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This paper describes an extension of Fourier approximation methods for multi-
variate functions defined on the torus Td to functions in a weighted Hilbert space

L2(Rd, ω) via a multivariate change of variables ψ :
(
−1

2 ,
1
2

)d → Rd. We establish
sufficient conditions on ψ and ω such that the composition of a function in such a
weighted Hilbert space with ψ yields a function in the Sobolev space Hm

mix(Td) of
functions on the torus with mixed smoothness of natural order m ∈ N0. In this ap-
proach we adapt algorithms for the evaluation and reconstruction of multivariate
trigonometric polynomials on the torus Td based on single and multiple recon-
structing rank-1 lattices. Since in applications it may be difficult to estimate a
related function space, we make use of dimension incremental construction meth-
ods for sparse frequency sets. Various numerical tests confirm obtained theoretical
results for the transformed methods.
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1 Introduction

The change of variables is a powerful tool in numerical analysis. Such transformations play an
important role in spectral methods, numerical integration, and approximation of functions.
An excellent overview can be found in [1, Chapter 16 and 17] which contains many practical
aspects of the mapped methods. In this paper we focus on change of variable mappings from
multivariate bounded domains to unbounded ones in order to approximate functions defined
on such unbounded domains. The main goal is to transfer the approximation error bounds
of Fourier methods on the high-dimensional torus Td ' [−1

2 ,
1
2)d to approximation methods

on Rd with the help of an invertible transformation ψ : (−1
2 ,

1
2)d → Rd.
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Regarding functions defined on the torus Td there is well-developed theory, see [26, 7],
concerned with the Wiener algebra A(Td), that contains all L1(Td)-functions with absolutely
summable Fourier coefficients

f̂k :=

∫

Td
f(x) e−2πik·x dx

with k = (k1, . . . , kd)
> ∈ Zd,x = (x1, . . . , xd)

> ∈ Rd, and k · x :=
∑d

j=1 kjxj . For β ≥ 0 and
the weight function

ωhc(k) :=

d∏

j=1

max(1, |kj |), (1.1)

there are the subspaces of the Wiener algebra A(Td) in form of

Aβ(Td) :=



f ∈ L1(Td) : ‖f‖Aβ(Td) :=

∑

k∈Zd
ωhc(k)β|f̂k| <∞



 (1.2)

and the Hilbert spaces

Hβ(Td) :=




f ∈ L2(Td) : ‖f‖Hβ(Td) :=


∑

k∈Zd
ωhc(k)2β|f̂k|2




1
2

<∞




, (1.3)

whose norms contain information about the decay rate of the Fourier coefficients f̂k with
respect to the weight function ωhc. For approximation purposes we consider non-empty
frequency sets I ⊂ Zd of finite cardinality |I| <∞ and approximated Fourier partial sums

SΛ
I f(x) :=

∑

k∈I
f̂Λ
k e2πik·x

with approximated Fourier coefficients

f̂Λ
k :=

1

M

M−1∑

j=0

f(xj) e−2πik·xj ≈ f̂k, xj ∈ Td.

For N ∈ N and hyperbolic crosses IdN := {k ∈ Zd : ωhc(k) ≤ N} ⊂ Zd it was shown in [13,
Theorem 3.3] that when using single rank-1 lattices the error of approximating a continuous
function f ∈ Aβ(Td) by the approximated Fourier partial sum SΛ

IdN
f measured in the L∞(Td)-

norm is bounded above by N−β‖f‖Aβ(Td). The approximation of functions in the Hilbert

spaces Hβ(Td) was investigated by V. N. Temlyakov in e.g., [25, 13]. For certain β ≥ 0 the
error of approximating a continuous function f ∈ Hβ(Td) by the approximated Fourier partial
sum SΛ

IdN
f measured in the L2(Td)-norm is bounded above by Cd,βN

−β(logN)(d−1)/2‖f‖Hβ(Td)

with some constant Cd,β = C(d, β) > 0 as shown in [29, Theorem 2.30].

A major problem is that in general it’s hard to calculate the Fourier coefficients f̂k in order
to determine if they are absolutely or square summable. Instead we utilize certain norm
equivalences to get information about the decay rate of the Fourier coefficients f̂k. Given a
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multi-index α = (α1, . . . , αd)
> ∈ Nd0 with ‖α‖`∞ := max(|α1|, . . . , |αd|) and the differential

operator

Dα[f ](x) = D(α1,...,αd)[f ](x1, . . . , xd) :=
∂α1

∂xα1
1

. . .
∂αd

∂xαdd
[f ](x1, . . . , xd), (1.4)

we define for Ω ∈ {Td,Rd} the norm

‖f‖Hm
mix(Ω) :=


 ∑

‖α‖`∞≤m
‖Dα[f ]‖2L2(Ω)




1/2

(1.5)

of the Sobolev space Hm
mix(Ω) of functions f ∈ L2(Ω) with mixed natural smoothness m ∈ N0,

that were discussed in [21, 27, 30]. As shown in [17, Lemma 2.3], the norms ‖ · ‖Hm
mix(Td) and

‖ ·‖Hβ(Td) are equivalent for β = m ∈ N. Furthermore, for all β ≥ 0 and all λ > 1
2 we have the

continuous embedding Hβ+λ(Td) ↪→ Aβ(Td) as shown in [13, Lemma 2.2]. Hence, for m ∈ N
we can just check if f is an element of a Sobolev space Hm

mix(Td) in order to determine if a

function f is in Am(Td) or Hm(Td) instead of calculating all its Fourier coefficients f̂k.
In order to utilize all these properties for functions defined on Rd, we apply the change of

variables ψ : (−1
2 ,

1
2)d → Rd componentwise to multivariate functions h in a weighted Hilbert

space L2(Rd, ω) with the weight function ω : Rd → [0,∞). The weighted scalar product in
L2(Rd, ω) is of the form

(h1, h2)L2(Rd,ω) :=

∫

Rd
ω(y)h1(y)h2(y) dy

and the induced norm ‖h‖L2(Rd,ω) :=
√

(h, h)L2(Rd,ω). The weight functions ω will be given

in product form, i.e.,

ω(y) :=
d∏

j=1

ωj(yj)

for y = (y1, . . . , yd)
> ∈ Rd, where the univarite weight functions ωj : R → [0,∞) may

differ for each coordinate. For the periodic functions resulting from applying the change of
variables ψ, we make use of the existing theory for functions defined on the torus Td and then
revert the change of variables by componentwise application of the inverse transformation
ψ−1 : Rd → (−1

2 ,
1
2)d. In a weighted Hilbert space L2(Rd, ω) we have an orthogonal system

{ϕk}k∈Zd consisting of functions

ϕk(y) :=

√
(ψ−1)′(y)

ω(y)
e2πik·ψ−1(y), y ∈ Rd,

where (ψ−1)′ is the product of the first derivatives of the inverses in each component of
ψ−1. For k ∈ Zd the k-th Fourier coefficients of h is given by ĥk := (h, ϕk)L2(Rd,ω). For any

frequency set I ⊂ Zd the respective approximated Fourier partial sum is of the form

SΛ
I h(y) :=

∑

k∈I
ĥΛ
k e2πik·ψ−1(y)
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with approximated Fourier coefficients ĥΛ
k that will be defined in a similar way to the approx-

imated Fourier coefficients f̂Λ
k .

We consider transformed functions f ∈ L2(Td) of the form

f(x) = h(ψ(x))
√
ω(ψ(x))ψ′(x)

that are the result of applying the change of variables y = ψ(x) to a function h ∈ L2(Rd, ω),
so that we have the identity ‖h‖L2(Rd,ω) = ‖f‖L2(Td). It’s generally rather difficult to check

if f is in the Sobolev space Hm
mix(Td) by calculating its norm and checking the various L2-

integrability conditions. Therefore we provide a set of sufficient L∞-conditions for f being
in Hm

mix(Td). At first we prove these conditions for all possible transformations ψ and weight
functions ω. Later on we consider families of parameterized transformations ψ(◦) = ψ(◦,η)
and families of weight functions ω(◦) = ω(◦,µ) with η,µ ∈ Rd. Then we have parameter-
ized transformed functions f(◦) = f(◦,η,µ) ∈ L2(Td) and both parameters may impact the
smoothness of these functions. With the sufficient L∞-smoothness conditions we’re then able
to calculate lower bounds for η and µ such that the smoothness degree m of a function
h ∈ L2(Rd, ω(◦,µ)) ∩Hm

mix(Rd) remains under composition with a family of transformations
ψ(◦,η) so that we end up with f ∈ Hm

mix(Td). For two particular transformation families
ψ(◦,η) we explicitly calculate the resulting lower parameter bounds and observe a case in
which the smoothness preservation under the transformation depends only on the parameter
µ ∈ Rd appearing in the weight functions ω(◦,µ), as far as the conditions are able to detect it.
Furthermore, we present an example in which we compare the parameter bounds yielded by
the L∞-conditions with the exact lower bounds resulting from calculating the Sobolev-norm
‖ · ‖Hm

mix(Td). This will highlight that the easier to check L∞-conditions yield slightly coarser
parameter bounds. These conditions as a tool to determine when a transformed function
f is at least an L2(Td)-function, enable us to prove upper bounds for the approximation
error ‖h− SΛ

I h‖ measured in weighted L2- and L∞-norms on Rd. These are based on the
already established error bounds for ‖f − SΛ

I f‖ on the torus with respect to the L2(Td)- and
L∞(Td)-norms.

One advantage of this method is the availability of fast algorithms for high dimensional
approximation, see e.g.,[1], in contrast to function approximation based on for instance mul-
tivariate Hermite functions or Sinc methods. To this end, there are lattice rules that in
recent years became an important tool in numerical analysis for high dimensional integration
and approximation of multivariate functions. An introduction to lattice rules can be found
in [19, 23, 6]. These rules are used for the approximation of functions on the torus, see
[26]. Recently, efficient algorithms based on component-by-component methods [4, 5] were
presented in order to compute high-dimensional integrals. For the approximation of high-
dimensional functions there are efficient algorithms using sampling schemes based on rank-1
lattices [13, 8], and furthermore these schemes provide good approximation properties, see
also [2]. We adapt these algorithms and incorporate the outlined use of transformations.
Furthermore, we present numerical examples.

We note that it was recently suggested in [12, 11] to use multiple rank-1 lattices which
are obtained by taking a union of several single rank-1 lattices. This method overcomes the
limitations of the single rank-1 lattice approach. That is, for the reconstruction of multi-
variate trigonometric polynomials supported on an arbitrary frequency set I of finite cardi-
nality |I| <∞ with a single reconstructing rank-1 lattice, the lattice size M is bounded by
|I| ≤M ≤ |I|2 under certain mild assumptions, see [13, Lemma 2.1] and [10, Corollary 1].
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Multiple rank-1 lattices improve the upper bound to M ≤ C|I| log |I| with high probability
[12, 14]. Remarkably, in both cases the upper bound is independent of the dimension d.
Furthermore there are methods where the support of the Fourier coefficients f̂k is unknown.
We adapt the methods presented in [20] that describe a dimension incremental construction
of a frequency set I ⊂ Zd containing only non-zero or the approximately largest Fourier
coefficients ĥk, based on component-by-component construction of rank-1 lattices. This is
done with respect to a specific search space in form of a full integer grid [−N,N ]d ∩ Zd with
refinement N ∈ N and a sparsity that bounds the cardinality of the support. We incorpo-
rate the change of variables method into both the multiple rank-1 lattice methods as well
as the component-by-component construction method. Let us note that instead of rank-1
lattice points one can use a dimensional incremental support identification technique based
on randomly chosen sampling points, that was recently developed in [3].

