Programming with Nonequispaced FFT

Lab 1 Basics and Matlab

Exercise 1:

Let $f: \mathbb{R} \to \mathbb{C}$ and its Fourier transform

$$\hat{f}(k) := \int_{\mathbb{R}} f(x) e^{-2\pi i kx} dx, \qquad k \in \mathbb{R},$$

obey $|f(x)| \leq (1+|x|)^{-1-\varepsilon}$ and $|\hat{f}(k)| \leq (1+|k|)^{-1-\delta}$ for some $\delta, \varepsilon > 0$, respectively. Prove, that the Poisson summation formula

$$\sum_{r \in \mathbb{Z}} f(x+r) = \sum_{k \in \mathbb{Z}} \hat{f}(k) e^{2\pi i kx}$$

holds pointwise and both sums converge absolutely.

Exercise 2:

Prove the following statements.

1. For $f \in C^p(\mathbb{T})$ it holds that

$$c_k(f^{(p)}) = (2\pi i k)^p c_k(f), \qquad k \in \mathbb{Z}.$$

2. For real-valued $f \in L^{2}(\mathbb{T})$ the Fourier-coefficients satisfy

$$\overline{c_{-k}(f)} = c_k(f), \quad k \in \mathbb{Z}.$$

3. For even $f \in L^2(\mathbb{T})$, i.e. f(x) = f(-x), the Fourier-coefficients satisfy

$$c_{-k}(f) = c_k(f), \qquad k \in \mathbb{Z}.$$

4. The normalised and unshifted Fourier-matrix is unitary, i.e.,

$$\tilde{\mathbf{F}}_N^{\mathrm{H}} \tilde{\mathbf{F}}_N = \mathbf{I}_N \qquad \text{for } \tilde{\mathbf{F}}_N := \frac{1}{\sqrt{N}} \left(\mathrm{e}^{-2\pi \mathrm{i} k j/N} \right)_{j,k=0}^{N-1}.$$

Exercise 3:

Prove the following convolution theorems.

1. For $f, g \in L^2(\mathbb{T})$, $c_k(f) = \langle f, e^{2\pi i k \cdot} \rangle$, $c_k(g) = \langle g, e^{2\pi i k \cdot} \rangle$, $k \in \mathbb{Z}$ and

$$(f *_{p} g)(x) := \int_{\mathbb{T}} f(t) g(x - t) dt$$

holds that

$$c_k(f *_p g) = c_k(f) c_k(g), \qquad k \in \mathbb{Z}.$$

2. For $f, g, fg \in L^2(\mathbb{T})$, $\mathbf{c}(f) = (\langle f, e^{2\pi i k \cdot} \rangle)_{k \in \mathbb{Z}}$, $\mathbf{c}(g) = (\langle g, e^{2\pi i k \cdot} \rangle)_{k \in \mathbb{Z}}$ and

$$\left(\mathbf{c}\left(f\right)*_{d}\mathbf{c}\left(g\right)\right)_{k}:=\sum_{l\in\mathbb{Z}}c_{l}\left(f\right)c_{k-l}\left(g\right)$$

holds that

$$c_k(fg) = (\mathbf{c}(f) *_d \mathbf{c}(g))_k, \qquad k \in \mathbb{Z}.$$

3. For $\mathbf{f}, \mathbf{g} \in \mathbb{C}^n$, $\hat{\mathbf{f}} = \mathbf{F}_n \mathbf{f}$, $\hat{\mathbf{g}} = \mathbf{F}_n \mathbf{g}$ and

$$\left(\mathbf{f} *_{c} \mathbf{g}\right)_{l} := \sum_{j=-n/2}^{n/2-1} f_{j} g_{l-j},$$

where the index l-j wraps around periodically, holds that

$$\left(\mathbf{F}_n \left(\mathbf{f} *_c \mathbf{g}\right)\right)_k = \hat{f}_k \hat{g}_k.$$

Exercise 4:

Write a MATLAB-function ndft(x,f_hat) that computes the vector f with values

$$f(x_j) = \sum_{k=-N/2}^{N/2-1} \hat{f}_k e^{2\pi i k x_j}, \quad j = 0, \dots, M-1.$$

Recast in matrix vector notation, compute

$$\mathbf{f} = \mathbf{A}\hat{\mathbf{f}}, \qquad \mathbf{A} := (e^{-2\pi i k x_j})_{j=0,\dots,M-1; k=-N/2,\dots,N/2-1}.$$

Exercise 5:

Write the circulant convolution $\mathbf{f} *_{c} \mathbf{g}$ as matrix vector product $\mathbf{G}\mathbf{f}$. What are the singular values of \mathbf{G} .

Write your own MATLAB-function fast_toeplitz(c,r,x) for the fast computation of the matrix vector product toeplitz(c,r)*x.

Hint: Construct a circulant matrix C into which the Toeplitz matrix is embedded. Use the MATLAB functions fft, ifft for the matrix vector product C*[x; zeros(size(x))]. Do not use C explicitly.