $f, g, f g \in L^{2}(\mathbb{T}), \mathbf{c}(f)=\left(\left\langle f, \mathrm{e}^{2 \pi \mathrm{i} k \cdot}\right\rangle\right)_{k \in \mathbb{Z}}, \mathbf{c}(g)=\left(\left\langle g, \mathrm{e}^{2 \pi \mathrm{i} k \cdot}\right\rangle\right)_{k \in \mathbb{Z}}$ and

$$
\left(\mathbf{c}(f) *_{d} \mathbf{c}(g)\right)_{k}:=\sum_{l \in \mathbb{Z}} c_{l}(f) c_{k-l}(g)
$$

holds that

$$
c_{k}(f g)=\left(\mathbf{c}(f) *_{d} \mathbf{c}(g)\right)_{k}, \quad k \in \mathbb{Z}
$$

3. For $\mathbf{f}, \mathbf{g} \in \mathbb{C}^{n}, \hat{\mathbf{f}}=\mathbf{F}_{n} \mathbf{f}, \hat{\mathbf{g}}=\mathbf{F}_{n} \mathbf{g}$ and

$$
\left(\mathbf{f} *_{c} \mathbf{g}\right)_{l}:=\sum_{j=-n / 2}^{n / 2-1} f_{j} g_{l-j},
$$

where the index $l-j$ wraps around periodically, holds that

$$
\left(\mathbf{F}_{n}\left(\mathbf{f} *_{c} \mathbf{g}\right)\right)_{k}=\hat{f}_{k} \hat{g}_{k}
$$

Exercise 4:

Write a MATLAB-function ndft(x, f hat) that computes the vector f with values

$$
f\left(x_{j}\right)=\sum_{k=-N / 2}^{N / 2-1} \hat{f}_{k} \mathrm{e}^{2 \pi \mathrm{i} k x_{j}}, \quad j=0, \ldots, M-1
$$

Recast in matrix vector notation, compute

$$
\mathbf{f}=\mathbf{A} \hat{\mathbf{f}}, \quad \mathbf{A}:=\left(\mathrm{e}^{-2 \pi \mathrm{i} k x_{j}}\right)_{j=0, \ldots, M-1 ; k=-N / 2, \ldots, N / 2-1} .
$$

Exercise 5:

Write the circulant convolution $\mathbf{f} *_{c} \mathbf{g}$ as matrix vector product Gf. What are the singular values of G.

Write your own Matlab-function fast_toeplitz (c, r, x) for the fast computation of the matrix vector product toeplitz (c, r) $* \mathrm{x}$.

Hint: Construct a circulant matrix C into which the Toeplitz matrix is embedded. Use the Matlab functions fft, ifft for the matrix vector product $C *[x ; z e r o s(s i z e(x))]$. Do not use C explicitly.