The outline of the paper is as follows: In Section 2 we establish the basic notions from
classical Fourier approximation theory on the torus Td, the corresponding function spaces
and important convergence properties. We introduce the Sobolev spaces Hm

mix(Td) of mixed
natural smoothness order m ∈ N0 and the Wiener Algebra A(Td) of functions with absolutely
summable Fourier coefficients. Furthermore, we discuss certain properties of the subspaces
Aβ(Td) and Hβ(Td) of the Wiener Algebra, in particular we highlight the norm equivalence
of ‖ · ‖Hm(Td) and ‖ · ‖Hm

mix(Td) for all m ∈ N, see [17] . Then we define rank-1 lattices as

introduced in [15], discuss their importance in the context of Fourier approximation and
recall two important approximation error bounds on the torus in Theorems 2.2 and 2.3. In
Section 3 we define the notion of a transformation ψ : (−1

2 ,
1
2)d → Rd and provide a couple of

examples that we will use later on. Then we introduce weight functions ω : Rd → [0,∞) and
describe the structure of the weighted Hilbert spaces L2(Rd, ω), the corresponding weighted
scalar product (·, ·)L2(Rd,ω) and the resulting Fourier coefficients ĥk. Afterwards we prove
sufficient L∞-conditions on the transformation ψ and weight function ω, such that a function
h ∈ L2(Rd, ω) ∩ Hm

mix(Rd) is transformed under composition with ψ into a smooth function
f ∈ Hm

mix(Td). Then we are able to prove approximation error bounds on Rd in Theorems 3.6
and 3.7 based on the theorems on the torus that were recalled in Section 2. In Section 4
we incorporate the usage of transformations ψ into the algorithms [8, Algorithm 3.1 and 3.2]
for the evaluation and the reconstruction of multivariate functions in Algorithms 4.1 and 4.2
based on transformed rank-1 lattices. In Section 5 we discuss examples for the algebraic
transformation (3.6) and the error function transformation (3.8) that were introduced in
Section 3. In these examples we use a parameterized transformation ψ(◦) = ψ(◦,η) with
η ∈ Rd and a parameterized weight function ω(◦) = ω(◦,µ) with µ ∈ Rd that fit their
original definitions in Sections 2 and 3. With the sufficient L∞-conditions from Section 3 we
then calculate explicit lower bounds for η and µ that determine the degree of smoothness
m ∈ N of h ∈ L2(Rd, ω(◦,µ)) ∩Hm

mix(Rd) that is preserved under composition with the family
of transformations ψ(◦) = ψ(◦,η). Then we use the algorithms of the previous section to
illustrate the theoretical upper approximation error bounds. For some special cases in which
the Fourier coefficients ĥk are explicitly given, we compare those to the theoretically proposed
rate of decay of their absolutely values. In Section 6 we add some remarks on how the tool
of change of variables is incorporated into the ideas of multiple rank-1 lattices and sparse
fast Fourier algorithms. Furthermore we present examples with various test functions and
different transformation maps in up to dimension d = 12.
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2 Fourier approximation on the torus

At first we introduce weighted Lp-function spaces and Sobolev spaces of mixed smoothness,
recall some definitions of classical Fourier approximation theory and define a space of functions
that have absolute square-summable Fourier coefficients. Finally, we reflect the ideas of rank-1
lattices from [24, 4, 8], the corresponding Fourier approximation methods, and approximation
error bounds that were discussed in e.g., [25, 13, 2].

2.1 Preliminaries

Let Ω ∈ {Td,Rd} with Td ' [−1
2 ,

1
2)d being the d-dimensional torus. The space (C(Ω), ‖ · ‖L∞(Ω))

denotes the collection of all continuous functions f : Ω→ C, and (C0(Rd), ‖ · ‖L∞(Rd)) denotes

the space of all continuous functions f : Rd → C vanishing at infinity in every direction.
We define weighted function spaces Lp(Rd, ω) for 1 ≤ p < ∞ with the weight function
ω : Rd → [0,∞) as

Lp(Rd, ω) :=

{
h ∈ Lp(Rd) : ‖h‖Lp(Rd,ω) :=

(∫

Rd
|h(x)|p ω(x) dx

) 1
p

<∞
}

(2.1)

with the usual adjustments for p = ∞. We have Lp(Rd) ⊂ Lp(Rd, ω) if ω is bounded and
Lp(Rd, ω) ⊂ Lp(Rd) if ω is unbounded. For the constant weight function ω(x) ≡ 1 we have
Lp(Rd, ω) = Lp(Rd) and the Lp(Td)-spaces are defined analogously.

For functions f and g in the Hilbert space L2(Td) we have the scalar product

(f, g)L2(Td) :=

∫

Td
f(x) g(x) dx.

For any frequency set I ⊂ Zd of finite cardinality |I| < ∞ we denote the space of all multi-
variate trigonometric polynomials supported on I by

ΠI := span{e2πik·◦ : k ∈ I}.

The functions e2πik·x =
∏d
j=1 e2πikjxj with k ∈ Zd and x ∈ Td are orthogonal with respect to

the L2(Td)-scalar product. For all k ∈ Zd we denote the Fourier coefficients f̂k by

f̂k = (f, e2πik·◦)L2(Td) =

∫

Td
f(x) e−2πik·x dx,

and the corresponding Fourier partial sum by SIf(x) :=
∑

k∈I f̂k e2πik·x. For all f ∈ Lp(Td)
with 1 ≤ p <∞ we have

‖f − SIf‖Lp(Td) → 0 for |I| → ∞,

where |I| → ∞ means min(|k1|, . . . , |kd|) → ∞ for k = (k1, . . . , kd)
> ∈ I, see [31, Theo-

rem 4.1].
For multi-indices α ∈ Nd0 and the differential operator Dα[f ](x) as defined in (1.4) we

define the Sobolev spaces of mixed natural smoothness of L2(Ω)-functions with smoothness
order m ∈ N0, see [21, 27, 30], as

Hm
mix(Ω) =

{
f ∈ L2(Ω) : ‖f‖Hm

mix(Ω) <∞
}
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Figure 2.1: The hyperbolic cross IdN for N = 16 and d = 2.

with ‖ · ‖Hm
mix(Ω) as given in (1.5). The univariate spaces are denoted as Hm(T) and Hm(R),

respectively. For Ω = Td we recall some notation introduced in [17]. The Hm
mix(Td)-norm is

expressible in terms of the Fourier coefficients f̂k, which leads to the equivalent norm

‖f‖Hm,+(Td) :=


∑

k∈Zd
|f̂k|2

d∏

j=1

(1 + |kj |2)m




1
2

.

In [17, Lemma 2.3] it is specified that for m ∈ N and all f ∈ Hm
mix(Td) we have

‖f‖Hm
mix(Td) ≤ ‖f‖Hm,+(Td) ≤

(
2m

m+ 1

) d
2

‖f‖Hm
mix(Td).

Based on the weight function ωhc(k) defined in (1.1) we define hyperbolic crosses IdN as

IdN :=
{
k ∈ Zd : ωhc(k) ≤ N

}
, (2.2)

illustrated for N = 16 in two dimensions in Figure 2.1. Furthermore, for β ≥ 0 we form
the Hilbert space Hβ(Td) consisting of functions f ∈ L2(Td) with absolute square-summable
Fourier coefficients f̂k, as defined in (1.3). The norms ‖ · ‖Hm,+(Td) and ‖ · ‖Hβ(Td) are also
equivalent for m = β, because of the observation that

max(1, |kj |)2 ≤ 1 + |kj |2 ≤ 2 max(1, |kj |)2

for all kj ∈ Z. In total, for m ∈ N we have the norm equivalences

‖ · ‖Hm(Td) ∼ ‖ · ‖Hm,+(Td) ∼ ‖ · ‖Hm
mix(Td), (2.3)

but we distinguish the related function spaces anyway, because Hβ(Td) appears in results
concerned with approximation error bounds, whereas Hm

mix(Td) is considered later on when
we discuss smoothness-preserving transformation mappings. Closely related are the function
spaces Aβ(Td), β ≥ 0 of L1(Td)-functions with absolutely summable Fourier coefficients, as
defined in (1.2). For β = 0 and the constant weight function ωhc(k) ≡ 1 we call the space
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A(Td) := A0(Td) the Wiener Algebra. As shown in [13, Lemma 2.2], for β ≥ 0, λ > 1
2 and

fixed d ∈ N there are the continuous embeddings

Hβ+λ(Td) ↪→ Aβ(Td) ↪→ A(Td) (2.4)

and for f ∈ Aβ(Td) we have

‖f‖Aβ(Td) ≤ Cd,λ‖f‖Hβ+λ(Td) (2.5)

with a constant Cd,λ := C(d, λ) > 1. Additionally, for each function in A(Td) there exists a
continuous representative, as proven in [8, Lemma 2.1]. Later on, when we sample functions
f ∈ Hβ+λ(Td) we identify them with their continuous representatives given by their Fourier
series

∑
k∈Zd f̂k e2πik·◦ and this identification will be denoted by f ∈ Hβ+λ(Td) ∩ C(Td).

2.2 Rank-1 lattices and reconstructing rank-1 lattices

Before discussing the approximation of functions f ∈ Hβ(Td) ∩ C(Td) we recollect some re-
lated objects and observations from [24, 4, 8]. For each frequency set I ⊂ Zd there is the
difference set

D(I) := {k ∈ Zd : k = k1 − k2 with k1,k2 ∈ I}.
Furthermore, the set

Λ(z,M) :=

{
xj :=

(
j

M
z mod 1

)
∈ Td : j = 0, 1, . . .M − 1

}
(2.6)

is called rank-1 lattice with the generating vector z ∈ Zd and the lattice size M ∈ N, where
1 := (1, . . . , 1)> ∈ Zd. A reconstructing rank-1 lattice Λ(z,M, I) is a rank-1 lattice Λ(z,M)
for which the condition

t · z 6≡ 0 (modM) for all t ∈ D(I) \ {0}
holds. Given a reconstructing rank-1 lattice Λ(z,M, I), we have exact integration for all
multivariate trigonometric polynomials g ∈ ΠD(I), see [24], so that

∫

Td
g(x) dx =

1

M

M−1∑

j=0

g(xj), xj ∈ Λ(z,M, I).

In particular, for f ∈ ΠI and k ∈ I we have f(◦) e−2πik·◦ ∈ ΠD(I) and

f̂k =

∫

Td
f(x) e−2πik·x dx =

1

M

M−1∑

j=0

f(xj) e−2πik·xj , xj ∈ Λ(z,M, I). (2.7)

For an arbitrary function f ∈ Hβ(Td) ∩ C(Td) and lattice points xj ∈ Λ(z,M, I) we lose the

former mentioned exactness and get approximated Fourier coefficients f̂Λ
k of the form

f̂k ≈ f̂Λ
k =

1

M

M−1∑

j=0

f(xj) e−2πik·xj (2.8)

leading to the approximated Fourier partial sum SΛ
I f given by

SIf(x) ≈ SΛ
I f(x) =

∑

k∈I
f̂Λ
k e2πik·x.
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2.3 Lattice based approximation on the torus

We discuss upper bounds for certain approximation errors ‖f − SΛ
IdN
f‖ of functions f in

Aβ(Td) ∩ C(Td) and Hβ(Td) ∩ C(Td). For this matter the existence of reconstructing rank-1
lattices is secured by the arguments provided in [10, Corollary 1] and [13, Lemma 2.1]:

Lemma 2.1. Let I ⊂ Zd be a frequency set of finite cardinality 4 ≤ |I| < ∞ with
I ⊂ Zd ∩ (−M/2,M/2)d. For all multivariate trigonometric polynomials f ∈ ΠI there ex-
ists a reconstructing rank-1 lattice Λ(z,M, I) where the lattice size M ∈ N is bounded by
|I| ≤M ≤ |D(I)| ≤ |I|2, such that f̂k = f̂Λ

k . The generating vector z can be constructed using
a component-by-component approach.

Then it’s possible to prove an upper error bound for the L∞-approximation of functions in
the subspace Aβ(Td) of the Wiener Algebra, as seen in [13, Theorem 3.3]:

Theorem 2.2. Let f ∈ Aβ(Td) ∩ C(Td) with β ≥ 0 and d ∈ N, a hyperbolic cross IdN
with |IdN | <∞ and N ∈ N, and a reconstructing rank-1 lattice Λ(z,M, IdN ) be given. The
approximation of f by the approximated Fourier partial sum SΛ

IdN
f leads to an approximation

error that is estimated by

‖f − SΛ
IdN
f‖L∞(Td) ≤ 2N−β‖f‖Aβ(Td). (2.9)

The approximation of functions in the Hilbert spaces Hβ(Td) was investigated by V. N.
Temlyakov, see [25, 13]. He showed that for β > 1 there exists a reconstructing rank-1
lattice generated by a vector of Korobov form z := (1, z, z2, . . . , zd−1)> ∈ Zd such that the
L2-truncation error is bounded above by

‖f − SΛ
IdN
f‖L2(Td) ≤ N−β(logN)(d−1)/2‖f‖Hβ(Td).

A generalization of this estimate as well as an upper bound for the corresponding aliasing
error can be found in [2, Theorem 2], where they are stated in terms of dyadic hyperbolic
cross frequency sets and where they use a component-by-component approach to construct
the generating vector z ∈ Zd, which generally isn’t of Korobov form anymore. However, every
dyadic hyperbolic cross is embedded in a non-dyadic one, see [29, Lemma 2.29]. Thus, the
error estimates are easily translated in terms of non-dyadic hyperbolic crosses IdN , see [29,
Theorem 2.30], and we are particularly interested in the following special case:

Theorem 2.3. Let β > 1
2 , the dimension d ∈ N, a function f ∈ Hβ(Td)∩C(Td), a hyperbolic

cross IdN with N ≥ 2d+1, and a reconstructing rank-1 lattice Λ(z,M, IdN ) be given. Then we
have

‖f − SΛ
IdN
f‖L2(Td) ≤ Cd,βN−β(logN)(d−1)/2‖f‖Hβ(Td) (2.10)

with some constant Cd,β := C(d, β) > 0.

As highlighted earlier in (2.3), for β = m ∈ N the norms ‖ · ‖Hβ(Td) and ‖ · ‖Hm
mix(Td) are

equivalent. Eventually we utilize this norm equivalence in order to apply the above approxi-
mation error bounds for functions f in the Sobolev space Hm

mix(Td) that are characterized by
their derivatives.

9



3 Torus-to-R transformation mappings

Change of variables were discussed for example in [1, 22] and were used for high dimensional
integration in e.g.,[18, 16]. In this chapter we define transformations ψ : (−1

2 ,
1
2)d → Rd

and provide examples that will reappear later in this paper. Afterwards we describe the
weighted Hilbert spaces L2(Rd, ω) with weight functions ω : Rd → [0,∞) and investigate
their structure. Then we prove sufficient conditions on ψ and ω such that an initially chosen
h ∈ L2(Rd, ω) ∩Hm

mix(Rd) is transformed by the change of variables ψ into a function that is
lying in a Sobolev space Hm

mix(Td) of mixed natural smoothness order m ∈ N0. Eventually
we show that with an incorporated transformation ψ, we still have upper bounds for certain
approximation errors on Rd, which are based on the already established error bounds with
respect to the L∞(Td)- and L2(Td)-norms recalled in Theorems 2.2 and 2.3 respectively.

3.1 Transformations to Rd

We call a map ψ : (−1
2 ,

1
2) → R a transformation or change of variables if it is continuously

differentiable, increasing, odd, and we have

lim
x→− 1

2

ψ(x) = −∞, lim
x→ 1

2

ψ(x) =∞. (3.1)

We denote its first derivative by ψ′(x) := d
dx [ψ](x). The respective inverse transformation is

also continuously differentiable, increasing and is denoted by ψ−1 : R→ (−1
2 ,

1
2) in the sense

of y = ψ(x) ⇔ x = ψ−1(y). We call the derivative of the inverse transformation the density
function of ψ, which we define as

%(y) := (ψ−1)′(y) =
1

ψ′(ψ−1(y))
(3.2)

and for which we have %(y) ≥ 0 for all y ∈ R. Furthermore, we have lim
y→−∞

ψ−1(y) = −1
2 and

lim
y→∞

ψ−1(y) = 1
2 . We note that % is a bounded function with

‖%‖L1(R) =

∫ ∞

−∞
%(y) dy = 1.

For multivariate transformations we put

ψ(x) := (ψ1(x1), . . . , ψd(xd))
> and ψ′(x) :=

d∏

j=1

ψ′j(xj)

with x = (x1, . . . , xd)
> ∈ (−1

2 ,
1
2)d, where we may use different transformations ψj in each

direction. Similarly, we put ψ−1(y) := (ψ−1
1 (y1), . . . , ψ−1

d (yd))
> and

%(y) :=

d∏

j=1

%j(yj) (3.3)

with y = (y1, . . . , yd)
> ∈ Rd.
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Later on we consider families of parameterized transformations

ψ(x,η) := (ψ1(x1, η1), . . . , ψd(xd, ηd))
> (3.4)

with η = (η1, . . . , ηd)
> ∈ Rd. We only consider parametrizations for which the transformation

ψ, its inverse ψ−1 and the density function % fit into the given definitions above despite being
impacted by the parameter η. On several occasions throughout this paper we will replace
transformations ψ(x) by

ψ(x,η) := η · ψ(x) (3.5)

with η ∈ (0,∞)d. As the transformations are going to be composed with functions defined
on Rd the parameter η may impact the smoothness of the resulting transformed functions,
which we will discuss in depth later on. For now, we omit the parameter in the notation for
simplicity and proceed to just write ψ(◦) until we actually consider particular parameterized
families of the form (3.4) or (3.5).

3.2 Exemplary transformations

We list some feasible univariate transformations ψ with either an algebraic or an exponential
density function %, some of which were suggested in the literature, see e.g.,[1, Section 17.6]
and [22, Section 7.5]. With the remark on (3.4) in mind, we list these transformations here in
their univariate non-parameterized form with η = 1 and ψ(x) = ψ(x, 1) for simplicity. Later
on when we fix a particular family of parameterized transformations ψ(◦, η), η ∈ R we recall
these definitions accordingly.

Let x ∈ (−1
2 ,

1
2) and y ∈ R. We are particularly interested in the following transformations:

• algebraic transformation:

ψ(x) =
2x

(1− 4x2)
1
2

, ψ′(x) =
2

(1− 4x2)
3
2

, (3.6)

ψ−1(y) =
y

2(1 + y2)
1
2

, %(y) =
1

2(1 + y2)
3
2

• tangent transformation:

ψ(x) = tan (πx) , ψ′(x) =
π

cos2(πx)
(3.7)

ψ−1(y) =
1

π
arctan (y) , %(y) =

1

π

(
1

1 + y2

)

• error function transformation:

ψ(x) = erf−1(2x), ψ′(x) =
√
π e(erf−1(2x))2 (3.8)

ψ−1(y) =
1

2
erf (y) , %(y) =

1√
π

e−y
2

with the error function

erf(x) =
1√
π

∫ x

−x
e−t

2
dt, x ∈ R,

and erf−1(◦) denoting the inverse error function

11
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algebraic erf−1 log tan

Figure 3.1: Plots of exemplary transformations (3.6)-(3.9).

• logarithmic transformation:

ψ(x) =
1

2
log

(
1 + 2x

1− 2x

)
= tanh−1(2x), ψ′(x) =

2

1− 4x2
, (3.9)

ψ−1(y) =
1

2

(
e2y − 1

e2y + 1

)
=

1

2
tanh (y) , %(y) =

2e2y

(e2y + 1)2

For a side-by-side comparison of their individual slope see Figure 3.1.

3.3 Weighted Hilbert spaces on R

We describe the structure of the weighted L2(R, ω)-function spaces as defined in (2.1). In
this section the weight function ω : R→ [0,∞) remains unspecified. However, similar to the
generalization (3.4) of transformations ψ defined in (3.1), we will later on consider families of
non-negative parameterized weight functions ω(◦, µ) with µ ∈ R for the purpose of controlling
the smoothness of functions in L2(R, ω(◦, µ))∩Hm(R) and of the corresponding transformed
functions on the torus T. Analogously, families of multivariate parameterized weight functions
are defined as

ω(y,µ) :=

d∏

j=1

ωj(yj , µj), y,µ ∈ Rd (3.10)

with univariate weight functions ωj(◦, µj) : R→ [0,∞).

For now we remain in the univariate setting. The system {ϕk}k∈Z of weighted exponential
functions

ϕk(y) :=

√
%(y)

ω(y)
e2πikψ−1(y), y ∈ R (3.11)

forms an orthogonal system with respect to the scalar product

(h1, h2)L2(R,ω) :=

∫

R
ω(y)h1(y)h2(y) dy (3.12)

12



and for k1, k2 ∈ Z we have

(ϕk1 , ϕk2)L2(R,ω) = δk1,k2 .

The weighted scalar product (3.12) induces the norm

‖h‖L2(R,ω) :=
√

(h, h)L2(R,ω)

and in a natural way we have Fourier coefficients of the form

ĥk := (h, ϕk)L2(R,ω) =

∫

R
h(y)

√
%(y)ω(y) e−2πikψ−1(y) dy, (3.13)

as well as the respective Fourier partial sum for I ⊂ Z given by

SIh(y) :=
∑

k∈I
ĥk ϕk(y). (3.14)

Example 3.1. • For the algebraic transformation (3.6) with the density %(y) = 1

2(1+y2)
3
2

and the parameterized weight function ω(y, µ) =
(

1
1+y2

)µ
, µ ∈ R as in (5.2), the or-

thogonal system functions ϕk as in (3.11) are of the form

ϕk(y) =

√
1

2

(
1

1 + y2

) 3
2
−µ

e
πik y√

1+y2 .

The graphs of their real and imaginary parts of these ϕk are shown for µ = 2 and
k = 0, 1, 2, 3 in Figure 3.2.

• For the error function transformation (3.8) with the density %(y) = 1√
π

e−y
2

and the

Gaussian weight function ω(y, µ) = 1√
π

e−µ
2y2 , µ ∈ R as in (5.8), the orthogonal system

functions ϕk as in (3.11) are of the form

ϕk(y) = e
1
2

(µ2−1)y2+πik erf(y),

with graphs of their real and imaginary parts for µ =
√

2 and k = 0, 1, 2, 3 shown in
Figure (3.3) and the corresponding weighted scalar product (3.12) reads as

(h1, h2)L2(R,ω(◦,µ)) =
1√
π

∫

R
e−µ

2y2 h1(y)h2(y) dy.

3.4 Smoothness properties of composed functions in Sobolev spaces

In this chapter we discuss the smoothness of univariate functions h defined on R and of their
resulting transformed versions f on the torus T. In [16] the authors used change of variables
for integration problems with respect to a family of integrands with bounded Lp-norm of
mixed first order partial derivatives with 1 ≤ p ≤ ∞ and provided sufficient conditions such
that the transformed integrand belongs to a Sobolev space of mixed smootheness order one.
We will propose a specific set of sufficient conditions for ψ and ω such that f ∈ Hm

mix(Td)
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√

1
2

√
1 + y2 cos

(
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)
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√
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2

√
1 + y2 sin

(
πk y√

1+y2

)
k = 1 k = 2 k = 3

Figure 3.2: Real and imaginary part of the weighted exponential functions ϕk, k = 0, 1, 2, 3 in
(3.11) with the density function % of the algebraic transformation (3.6) and the
algebraic parameterized weight function ω(y, µ) as given in (5.2) for fixed µ = 2.

−3 −2 −1 1 2 3

−4

−2

2

4

Re(ϕk(y)) = e
y2

2 cos (πk erf(y))

k = 0 k = 1 k = 2 k = 3

−3 −2 −1 1 2 3

−4

−2

2

4

Im(ϕk(y)) = e
y2

2 sin (πk erf(y))

k = 1 k = 2 k = 3

Figure 3.3: Real and imaginary part of the weighted exponential functions ϕk, k = 0, 1, 2, 3
in (3.11) with the density function % of the error function transformation (3.8)
and the parameterized Gaussian weight function ω(y, µ) as given in (5.8) for fixed
µ =
√

2.

with m ∈ N0. These conditions are stated for both univariate and multivariate functions.
Afterwards we utilize the norm equivalence of the Sobolev space Hm

mix(Td) and the subspace
Hβ(Td) of the Wiener Algebra A(Td) for m = β as described in (2.3) and combine it with the
embedding Hβ+λ(Td) ↪→ Aβ(Td) in (2.4) for all λ > 1

2 in order to discuss high dimensional
approximation problems in which we apply rank-1 lattice based fast Fourier approximation
methods. Throughout this section we still omit the parameters η,µ ∈ Rd in the notation of
the transformations ψ and the weight functions ω, as outlined in (3.4) and (3.10).

For now we consider univariate transformed functions f ∈ L2(T) of the form

f(x) := h(ψ(x))
√
ω(ψ(x))ψ′(x), x ∈ T, (3.15)

that are the result of applying the change of variables y = ψ(x) as defined in (3.1) to a
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T ' [−1
2 ,

1
2) (−1

2 ,
1
2) R

C

⊃
ψ(x)

L2(T)3h(ψ(x))
√
ω(ψ(x))ψ′(x)=:f(x)

h(y)∈L2(R,ω)

ψ−1(y)

Figure 3.4: Scheme of the relation between f and h caused by a transformation ψ.

function h ∈ L2(R, ω) and for which we have the identity

‖h‖2L2(R,ω) =

∫

R
|h(y)|2 ω(y) dy =

∫

T
|h(ψ(x))|2 ω(ψ(x))ψ′(x) dx = ‖f‖2L2(T), (3.16)

schematically shown in Figure 3.4.

Remark 3.2. Transformed functions f as given in (3.15) are generally not in L2(T) for
all transformations ψ. We will consider families of transformations ψ(◦, η), η ∈ R as in
(3.4) and families of weight functions ω(◦, µ), µ ∈ R as in (3.10). Generally, there are re-
strictions to the range of feasible parameters η, µ ∈ R for which the transformed functions
f(◦, η, µ) as in (3.15) are in L2(T). Later on we present examples with multivariate functions
h ∈ L2(Rd, ω(◦,µ)) ∩Hm

mix(Rd) and a fixed family of transformations ψ(◦,η),η ∈ R and cal-
culate parameter ranges of η and µ for which the transformed functions f are in Hm

mix(Td)
for m ∈ N0.

It is generally rather difficult to check if such transformed functions f are in Hm(T) for some
fixed m ∈ N0 by calculating the individual L2(T)-norms within the Sobolev norm ‖f‖Hm(T).
Therefore we propose two different sets of sufficient conditions such that f ∈ Hm(T) with
m ∈ N0 by utilizing the product structure of the functions f in (3.15). At first we state
conditions on h ∈ L2(R, ω), the weight function ω and the transformation ψ to preserve a
certain degree of smoothness m of h under transformation with ψ, that slightly simplify the
problem of the difficult evaluation of L2(T)-integrals.

Theorem 3.3. Let m ∈ N0, a transformation ψ : (−1
2 ,

1
2)→ R as defined in (3.1), and a func-

tion h ∈ L2(R, ω) with a weight function ω : R→ [0,∞), and the corresponding transformed
functions f of the form (3.15) be given. We have f ∈ Hm(T) if either for all k = 0, 1, . . . ,m

dk

dxk
[h ◦ ψ] (x) ∈ L∞(T) and

dk

dxk

[√
(ω ◦ ψ)ψ′

]
(x) ∈ L2(T)

or if for all k = 0, 1, . . . ,m

dk

dxk
[h ◦ ψ] (x) ∈ L2(T) and

dk

dxk

[√
(ω ◦ ψ)ψ′

]
(x) ∈ L∞(T).

Proof. Let f be of the form (3.15) and k = 0, 1, . . . ,m. Using the well-known generalized
Leibniz rule for the k-th derivative of a product of two functions leads to

∥∥∥∥
dk

dxk
[f ](x)

∥∥∥∥
L2(T)

≤
k∑

`=0

(
k

`

)∥∥∥∥
d`

dx`
[h ◦ ψ] (x)

dk−`

dxk−`

[√
(ω ◦ ψ)ψ′

]
(x)

∥∥∥∥
L2(T)

. (3.17)
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Now we either estimate

∥∥∥∥
dk

dxk
[f ](x)

∥∥∥∥
L2(T)

≤
k∑

`=0

(
k

`

)∥∥∥∥
d`

dx`
[h ◦ ψ] (x)

∥∥∥∥
L∞(T)

∥∥∥∥
dk−`

dxk−`

[√
(ω ◦ ψ)ψ′

]
(x)

∥∥∥∥
L2(T)

or

∥∥∥∥
dk

dxk
[f ](x)

∥∥∥∥
L2(T)

≤
k∑

`=0

(
k

`

)∥∥∥∥
d`

dx`
[h ◦ ψ] (x)

∥∥∥∥
L2(T)

∥∥∥∥
dk−`

dxk−`

[√
(ω ◦ ψ)ψ′

]
(x)

∥∥∥∥
L∞(T)

.

If the ‖·‖L2(T)-norms of k-th derivatives of f are finite for all k = 0, 1, . . . ,m, then their sum,
i.e.,the Hm(T)-norm is finite, too.

Now, we derive a set of sufficient L∞-conditions on ψ and ω that determine when a function
h ∈ L2(R, ω) ∩ Hm(R) can be transformed by ψ into an f ∈ Hm(T) of form (3.15). This
eliminates the necessity to evaluate L2-integrals of various derivatives of f . Furthermore,
once we consider particular parameterized families of transformations ψ(◦, η) and families
of weight functions ω(◦, µ), these conditions enable us for each smoothness order m ∈ N to
explicitly calculate how large the parameters η, µ ∈ R have to be in order to preserve the fixed
degree of smoothness m when transforming h ∈ L2(R, ω(◦, µ)) ∩Hm(R) into f ∈ Hm(T) via
ψ(◦, η).

For simplified notation we alternate between equivalent expressions for derivatives of the
appearing functions and for improved readability we write explicit arguments within certain
norms. We denote the k-th derivative of a function f(x) with respect to x by either dk

dxk
[f ](x)

or f (k)(x), and for k = 1, 2, 3 we sometimes use the notation f ′(x), f ′′(x), and f ′′′(x).

Theorem 3.4. Let m ∈ N0, a transformation ψ : (−1
2 ,

1
2) → R as defined in (3.1) with the

density function % of ψ as in (3.2), a function h ∈ L2(R, ω) ∩Hm(R) with a non-negative
weight function ω : R → [0,∞) and the corresponding transformed functions f of the form
(3.15) be given.

We have f ∈ Hm(T), if for all ` = 0, 1, . . . ,m we have

d`

dy`
[%] (y) ∈ C0(R),

d`

dx`
[ψ] (x) ∈ C((−1/2, 1/2))

and max
k=0,...,`

∥∥∥∥
d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)max(− 1

2
,2k− 3

2
)

∥∥∥∥
L∞(T)

. (3.18)

Proof. For h ∈ L2(R, ω)∩Hm(R) with m ∈ N0 and a transformation ψ as defined in (3.1) we
consider the function f as given in (3.15). In order to check if f ∈ Hm(T) have to show that∥∥ dn

dxn [f ](x)
∥∥
L2(T)

<∞ for all n = 0, 1, . . . ,m. We present the arguments for n = m and they

are applicable in the same way for n = 0, 1, . . . ,m − 1, too. We consider
∥∥ dm

dxm [f ](x)
∥∥
L2(T)

and apply the generalized Leibniz rule as in (3.17), so that we now have to ensure that

∥∥∥∥
dk

dxk
[h ◦ ψ] (x)

dm−k

dxm−k

[√
(ω ◦ ψ)ψ′

]
(x)

∥∥∥∥
L2(T)

<∞ (3.19)

for all k = 0, . . . ,m. We leave h◦ψ in the term corresponding to k = 0 untouched for now. For
k = 1, . . . ,m we use the Faá di Bruno formula to write the k-th derivative of the composition
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of functions h and ψ as

dk

dxk
[h ◦ ψ] (x) =

k∑

`=1

h(`)(ψ(x)) ·Bk,`(ψ′(x), ψ′′(x), . . . , ψ(k−`+1)(x)) (3.20)

and the well-known Bell polynomials Bk,` for k, ` ∈ N0 are given by

Bk,`(z) :=
∑

j1+j2+...+jk−`+1=`,
j1+2j2+...+(k−`+1)jk−`+1=k

`!

j1! · . . . · jk−`+1!

k−`+1∏

m=1

(zm
m!

)jm
(3.21)

with z = (z1, . . . , zk−`+1)>. We observe that differentiating both sides of ψ−1(ψ(x)) = x on
both sides yields

ψ′(x) =
1

%(ψ(x))
, ψ′′(x) = −%

′(ψ(x))ψ′(x)

%(ψ(x))2
= −%′(ψ(x))ψ′(x)3.

Based on this we also observe that for k ∈ N

d

dx

[
(ψ′)k

]
(x) = kψ′(x)k−1ψ′′(x) = −kψ′(x)k+2%′(ψ(x)). (3.22)

Hence, the k-th derivative of ψ can be expressed soley in terms of powers of ψ′ and the first
(k − 1) derivatives of % by repeated insertion of the expression of ψ′′. Formula (3.22) implies
that the highest appearing power of ψ′ increases by 2 with each differentiation. For example,

ψ′′′(x) = ψ′(x)5

(
−%
′′(ψ(x))

ψ′(x)
+ 3%′(ψ(x))

)
,

ψ(4)(x) = ψ′(x)7

(
−%
′′′(ψ(x))

ψ′(x)2
+

4%′′(ψ(x))%′(ψ(x)) + 6%′(ψ(x))

ψ′(x)
− 15%′(ψ(x))3

)
.

We note that each derivative of ψ is bounded, based on the fact that % is by definition in
C0(R), hence % ◦ ψ = 1/ψ′ ∈ C(T) and any power of 1/ψ′ is bounded, too. Additionally we
assumed that the first k derivatives of % are in C0(R), too. Therefore, with constants Ck > 0
and C > 0, for all k ∈ N we can estimate

∣∣∣∣
dk

dxk
[ψ](x)

∣∣∣∣ ≤ Ck|ψ′(x)|2k−1

and for the Bell polynomials Bk,` in (3.20) we then estimate

|Bk,`(ψ′(x), ψ′′(x), . . . , ψ(k−`+1)(x))| (3.23)

≤ C ·Bk,`(|ψ′(x)|, |ψ′(x)|3, . . . , |ψ′(x)|2(k−`+1)−1).

The Bell polynomials were defined according to the rules to partition a number k ∈ N into a
sum of ` ∈ {1, 2, . . . , k} natural numbers j1, . . . , j` ∈ N, that are given by

j1 + j2 + j3 + . . .+ jk−`+1 = `,

j1 + 2j2 + 3j3 + . . .+ (k − `+ 1)jk−`+1 = k.
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Substracting the first rule from two times the second rule results in the equation

j1 + 3j2 + 5j3 + . . .+ (2(k − `+ 1)− 1)jk−`+1 = 2k − `

which reveals that in the polynomials Bk,`(|ψ′(x)|, |ψ′(x)|3, . . . , |ψ′(x)|2(k−`+1)−1) as defined
in (3.23) the highest appearing power of |ψ′| is 2k − 1 for ` = 1. By extracting |ψ′(x)|2k−1

from each Bk,` the remaining polynomials consist only of powers of 1/ψ′, that are all bounded.
Hence, in (3.23) we further estimate

|Bk,`(ψ′(x), ψ′′(x), . . . , ψ(k−`+1)(x))| (3.24)

≤ C
∣∣∣∣∣ψ
′(x)2k−1Bk,`(|ψ′(x)|, |ψ′(x)|3, . . . , |ψ′(x)|2(k−`+1)−1)

ψ′(x)2k−1

∣∣∣∣∣

≤ C ′
∣∣∣ψ′(x)2k−1

∣∣∣

with constants C,C ′ > 0.

We go back to the derivatives of h ◦ ψ in (3.20) and estimate them individually. For k = 0
we simply estimate

‖h ◦ ψ‖L2(T) =

(∫ 1
2

− 1
2

∣∣∣h(ψ(x))ψ′(x)−
1
2

∣∣∣
2
ψ′(x) dx

) 1
2

(3.25)

≤ ‖ψ′(◦)− 1
2 ‖L∞(T)

(∫ ∞

−∞
|h(y)|2 dy

) 1
2

,

which exists if ψ′(◦)− 1
2 ∈ L∞(T). With the Faá di Bruno formula (3.20) and the upper bound

(3.24) for dk

dxk
[h ◦ ψ] (x) we estimate

∥∥∥∥
dk

dxk
[h ◦ ψ] (x)

∥∥∥∥
L2(T)

=

(∫ 1
2

− 1
2

∣∣∣∣
dk

dxk
[h ◦ ψ] (x)ψ′(x)−

1
2

∣∣∣∣
2

ψ′(x) dx

) 1
2

≤ ‖ψ′(x)2k− 3
2 ‖L∞(T)



∫ 1

2

− 1
2

∣∣∣∣∣∣

k∑

j=1

h(j)(ψ(x))

∣∣∣∣∣∣

2

ψ′(x) dx




1
2

≤ C · ‖ψ′(x)2k− 3
2 ‖L∞(T)

k∑

j=1

∥∥∥∥
dj

dyj
[h(y)]

∥∥∥∥
L2(R)

. (3.26)
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By inserting (3.25) and (3.26) into (3.19) we in total have for all ` ∈ N0 the estimate

∥∥∥∥
d`

dx`
[f ](x)

∥∥∥∥
L2(T)

(3.27)

≤
∑̀

k=0

(
`

k

)∥∥∥∥
dk

dxk
[h ◦ ψ] (x)

d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)

∥∥∥∥
L2(T)

≤
∥∥∥∥

d`

dx`

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)−

1
2

∥∥∥∥
L∞(T)

‖h‖L2(R)

+ C ·
∑̀

k=1

(
`

k

)∥∥∥∥
d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)2k− 3

2

∥∥∥∥
L∞(T)

k∑

j=1

∥∥∥∥
dj

dyj
[h(y)]

∥∥∥∥
L2(R)

≤ C ′ max
k=0,...,`

∥∥∥∥
d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)max(− 1

2
,2k− 3

2
)

∥∥∥∥
L∞(T)

×

×
(
‖h‖L2(R) +

∑̀

k=1

‖h‖Hk(R)

)

≤ C ′ max
k=0,...,`

∥∥∥∥
d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)max(− 1

2
,2k− 3

2
)

∥∥∥∥
L∞(T)

(`+ 1)‖h‖H`(R)

with constants C,C ′ ≥ 1. This upper bound exists as long as the L∞-norms are finite and
h ∈ Hm(R). In total we finally estimate

‖f‖Hm(T) =

(
m∑

`=0

∥∥∥∥
d`

dx`
[f ](x)

∥∥∥∥
2

L2(T)

) 1
2

≤ C max
`=0,...,m

(
max
k=0,...,`

∥∥∥∥
d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)max(− 1

2
,2k− 3

2
)

∥∥∥∥
L∞(T)

)
×

×
(

m∑

`=0

(`+ 1)2‖h‖2H`(R)

) 1
2

≤ C max
`=0,...,m

(
max
k=0,...,`

∥∥∥∥
d`−k

dx`−k

[√
(ω ◦ ψ)ψ′

]
(x)ψ′(x)max(− 1

2
,2k− 3

2
)

∥∥∥∥
L∞(T)

)
×

× (m+ 1)‖h‖Hm(R).

Next, we generalize the previous Theorem by proving its multivariate version. Again,
to simplify the notation in (1.4) of the d-variate differential operator Dm[f ](x) with both
m = (m1, . . . ,md) ∈ Nd0 and x = (x1, . . . , xd)

> ∈ Rd we use equivalent expressions for certain
(partial) derivatives and state explicit arguments in various norms. When differentiating a
multivariate function f with respect to the j-th coordinate mj-times we write

∂mj [f ](x) :=
∂mj

∂x
mj
j

[f ](x) = D(0,...,0,mj ,0,...,0)[f ](x).
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For the first and `-th derivatives of univariate functions with ` ∈ N we use the notation

ψ′j(xj) :=
d

dxj
[ψj ](xj) and ψ

(`)
j (xj) :=

d`

dx`j
[ψj ](xj).

Similar to (3.15) we consider multivariate transformed functions f ∈ L2(Td) of the form

f(x) = (h ◦ ψ)(x)
√

(ω ◦ ψ)(x)D1[ψ](x)

= h(ψ1(x1), . . . , ψd(xd))
d∏

k=1

√
ωk(ψk(xk))ψ

′
k(xk), x ∈ Td, (3.28)

that are the result of applying the multivariate change of variables

y = (y1, . . . , yd)
> = (ψ1(x1), . . . , ψd(xd))

> = ψ(x)

as defined in (3.4) to a function h ∈ L2(Rd, ω) with a product weight ω as in (3.10) and for
which we have the identity

‖h‖2L2(Rd,ω) =

∫

Rd
|h(y)|2 ω(y) dy (3.29)

=

∫

Td
|(h ◦ ψ)(x)|2 (ω ◦ ψ)(x)D1[ψ](x) dx = ‖f‖2L2(Td).

Again, we derive a set of sufficient L∞-conditions on the multivariate transformation ψ and
the product weight ω, that determine when a function h ∈ L2(Rd, ω) ∩ Hm

mix(Rd) can be
transformed by ψ into an f ∈ Hm

mix(Td) of form (3.28).

Theorem 3.5. Let the dimension d ∈ N, m ∈ N0, a d-variate transformation ψ : (−1
2 ,

1
2)d → Rd

as defined in (3.4) with the d-variate density function %(y) =
∏d
j=1 %j(yj) of ψ as in (3.3), a

non-negative product weight function ω : Rd → [0,∞) as in (3.10), a multivariate function
h ∈ L2(Rd, ω) ∩Hm

mix(Rd) and the corresponding transformed functions f of the form (3.28)
be given.

We have f ∈ Hm
mix(Td), if for all multi-indices m = (m1, . . . ,md)

> ∈ Nd0, ‖m‖`∞ ≤ m and
all j` = 0, . . . ,m, ` = 1, . . . , d we have

∂j` [%] (y`) ∈ C0(R), ∂j` [ψ] (x`) ∈ C((−1/2, 1/2))

and max
j`=0,...,m`

∥∥∥∂m`−j`
[√

(ω` ◦ ψ`)ψ′`
]

(x`)ψ
′
`(x`)

max(− 1
2
,2j`− 3

2
)
∥∥∥
L∞(T)

<∞. (3.30)

Proof. For h ∈ L2(Rd, ω) ∩ Hm
mix(Rd) with m ∈ N0 and a transformation ψ as defined in

(3.4) we consider the function f as given in (3.28). In order to check if f ∈ Hm
mix(Td) we

have to show that for all multi-indices m = (m1, . . . ,md)
> ∈ Nd0 with ‖m‖`∞ ≤ m we have

‖Dm[f ](x)‖L2(Td) <∞.

Let m = (m1, . . . ,md)
> ∈ Nd0 be any multi-index with ‖m‖`∞ ≤ m. For a multivariate

transformed function of the form (3.28) we have

‖Dm[f ](x)‖L2(Td) =



∫

Td

∣∣∣∣∣D
m

[
(h ◦ ψ)

d∏

k=1

√
(ωk ◦ ψk)ψ′k

]
(x)

∣∣∣∣∣

2

dx




1
2

. (3.31)
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Based on the product weight function in the transformed function f in (3.28) we have

Dm

[
(h ◦ ψ)

d∏

k=1

√
(ωk ◦ ψk)ψ′k

]
(x)

= ∂md

[
. . . ∂m2

[
∂m1

[
(h ◦ ψ)

d∏

k=1

√
(ωk ◦ ψk)ψ′k

]
(x1)

]
(x2) . . .

]
(xd). (3.32)

By applying the Leibniz formula as in (3.17) we obtain for all ` = 1, . . . , d

∂m`

[
(h ◦ ψ)

d∏

k=1

√
(ωk ◦ ψk)ψ′k

]
(x`)

=

m∑̀

j`=0

(
m`

j`

)
∂j` [h ◦ ψ](x`) ∂

m`−j`

[
d∏

k=1

√
(ωk ◦ ψk)ψ′k

]
(x`) (3.33)

and in total rewrite the expression in (3.32) as

Dm

[
(h ◦ ψ)

d∏

k=1

√
(ωk ◦ ψk)ψ′k

]
(x) =

m1∑

j1=0

(
m1

j1

)
. . .

md∑

jd=0

(
md

jd

)
D(j1,...,jd)[h ◦ ψ](x)× (3.34)

×D(m1−j1,...,md−jd)

[
d∏

k=1

√
(ωk ◦ ψk)ψ′k

]
(x).

Next, we apply the Faá di Bruno formula (3.20) to each univariate jk-th derivative of h ◦ ψ
in (3.33) so that for ` = 1, . . . , d we have

∂j` [h ◦ ψ](x) =





j∑̀

i`=1

∂i` [h](ψ(x))Bj`,i`(ψ
′
`(x`), . . . , ψ

(j`−i`+1)
` (x`)) : j` ∈ N,

h(ψ(x)) : j` = 0,

(3.35)

i.e., B0,i`(ψ
′
`(x`), ψ

′′
` (x`), . . . , ψ

(j`−i`+1)
` (x`)) = 1.

We combine the norm ‖Dm[f ](x)‖L2(Td) in (3.31) with the expression resulting from ap-
plying the Leibniz formula to Dm[f ] in (3.34) and the subsequent application of the Faá di
Bruno formula in (3.35). Then we estimate

‖Dm[f ](x)‖L2(Td) ≤
m1,...,md∑

j1=0,...,jd=0

d∏

`=1

(
m`

j`

) j1,...,jd∑

i1=1,...,id=1

(∫

Td
|D(i1,...,id)[h](ψ(x))|2 × (3.36)

×
d∏

`=1

|Bj`,i`(ψ′`(x`), . . . , ψ
(j`−i`+1)
` (x`))|2 ×

×
∣∣∣∣∣D

(m1−j1,...,md−jd)

[
d∏

k=1

√
(ωk ◦ ψk)ψ′k

]
(x)

∣∣∣∣∣

2

dx




1
2

.

Despite the iterative integral appearing in (3.36) we estimate each coordinate separately
with the univariate arguments of the previous proof by fixing all but one coordinate one
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after another. Recalling the arguments in (3.24), if all appearing derivatives of ψ` are in
C(−1/2, 1/2) and the corresponding derivatives of the density %` are in C0(R) then for all Bell
polynomial Bj`,i` with j` ≥ 1 appearing in (3.35) and (3.36) there is some constant C > 0 so
that we can estimate

|Bj`,i`(ψ′`(x`), ψ′′` (x`), . . . , ψ
(j`−i`+1)
` (x`))| ≤ C|ψ′`(x`)|2j`−1.

Analogously, to (3.25) and (3.26) for each ` = 1, . . . , d we have to separate the summand for
j` = 0 from the summands corresponding to j` = 1, . . . , d. Starting with ` = 1 we estimate
(3.36) as in (3.27) after inserting the productive one 1 = ψ′1(x1) 1

ψ′1(x1)
, so that

‖Dm[f ](x)‖L2(Td)

≤ C1

(
m1

dm1
2 e

)
max

j1=0,...,m1

∥∥∥∥∂m1−j1
[√

(ω1 ◦ ψ1)ψ′1

]
(x1)ψ′1(x1)max(− 1

2
,2j1− 3

2
)

∥∥∥∥
L∞(T)

×

×
m2,...,md∑

j2=0,...,jd=0

d∏

`=2

(
m`

j`

) j2,...,jd∑

i2=1,...,id=1

(∫

Td−1

×

×
∫

T
|D(i1,...,id)[h](ψ1(x1), . . . , ψd(xd))|2ψ′1(x1) dx1 ×

×
d∏

`=2

|Bj`,i`(ψ′`(x`), . . . , ψ
(j`−i`+1)
` (x`))|2 ×

×
∣∣∣∣∣D

(m2−j2,...,md−jd)

[
d∏

k=2

√
(ωk ◦ ψk)ψ′k

]
(x2, . . . , xd)

∣∣∣∣∣

2

d(x2, . . . , xd)




1
2

.

After repeating this process for ` = 2, . . . , d and inserting the inverse transformations x` = ψ−1
` (y`)

for all ` = 1, . . . , d we end up with the estimate

‖Dm[f ](x)‖L2(Td)

≤
d∏

`=1

C`

(
m`

dm`2 e

)
max

j`=0,...,m`

∥∥∥∂m`−j`
[√

(ω` ◦ ψ`)ψ′`
]

(x`)ψ
′
`(x`)

max(− 1
2
,2j`− 3

2
)
∥∥∥
L∞(T)

×

×
m1,...,md∑

j1=0,...,jd=0

j1,...,jd∑

i1=1,...,id=1

(∫

Td
|D(i1,...,id)[h](ψ1(x1), . . . , ψd(xd))|2

d∏

`=1

ψ′`(x`) dx

) 1
2

≤ C
d∏

`=1

max
j`=0,...,m`

∥∥∥∂m`−j`
[√

(ω` ◦ ψ`)ψ′`
]

(x`)ψ
′
`(x`)

max(− 1
2
,2j`− 3

2
)
∥∥∥
L∞(T)

×

×
m1,...,md∑

j1=0,...,jd=0

j1,...,jd∑

i1=1,...,id=1

(∫

Rd
|D(i1,...,id)[h](y1, . . . , yd)|2 dy

) 1
2

≤ C
d∏

`=1

max
j`=0,...,m`

∥∥∥∂m`−j`
[√

(ω` ◦ ψ`)ψ′`
]

(x`)ψ
′
`(x`)

max(− 1
2
,2j`− 3

2
)
∥∥∥
L∞(T)

×

×
m1,...,md∑

j1=0,...,jd=0

‖h‖
Hj

mix(Rd)
,
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with j = max(j1, . . . , jd) in the last estimate.
Since the previous estimate is valid for all multi-indices m = (m1, . . . ,md)

> ∈ Nd0 with
‖m‖`∞ ≤ m we finally estimate

‖f‖Hm
mix(Td) =


 ∑

‖m‖`∞≤m
‖Dm[f ](x)‖2L2(Td)




1
2

=




m,...,m∑

m1=0,...,md=0

‖Dm[f ](x)‖2L2(Td)




1
2

≤ C
d∏

`=1

max
m`=0,...,m

×

×
(

max
j`=0,...,m`

∥∥∥∂m`−j`
[√

(ω` ◦ ψ`)ψ′`
]

(x`)ψ
′
`(x`)

max(− 1
2
,2j`− 3

2
)
∥∥∥
L∞(T)

)
×

× (m+ 1)d‖h‖Hm
mix(Rd).

3.5 Approximation of transformed functions

We establish two specific approximation error bounds for functions defined on Rd based on the
approximation error bounds on the torus Td that we recalled in Theorems 2.2 and 2.3. The
corresponding proofs rely heavily on the previously introduced sufficient conditions in Theo-
rem 3.5 that describe when Sobolev functions h ∈ L2(Rd, ω) ∩Hm

mix(Rd) with a multivariate
weight function ω : Rd → [0,∞) as given in (3.10) can be transformed into Sobolev functions
of dominated mixed smoothness on Td of the form (3.28) by multivariate transformations
ψ : (−1

2 ,
1
2)d → Rd as given in (3.4).

At first, we fix some notation of certain multivariate objects. Based on the definition of a
rank-1 lattice Λ(z,M) in (2.6) we define a transformed rank-1 lattice as

Λψ(z,M) := {yj := ψ(xj) : xj ∈ Λ(z,M), j = 0, . . . ,M − 1} . (3.37)

Accordingly, we denote the transformed reconstructing rank-1 lattice by Λψ(z,M, I).
Besides the weight function ω, also the density % of the transformation ψ is of product form

as defined in (3.3), i.e., it is the product of univariate densities %j(yj), j = 1, . . . , d. Hence,
based on the functions ϕk given in (3.11) this product form extends to

ϕk(y) :=
d∏

j=1

ϕkj (yj). (3.38)

Similar to (3.12), the multivariate weighted L2(Rd, ω) scalar product reads as

(h1, h2)L2(Rd,ω) :=

∫

Rd

d∏

j=1

ωj(yj)h1(y)h2(y) dy (3.39)

and similar to (3.13) the multivariate Fourier coefficients are naturally given with respect to
this scalar product as

ĥk = (h, ϕk)L2(Rd,ω). (3.40)
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As before in (3.14) we define the multivariate Fourier partial sum as

SIh(y) :=
∑

k∈I
ĥk ϕk(y).

Suppose f ∈ L2(Td), then for each I ⊂ Zd the system {ϕk}k∈I spans the space of transformed
trigonometric polynomials

ΠI,ψ := span

{√
%(◦)
ω(◦) e2πik·ψ−1(◦) : k ∈ I

}
. (3.41)

Similar to (2.7), for transformed trigonometric polynomials h ∈ ΠI,ψ, transformed lattice
nodes yj ∈ Λψ(z,M, I) and k ∈ I we have the exact integration property of the form

ĥk =

∫

Rd
h(y)

√
%(y)ω(y) e−2πik·ψ−1(y) dy =

∫

Td
f(x) e−2πik·x dx

=
1

M

M−1∑

j=0

f(xj) e−2πik·xj =
1

M

M−1∑

j=0

h(yj)

√
%(yj)

ω(yj)
e−2πik·ψ−1(yj) = ĥΛ

k . (3.42)

Generally, the multivariate approximated Fourier coefficients of the form

ĥΛ
k =

1

M

M−1∑

j=0

h(yj)

√
%(yj)

ω(yj)
e−2πik·ψ−1(yj) =

1

M

M−1∑

j=0

h(yj)ϕk(yj)

only approximate the multivariate Fourier coefficients ĥk. Finally, the multivariate version of
the approximated Fourier partial sum is given by

SΛ
I h(x) :=

∑

k∈I
ĥΛ
k ϕk(y). (3.43)

Similar to the Hβ(Td)-norm in (1.3) we define a norm of weighted Fourier coefficients ĥk of
the form

‖h‖2Hm(Rd) :=
∑

k∈Zd
ωhc(k)2m|ĥk|2.

With these rewritten objects we transfer the approximation error bounds in Theorems 2.2
and 2.3 for functions defined on the torus to Rd.

3.5.1 L∞-approximation error

Based on the L∞(Td)-approximation error bound (2.9) and the conditions proposed in The-
orem 3.5 we prove a similar upper bound for the approximation error ‖h−SΛ

IdN
h‖ in terms of

a weighted L∞-norm on Rd.
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Theorem 3.6. Let d ∈ N, m ∈ N0, a hyperbolic cross IdN with N ≥ 2d+1 and a reconstructing
rank-1 lattice Λ(z,M, IdN ) be given. Let ψ be a multivariate transformation as defined in
(3.4) with its corresponding density function % in product form (3.3). Let ω be a weight
function as in (3.10) and we consider a multivariate function h ∈ L2(Rd, ω) ∩Hm

mix(Rd). Let
λ > 1

2 . Furthermore, for all multi-indices m = (m1, . . . ,md)
> ∈ Nd0 with ‖m‖`∞ ≤ m and all

j` = 0, . . . ,m, ` = 1, . . . , d we assume

∂j` [%] (y`) ∈ C0(R), ∂j` [ψ] (x`) ∈ C((−1/2, 1/2))

and

max
j`=0,...,m`

∥∥∥∂m`−j`
[√

(ω` ◦ ψ`)ψ′`
]

(x`)ψ
′
`(x`)

max(− 1
2
,2j`− 3

2
)
∥∥∥
L∞(T)

<∞.

Then there is an approximation error estimate of the form
∥∥∥h− SΛ

IdN
h
∥∥∥
L∞
(
Rd,
√
ω
%

) . 2N−m+λ‖h‖Hm(Rd).

Proof. Let m ∈ N, d ∈ N and let h ∈ L2(Rd, ω) ∩Hm
mix(Rd). By assumption the criteria

in Theorem 3.5 are fulfilled and thus the transformed function f of the form (3.28) is in
Hm

mix(Td). These f are also in Hm(Td), due to the norm equivalence (2.3) and furthermore
have a continuous representative, because of the inclusion Hm(Td) ↪→ Am−λ(Td) ↪→ C(Td)
with λ > 1

2 as in (2.4). Hence, for f ∈ Am−λ(Td) ∩ C(Td) we have the approximation error
bound

‖f − SΛ
IdN
f‖L∞(Td) ≤ 2N−m+λ‖f‖Am−λ(Td) (3.44)

as stated in Theorem 2.2.
With the inverse transformation x = ψ−1(y) we have

ĥk = (h, ϕk)L2(Rd,ω) = (f, e2πik·◦)L2(Td) = f̂k

and

‖h‖2Hm(Rd) =
∑

k∈Zd
ωhc(k)2m|ĥk|2 =

∑

k∈Zd
ωhc(k)2m|f̂k|2 = ‖f‖2Hm(Td), (3.45)

as well as

‖h− SIdNh‖L∞
(
Rd,
√
ω
%

) = ess supy∈Rd

∣∣∣∣∣∣

√
ω(y)

%(y)


h(y)−

∑

k∈IdN

ĥk ϕk(y)



∣∣∣∣∣∣

= ess supy∈Rd

∣∣∣∣∣∣
h(y)

√
ω(y)

%(y)
−
∑

k∈IdN

ĥk e2πik·ψ−1(y)

∣∣∣∣∣∣

= ess supx∈Td

∣∣∣∣∣∣
h(ψ(x))

√
ω(ψ(x))ψ′(x)−

∑

k∈IdN

ĥk e2πik·x

∣∣∣∣∣∣

= ‖f − SIdN f‖L∞(Td)
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and

‖h− SΛ
IdN
h‖

L∞
(
Rd,
√
ω
%

) = ‖f − SΛ
IdN
f‖L∞(Td). (3.46)

In total, by combining (3.46), (3.44), (2.5), and (3.45) we estimated for f ∈ Hm(Td) ∩ C(Td)
that

‖h− SΛ
IdN
h‖

L∞
(
Rd,
√
ω
%

) = ‖f − SΛ
IdN
f‖L∞(Td) ≤ 2N−m+λ‖f‖Am−λ(Td)

≤ 2Cd,λN
−m+λ‖f‖Hm(Td) = 2Cd,λN

−m+λ‖h‖Hm(Rd) <∞

with λ > 1
2 and some constant Cd,λ > 1.

3.5.2 L2-approximation error

Similarly, based on the L2(Td)-approximation error bound (2.10) and the conditions proposed
in Theorem 3.5 we prove an upper bound for the approximation error ‖h − SΛ

IdN
h‖ in terms

of a weighted L2-norm on Rd.

Theorem 3.7. Let d ∈ N, m ∈ N0, a hyperbolic cross IdN with N ≥ 2d+1 and a reconstruct-
ing rank-1 lattice Λ(z,M, IdN ) be given. Let ψ be a multivariate transformation as in (3.4)
and ω be a multivariate weight function as in (3.10). We consider a multivariate function
h ∈ L2(Rd, ω) ∩Hm

mix(Rd). Furthermore, for all multi-indices m = (m1, . . . ,md)
> ∈ Nd0 with

‖m‖`∞ ≤ m and all j` = 0, . . . ,m, ` = 1, . . . , d we assume

∂j` [%] (y`) ∈ C0(R), ∂j` [ψ] (x`) ∈ C((−1/2, 1/2))

and

max
j`=0,...,mj

∥∥∥∂m`−j`
[√

(ω` ◦ ψ`)ψ′`
]

(x`)ψ
′
`(x`)

max(− 1
2
,2j`− 3

2
)
∥∥∥
L∞(T)

<∞.

Then there is an approximation error estimate of the form

‖h− SΛ
IdN
h‖L2(Rd,ω) . N−m(logN)(d−1)/2‖h‖Hm(Rd).

Proof. Let m ∈ N, d ∈ N and let h ∈ L2(Rd, ω) ∩Hm
mix(Rd). By assumption the criteria in

Theorem 3.5 are fulfilled and thus the transformed function f of the form (3.28) is in Hm(Td).
These f are also in Hm(Td), due to the norm equivalence (2.3) and they furthermore have
a continuous representative, because of the inclusion Hm(Td) ↪→ C(Td) as in (2.4). For
f ∈ Hm(Td) ∩ C(Td) Theorem 2.3 yields the approximation error bound of the form

‖f − SΛ
IdN
f‖L2(Td) ≤ Cd,βN−β(logN)(d−1)/2‖f‖Hβ(Td) (3.47)

with some constant Cd,β := C(d, β) > 0. With the inverse transformation x = ψ−1(y) we
have

ĥk = (h, ϕk)L2(Rd,ω) = (f, e2πik·◦)L2(Td) = f̂k,
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and

‖h‖2Hm(Rd) =
∑

k∈Zd
ωhc(k)2m|ĥk|2 =

∑

k∈Zd
ωhc(k)2m|f̂k|2 = ‖f‖2Hm(Td)

as in (3.45), as well as

‖h− SIdNh‖
2
L2(Rd,ω) =

∫

Rd

∣∣∣∣∣∣
h(y)−

∑

k∈IdN

ĥk ϕk(y)

∣∣∣∣∣∣

2

ω(y) dy = ‖f − SIdN f‖
2
L2(Td) (3.48)

and

‖h− SΛ
IdN
h‖L2(Rd,ω) = ‖f − SΛ

IdN
f‖L2(Td).

In total, by combining (3.48), (3.47), and (3.45) we estimated for f ∈ Hm(Td) ∩ C(Td) that

‖h− SΛ
IdN
h‖

L2

(
Rd,ω

) = ‖f − SΛ
IdN
f‖L2(Td) . Cd,βN

−β(logN)(d−1)/2‖f‖Hβ(Td)

= Cd,βN
−β(logN)(d−1)/2‖h‖Hm(Rd) <∞

with some constant Cd,β > 0.

4 Algorithms

In this chapter we start denoting the parameters η,µ ∈ Rd in families of multivariate param-
eterized transformations ψ(◦,η) as in (3.4), in families of multivariate parameterized weight
functions ω(◦,µ) as in (3.10) and in all related functions and objects.

We adapt the algorithms described in [8, Algorithm 3.1 and 3.2] that are based on one-
dimensional fast Fourier transforms (FFTs). They are used for the fast reconstruction of
approximated Fourier coefficients ĥΛ

k and the evaluation of a transformed multivariate trigono-
metric polynomials, in particular the approximated Fourier series SΛ

I h, both given in (3.43).
This is denoted as matrix-vector-products of the form

h = Aĥ and ĥ = M−1A∗h (4.1)

with η,µ ∈ Rd,h :=
(
h(yj)

√
ω(yj ,µ)
%(yj ,η)

)
j=0,...,M−1

for yj ∈ Λψ(◦,η)(z,M), ĥ := (ĥk)k∈IN and

the transformed Fourier matrices A and A∗ given by

A :=
(

e2πik·ψ−1(yj ,η)
)
yj∈Λψ(◦,η)(z,M),k∈I

∈ CM×|I|,

A∗ :=
(

e−2πik·ψ−1(yj ,η)
)
k∈I,yj∈Λψ(◦,η)(z,M)

∈ C|I|×M .

We incorporate the previously described idea that the functions h ∈ L2(Rd, ω) ∩Hm
mix(Rd) are

transformed into functions f on the torus Td that are of the form (3.28) via transformations
xj = ψ(yj ,η), so that we have samples of the form

h(yj)

√
ω(yj ,µ)

%(yj ,η)
= h(ψ(xj ,η))

√
ω(ψ(xj ,η),µ)ψ′(xj ,η) = f(xj ,η,µ) = f(xj),

depending on the particular choices for η,µ ∈ Rd.
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Figure 4.1: A two-dimensional lattice Λ(z,M) with z = (1, 3)>,M = 31 on the left and the
resulting transformed lattice Λψ(◦,η)(z,M) for the algebraic transformation in the
center and for the error function transformation on the right, as given in (4.2) and
both used with η = 1.

Remark 4.1. We identify Td with different cubes. On one hand, when defining rank-1
lattices Λ(z,M) in (2.6) we identify it with [0, 1)d. On the other hand, in order to apply the
transformations ψ we need to consider Td ' [−1

2 ,
1
2)d, which we achieve by reassigning all

lattice points xj ∈ Λ(z,M) via

xj 7→
((

xj +
1

2

)
mod 1

)
− 1

2

for all j = 0, . . . ,M − 1.

We already showcased in Figure 3.1 that the definition of ψ in (3.1) allows a range of
functions with different slopes, which manifested in algebraic or exponential density func-
tions %. In Figure 4.1 we highlight these differences once more with transformed rank-1
lattices Λψ(◦,η)(z,M) as defined in (3.37). We consider the two-dimensional rank-1 lattice

Λ(z,M) generated by z = (1, 3)> and M = 31. We compare the transformed lattices for
the algebraic transformation and the error function transformation of the form (3.5) in their
two-dimensional versions given by

ψ(x,η) =

(
2η1x1√
1− 4x2

1

,
2η2x2√
1− 4x2

2

)>
, ψ(x,η) =

(
η1erf−1(2x1), η2erf−1(2x2)

)>
. (4.2)

For η = (η1, η2)> = (1, 1)> the graphs in the center and on the right of Figure 4.1 reveal that
the algebraic transformation causes a wider spread of the lattice nodes close to the center,
whereas the slope of the error function transformation increases hugely towards the boundary
points which we only notice for larger values M and much finer lattices with more nodes closer
to the boundary of the cube (−1

2 ,
1
2)2.

4.1 Evaluation of transformed multivariate trigonometric polynomials

Given a frequency set I ⊂ Zd of finite cardinality |I| <∞ we consider the multivariate trigono-
metric polynomial h ∈ ΠI,ψ(◦,η) as in (3.41) with Fourier coefficients ĥk. The evaluation of h
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Algorithm 4.1 Evaluation at rank-1 lattice

Input: M ∈ N lattice size of Λψ(◦,η)(z,M)

z ∈ Zd generating vector of Λψ(◦,η)(z,M)

I ⊂ Zd frequency set of finite cardinality

ĥ =
(
ĥk

)
k∈I

Fourier coefficients of h ∈ ΠI,ψ(◦,η)

ĝ = (0)M−1
l=0

for each k ∈ I do
ĝk·z mod M = ĝk·z mod M + ĥk

end for
h = iFFT 1D(ĝ)
h = Mh

Output: h = Aĥ =(
h(yj)

√
ω(yj ,µ)
%(yj ,η)

)M−1

j=0

function values of h ∈ ΠI,ψ(◦,η)

at lattice points yj ∈ Λψ(◦,η)(z,M) simplifies to

h(yj)

√
ω(yj ,µ)

%(yj ,η)
=
∑

k∈I
ĥk e2πik·ψ−1(yj ,η)

=
M−1∑

`=0




∑

k∈I,
k·z≡` ( mod M)

ĥk


 e2πi` j

M =
M−1∑

`=0

ĝ` e2πi` j
M ,

with

ĝ` =
∑

k∈I,
k·z≡` ( mod M)

ĥk.

In total, the evaluation of such a function is realized by simply pre-computing (ĝ`)
M−1
`=0 and

applying a one-dimensional inverse fast Fourier transform, see Algorithm 4.1.

4.2 Reconstruction of transformed multivariate trigonometric polynomials

For the reconstruction of a multivariate trigonometric polynomial h ∈ ΠI,ψ(◦,η) as in (3.41)
from lattice points yj ∈ Λψ(◦,η)(z,M, I) we utilize the exact integration property (3.42) and
the fact that we have

M−1∑

j=0

(
e2πi

(k−h)·z
M

)j
=

{
M for k · z ≡ k · h (modM),

0 otherwise,
(4.3)

and thus A∗A = MI with I ∈ C|I|×|I| being the identity matrix. For fixed parameters
η,µ ∈ Rd we have input sample points of the form

h(yj)

√
ω(yj ,µ)

%(yj ,η)
= h(ψ(xj ,η))

√
ω(ψ(xj ,η),µ)ψ′(xj ,η) = f(xj ,η,µ) = f(xj).
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Algorithm 4.2 Reconstruction from sampling values along a transformed reconstructing
rank-1 lattice

Input: I ⊂ Zd frequency set of finite cardinality
M ∈ N lattice size of Λψ(◦,η)(z,M, I)

z ∈ Zd generating vector of Λψ(◦,η)(z,M, I)

h =
(
h(yj)

√
ω(yj ,µ)
%(yj ,η)

)M−1

j=0
function values of h ∈ ΠI,ψ(◦,η)

ĝ = FFT 1D(h)
for each k ∈ I do
ĥk = 1

M ĝk·z mod M

end for

Output: ĥ = M−1A∗h =
(
ĥk

)
k∈I

Fourier coefficients supported on I

For the reconstruction of the Fourier coefficients ĥk we use a single one-dimensional fast
Fourier transform. The entries of the resulting vector (ĝ`)

M−1
`=0 are renumbered by means of

the unique inverse mapping k 7→ k · z mod M , see Algorithm 4.2.

4.3 Discrete approximation error

In order to use Algorithms 4.1 and 4.2 to illustrate the proposed error bounds of Theo-
rems 3.6 and 3.7 we sample the approximated Fourier partial sum SΛ

I h in order to discretize
and thus approximate the error ‖h − SΛ

I h‖L∞
(
Rd,
√
ω(◦,µ)
%(◦,η)

) that is equal to ‖f − SΛ
I f‖L∞(Td)

as shown in the proof of Theorem 3.6. Based on the given sample data in the vector

h =
(
h(yj)

√
ω(yj ,µ)
%(yj ,η)

)M−1

j=0
with lattice points yj ∈ Λψ(◦,η)(z,M, I) we apply Algorithm 4.2

yielding a vector of approximated Fourier coefficients via ĥ = M−1A∗h, which we immedi-
ately put into Algorithm 4.1. After applying both algorithms we have computed the vector
happrox := M−1AA∗h = (SΛ

IdN
h(yj))

M−1
j=0 .

In [10, Corollary 1] it was shown under mild assumptions that for each frequency set I ⊂ Zd
that induces a reconstructing rank-1 lattice, there is an M ∈ N such that |I| ≤M . |I|2. Fur-
thermore, in (4.3) we already observed that for a reconstruction rank-1 lattice Λψ(◦,η)(z,M, I)

we have A∗A = MI with I ∈ C|I|×|I| being the identity matrix. However, AA∗ ∈ CM×M is
generally not an identity matrix. Hence, there is a gap between the initially given values h
and the resulting vector happrox that we quantify with the discrete approximation error

‖h− happrox‖`∞ := max
j=0,...,M−1

∣∣∣∣∣h(yj)

√
ω(yj ,µ)

%(yj ,η)
− SΛ

IdN
h(yj)

∣∣∣∣∣ . (4.4)

But it’s important to note, that we only discuss this particular discretization approach that
is exclusively sampling on the rank-1 lattice nodes and doesn’t measure the quality of the
approximation at any point outside the rank-1 lattice. Nevertheless, for hyperbolic crosses
IdN we still have the upper bound

‖h− happrox‖`∞ ≤ ‖h− SΛ
IdN
h‖

L∞
(
Rd,
√
ω(◦,µ)
%(◦,η)

) (4.5)

= ‖f − SΛ
IdN
f‖L∞(Td) ≤ 2N−m‖h‖Hm(Rd)
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for appropriately chosen parameters η,µ ∈ Rd as shown in Theorem 3.6. Hence, the theoret-
ical results predict a certain decay rate of the discretized approximation error for increasing
N ∈ N with fixed m ∈ N and suitably chosen parameter η and µ.

On the other hand, for the L2-approximation error we lack a similar discretization ap-
proach. However, by Theorem 3.7 we know that for fixed m ∈ N and suitably chosen pa-
rameters η and µ the error ‖h − SΛ

IdN
h‖L2(Rd,ω) = ‖f − SΛ

IdN
f‖L2(Td) is bounded above by

N−m(logN)(d−1)/2‖f‖Hm(Td). By Parseval’s equation we have

‖f − SΛ
IdN
f‖2L2(Td) =

∑

k∈Zd
|f̂k − f̂Λ

k |2 =
∑

k∈Zd\IdN

|f̂k|2 +
∑

k∈IdN

|f̂k − f̂Λ
k |2

= ‖f‖2L2(Td) +
∑

k∈IdN

(
|f̂k − f̂Λ

k |2 − |f̂k|2
)
. (4.6)

Hence, we can evaluate the L2-approximation error if we used Algorithm 4.2 to reconstruct the
approximated Fourier coefficients f̂Λ

k and if it is possible to calculate the Fourier coefficients

f̂k for all k ∈ IdN . Later on we present an example where the Fourier coefficients f̂k can
be computed for all k ∈ Zd. Generally this isn’t possible, so that we have to resort to the
theoretical approach based on norm equivalences presented earlier in this paper in order to
obtain the information if the Fourier coefficients f̂k are square summable.

5 Examples

Based on the algebraic transformation (3.6) and the error function transformations (3.8) we
discuss certain choices for test functions h and weight functions ω for which the proposed
smoothness conditions (3.30) in Theorem 3.5 are fulfilled. In both cases we proceed similarly:
We fix a family of multivariate weight functions ω(◦,µ),µ ∈ Rd as well as the test func-
tion h in L2(Rd, ω(◦,µ)) ∩ Hm

mix(Rd). Then we fix a family of multivariate transformations
ψ(◦,η),η ∈ Rd of the form (3.5). Afterwards we calculate lower bounds for µ and η such that
f(x,η,µ) := h(ψ(x,η))

√
ω(ψ(x,η),µ)ψ′(x,η) is in Hm

mix(Td) for Sobolev-smoothness orders
m = 0, 1, 2, 3. Finally we switch to dimension d = 2 and based on the calculated parameter
bounds, we use Algorithms 4.1 and 4.2 for numerical tests of the L∞-approximation error
bound proposed in Theorems 3.6 and discuss the possibility to evaluate Fourier coefficients
ĥk.

Throughout this section we repeatedly specify parameter vectors that have the same number
in each entry, for which we recall the short notation of just using a single bold number, e.g.,
1 = (1, . . . , 1)> that appeared earlier in the definition of rank-1 lattices Λ(z,M) in (2.6).

5.1 Algebraic transformation

The test function is of the form

h(y) =
1

1 + ‖y‖2`2
(5.1)

with ‖y‖`2 :=
√
y2

1 + . . .+ y2
d for y ∈ Rd. According to [1, pp. 363-364] in d = 1 this function

is rather difficult to approximate by classical approximation methods. We fix an multivariate
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algebraic weight function of the form

ω(y,µ) :=
d∏

j=1

(
1

1 + y2
j

)µj
(5.2)

with µ = (µ1, . . . , µd)
> ∈ Rd, and the algebraic transformation ψ(x,η) = ((ψj(xj , ηj))

d
j=1)>

in the form (3.5) with x ∈ (−1
2 ,

1
2)d, the parameter η = (η1, . . . , ηd)

> ∈ Rd and its univariate
components given by

ψj(xj , ηj) =
2ηjxj

(1− 4x2
j )

1
2

, ψ′j(xj , ηj) =
2ηj

(1− 4x2
j )

3
2

, (5.3)

ψ−1
j (yj , ηj) =

yj

2(η2
j + y2

j )
1
2

, %j(yj , ηj) =
1

2(η2
j + y2

j )
3
2

.

For ηj = 1 we stated the definition of ψj(◦, 1) earlier in (3.6). For the resulting weighted
Hilbert space L2(Rd, ω(◦,µ)) we have a system {ϕk}k∈Zd of product functions given in (3.38)
with univariate components (ϕkj )

d
j=1 as in (3.11) of the form

ϕkj (yj , ηj , µj) :=
1√
2

(1 + y2
j )

µj
2 (η2

j + y2
j )
− 3

4 eπikjyj(η
2
j+y2j )−

1
2
,

that are orthogonal with respect to the weighted scalar product

(h1, h2)L2(Rd,ω(◦,µ)) = π−
d
2

∫

Rd

d∏

j=1

(1 + y2
j )
−µj h1(y)h2(y) dy

and the Fourier coefficients ĥk of an arbitrary function h ∈ L2(Rd, ω(◦,µ)) are of the form

ĥk

:= (h, ϕk)L2(Rd,ω(◦,µ))

=

∫

Rd
h(y)ϕk(y,η,µ)ω(y,µ) dy

= 2−
d
2

∫

Rd
h(y)

d∏

j=1

(1 + y2
j )
−µj

2 (η2
j + y2

j )
− 3

4 e−πikjyj(η
2
j+y2j )−

1
2

dy.

The test function h in (5.1) combined with the weight function (5.2) and the transformations
(5.3) lead to transformed functions f in the sense of (3.28) of the form

f(x,η,µ) = h(ψ1(x1, η1), . . . , ψd(xd, ηd))
d∏

j=1

√
ωj(ψj(xj , ηj), µj)ψ′j(xj , ηj)

=


1 +

d∑

j=1

4η2
jx

2
j

1− 4x2
j



−1

d∏

j=1

√√√√
(

1− 4x2
j

1− 4(1− η2
j )x

2
j

)µj
2ηj

(
1− 4x2

j

)− 3
2

(5.4)

In Figure 5.1 we have a side-by-side comparison of the graphs of these transformed functions
with d = 2 for fixed µ = (4, 4)> with varied η = (η1, η2) ∈ R2, 1/2 ≤ η1, η2 ≤ 2 and for fixed
η = (1, 1)> with varied µ = (µ1, µ2)>, 0 ≤ µ1, µ2 ≤ 10.
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Figure 5.1: Plots of the two-dimensional transformed function f(◦,η,µ) for various combi-
nations of the parameters µ and η with an algebraic weight function ω(◦,µ) in
(5.2) and the algebraic transformation ψ(◦,η) in (5.3). Horizontally µ = (4, 4)>

is fixed, vertically η = (1, 1)> is fixed. The individual univariate functions
f((x1, 0),η,µ), f((0, x2),η,µ) are shown with dashed lines.

We proceed to determine the values η,µ ∈ R for which f(◦,η,µ) as in (5.4) is element of
Hm

mix(Td) by investigating conditions (3.30) in Theorem 3.5. First of all, we observe that for
η1, . . . , ηd > 0 the components ψ1, . . . , ψd of the function ψ(◦,η) in (5.3) are transformations
in the sense of (3.1) by being increasing, continuously differentiable, and invertible functions.
Furthermore, for all ` = 1, . . . , d it’s easy to check that its first three derivatives of all ψj(◦, ηj)
are in fact continuous on (−1

2 ,
1
2) for ηj > 0 and that the first three derivatives of %j(◦, ηj) are

in C0(R) for all non-zero ηj ∈ R. Finally, we check the L∞-conditions (3.30) in Theorem 3.5
for m = 0, 1, 2, 3. We suppose that for ` = 1, . . . , d we have m = m` and need to check that
the appearing L∞(T)-norms are finite for all j` = 0, . . . ,m:
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• Let m = 0, then we only have the condition

∥∥∥
√
ω`(ψ`(x`, η`), µ`)ψ

′
`(x`, η`) (ψ′`(x`, η`))

− 1
2

∥∥∥
L∞(T)

=

∥∥∥∥
(

1− 4x2
`

1− 4(1− η2
` )x

2
`

)µ`∥∥∥∥
L∞(T)

which is finite for µ` ≥ 0.

• Let m = 1. We have to check two conditions. For j` = 0 we have

∥∥∥∥
∂

∂x`

[√
ω`(ψ`(x`, η`), µ`)ψ

′
`(x`, η`)

]
ψ′`(x`, η`)

− 1
2

∥∥∥∥
L∞(T)

=

∥∥∥∥∥x`
(

(1− 4x2
` )

1 + 4(η2
` − 1)x2

`

)µ`
2
−1

(−(µ2
` + 3)µ` + 6(1 + (η2

` − 1)x2
` ))

(1 + 4(η2
` − 1)x2

` )
2

∥∥∥∥∥
L∞(T)

and this is finite if µ` > 2.

For j` = 1 we have

∥∥∥
√
ω`(ψ`(x`, η`), µ`)ψ

′
`(x`, η`) (ψ′`(x`, η`))

1
2

∥∥∥
L∞(T)

=

∥∥∥∥∥2η`

(
1− 4x2

`

1 + 4(η2
` − 1)x2

`

)µ`
2

(1− 4x2
` )
− 3

2

∥∥∥∥∥
L∞(T)

and this is finite for µ` > 3.

• Likewise, after checking the individual conditions we conclude that for m = 2 we have
an lower bound of µ` > 9 and for m = 3 it is µ` > 15.

In total, f is at least an L2(Td)-function for all µ1, . . . , µd ≥ 0, it is at least in H1
mix(Td) for

µ1, . . . , µd > 3, at least in H2
mix(Td) for µ1, . . . , µd > 9 and is at least an H2

mix(Td)-function
for µ1, . . . , µd > 15. Apparently, the parameters η1, . . . , ηd in the transformation ψ(◦,η) don’t
have an impact on the Sobolev-smoothness of f(◦,η,µ) as in (5.4), according to this specific
set of conditions. In other words, if η is able to control the smoothness of f then we can’t
recognize it with these conditions – at least for this particular combination of transformation
ψ and weight function ω.

5.1.1 L∞-approximation error discussion

Next we discuss the application of the multivariate L∞(Rd)-approximation error bound in
Theorem 3.6 for d = 2 with the two-dimensional test function h in (5.1), the weight function
(5.2), the transformations (5.3) and the resulting transformed functions f given in (5.4).

Let a reconstructing rank-1 lattice Λ(z,M, I2
N ) with N ≥ 8 be given. We already evaluated

the sufficient conditions proposed in Theorem 3.5, yielding lower bounds for µ ≥ 0 such that f
is at least of Sobolev-smoothness order m = 0, 1, 2, 3, i.e., f ∈ Hm

mix(T2) and thus f ∈ Hm(T2).
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Figure 5.2: Comparison of discrete `∞-approximation error ‖h − happrox‖`∞/‖h‖`∞ of two-
dimensional test function (5.1) in combination with the algebraic transforma-
tion ψ(◦,η) (5.3) and the algebraic weight function ω(◦,µ) (5.2) in their two-
dimensional versions with fixed η = 1 and µ ∈ {0,4,10,16} .

We fix λ = 1 and for m ∈ N0 we choose µ,η ∈ R2 such that f ∈ Hm+1(T2) ↪→ Am(T2). As
outlined in (4.5) we expect the discrete approximation error (4.4) to be bounded by

‖h− happrox‖`∞ ≤ ‖f − SΛ
I2N
f‖L∞(T2) .





N0 for µj ≥ 0,

N−1 for µj > 3,

N−2 for µj > 9,

N−3 for µj > 15.

(5.5)

For N = 8, . . . , 80, η = 1 and µ ∈ {0,4,10,16} we actually observe this behavior for
the relative discrete approximation error ‖h − happrox‖`∞/‖h‖`∞ as seen in the left plot of
Figure 5.2.

5.1.2 L2-approximation error discussion

We switch to dimension d = 1. In Theorem 3.7 we proved that when f of the form (3.15) is
in Hm(T) ∩ C(T) we have

‖h− SΛ
I1N
h‖L2(R,ω) = ‖f − SΛ

I1N
f‖L2(T) . N−m.

For one particular special case with explicitly computable Fourier coefficients f̂k we observe
that their rate of decay is consistent with the theoretical propositions. The conditions of
Theorem 3.4 yielded for m = 1, 2, 3

f ∈





H1(T) for µ > 3,

H2(T) for µ > 9,

H3(T) for µ > 15.

(5.6)

We compare these lower bounds with the specific lower bounds for the chosen h in (5.1).
Fixing η = 1 the transformed function f in (5.4) simplifies to

f(x, 1, µ) = f(x, µ) := (1− 4x2)
1
2

(µ+ 1
2

).
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We then explicitly calculate that

∫

T

∣∣∣∣
d

dx
[f ](x, µ)

∣∣∣∣
2

dx =

(
µ+

1

2

)2 ∫

T
16x2

∣∣1− 4x2
∣∣µ− 3

2 dx <∞

for µ ≥ 3
2 , as well as

∫

T

∣∣∣∣
d2

dx2
[f ](x, µ)

∣∣∣∣
2

dx = 4 (2µ+ 1)2
∫

T

(
1− (4µ− 2)x2

)2 ∣∣1− 4x2
∣∣µ− 7

2 dx <∞

for µ ≥ 7
2 and so forth, which is summarized for m = 1, 2, 3 as

f ∈





H1(T) for µ ≥ 3
2 ,

H2(T) for µ ≥ 7
2 ,

H3(T) for µ ≥ 11
2 .

(5.7)

Due to the norm equivalence (2.3) we know that the absolute Fourier coefficients |f̂k| of a
function f ∈ Hm

mix(T) decay at least as fast as |k|−m. In our particular example with the
above f(x, µ) we have a decay twice as fast, which is observed by considering k ∈ Z \ {0} and
calculating that

|f̂k| =
√

2 ·





∫

T
(1− 4x2) e−2πikx dx =

2
√

2

π2|k|2 for µ = 3
2 ,

∫

T
(1− 4x2)2 e−2πikx dx =

24
√

2

π4|k|4 for µ = 7
2 ,

∫

T
(1− 4x2)3 e−2πikx dx =

48
√

2|π2|k|2 − 15|
π6|k|6 for µ = 11

2 .

The general L∞-parameter bounds in (5.6) look relatively coarse in comparison to the
exact bounds in (5.7). However, generally we can’t compute the Fourier coefficients f̂k of a
transformed function f , which makes the conditions proposed in Theorem 3.4 so powerful,
as they work independent of the particular choice of h ∈ L2(R, ω) ∩Hm(R) for the cost of
yielding not the most precise lower parameter bounds.

5.2 Error function transformation

In this section we settle for the constant function h(y) ≡ 1. We could choose h(y) = e
−‖y‖2`2

or even the algebraic function h(y) = 1
1+‖y‖2`2

in (5.1), but they all impose the same problem

that we will not able to compute their Fourier coefficients ĥk. We proceed in the same way
as in the previous section with the algebraic transformation. We fix the Gaussian weight
function

ω(y,µ) =
1

π
d
2

d∏

j=1

e−µ
2
jy

2
j (5.8)

with µ ∈ Rd, as well as the error function transformation ψ(x,η) = ((ψj(xj , ηj))
d
j=1)> in

the form (3.5) with x ∈ (−1
2 ,

1
2)d, the parameter η = (η1, . . . , ηd)

> ∈ Rd and its univariate

36



components given by

ψj(xj , ηj) = ηj erf−1(2xj), ψ′j(xj , ηj) = ηj
√
π e(erf−1(2xj))

2
(5.9)

ψ−1(yj , ηj) =
1

2
erf

(
yj
ηj

)
, %(yj , ηj) =

1√
πη2

j

e
−
(
yj
ηj

)2

.

For ηj = 1 we stated the definition of ψj(◦, 1) already in (3.8). For the resulting weighted
Hilbert space L2(Rd, ω(◦,µ)) we have a system {ϕk}k∈Zd of product functions given in (3.38)
with univariate components (ϕkj )

d
j=1 as in (3.11) of the form

ϕkj (yj , ηj , µj) =
1

ηj
e

1
2

(µ2j− 1

η2
j

)y2j+πikj erf

(
yj
ηj

)
,

that are orthogonal with respect to the weighted scalar product

(h1, h2)L2(Rd,ω(◦,µ)) =
1

π
d
2

∫

Rd

d∏

j=1

e−µ
2
jy

2
j h1(y)h2(y) dy

and the Fourier coefficients f̂k of an arbitrary function h ∈ L2(Rd, ω(◦,µ)) are of the form

ĥk := (h, ϕk)L2(Rd,ω(◦,µ)) =

∫

Rd
h(y)ϕk(y,η,µ)ω(y,µ) dy

=

∫

Rd
h(y)

d∏

j=1

1

ηj
e

1
2

(µ2j− 1

η2
j

)y2j−πikj erf

(
yj
ηj

)
1√
π

e−µ
2
jy

2
j dy

= π−
d
2

d∏

j=1

1

ηj

∫

Rd
h(y)

d∏

j=1

e
−πikj erf

(
yj
ηj

)
e
− 1

2
(µ2j+

1

η2
j

)y2j
dy.

The constant test function h(y) ≡ 1 combined with the weight function (5.8) and the trans-
formations (5.9) lead to transformed functions f in the sense of (3.28) of the form

f(x,η,µ) = h(ψ1(x1, η1), . . . , ψd(xd, ηd))
d∏

j=1

√
ωj(ψj(xj , ηj), µj)ψ′j(xj , ηj)

=
d∏

j=1

η
1
2
j e

1
2(1−µ2j η2j )erf−1(2xj)

2

. (5.10)

In Figure 5.3 we have a side-by-side comparison of the graphs of these transformed func-
tions with d = 1 for fixed µ2 = 3 with varied 1/2 ≤ η2 ≤ 3 and for fixed η = 1 with varied
1 ≤ µ2 ≤ 10.

We proceed to determine the values η,µ ∈ Rd for which f(◦,η,µ) as in (5.10) is element of
Hm

mix(Td) by investigating conditions (3.30) in Theorem 3.5. First of all, we observe that for
η1, . . . , ηd > 0 the components ψ1, . . . , ψd of the function ψ(◦,η) in (5.9) are transformations
in the sense of (3.1) by being increasing, continuously differentiable and invertible functions.
Furthermore, for all ` = 1, . . . , d it’s easy to check that its first three derivatives of all ψj(◦, ηj)
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Figure 5.3: Plots of the univariate transformed function f for various combinations of the
parameters µ and η with a Gaussian weight function ω (5.8) and the error function
transformation (5.9). On the left hand side with fixed µ2 = 3, on the right hand
side with fixed η2 = 1.

are in fact continuous on (−1
2 ,

1
2) for ηj > 0 and that the first three derivatives of %j(◦, ηj) are

in C0(R) for all non-zero ηj ∈ R. Finally, we check the L∞-conditions (3.30) in Theorem 3.5
for m = 0, 1, 2, 3. We suppose that for ` = 1, . . . , d we have m = m` and need to check that
the appearing L∞(T)-norms are finite for all j` = 0, . . . ,m:

• Let m = 0. We have
∥∥∥
√
ω(ψ(x, η), µ)

∥∥∥
L∞(T)

= π−
1
4

∥∥∥e−
1
2
η2µ2 erf−1(2x)2

∥∥∥
L∞(T)

<∞

for η2µ2 ≥ 0.

• Let m = 1. We have to check two conditions. For j` = 0 we have
∥∥∥∥
∂

∂x`

[√
ω`(ψ`(x`, η`), µ`)ψ

′
`(x`, η`)

]
ψ′`(x`, η`)

− 1
2

∥∥∥∥
L∞(T)

= π
1
4

∣∣∣∣
η2
` − µ2

`

η2
`

∣∣∣∣
∥∥∥erf−1(2x`) e−

1
2

(η2`µ
2
`−2) erf−1(2x`)

2
∥∥∥
L∞(T)

being finite for η2µ2 > 2. For j` = 1 we have

∥∥∥
√
ω`(ψ`(x`, η`), µ`)ψ

′
`(x`, η`) (ψ′`(x`, η`))

1
2

∥∥∥
L∞(T)

= π
1
4

∥∥∥e−
1
2

(µ2`η
2
`−2)(erf−1(2x`)

2
∥∥∥
L∞(T)

and this is finite if the exponent is negative or zero, which is the case for η2µ2 ≥ 2.

• Let m = 2. We check three conditions. For j` = 0
∥∥∥∥
∂2

∂x2
`

[√
ω`(ψ`(x`, η`), µ`)ψ

′
`(x`, η`)

]
ψ′`(x`, η`)

− 1
2

∥∥∥∥
L∞(T)

<∞
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for all η2
`µ

2
` > 4. For j` = 1
∥∥∥∥
∂

∂x`

[√
ω`(ψ`(x`, η`), µ`)ψ

′
`(x`, η`)

]
ψ′`(x`, η`)

1
2

∥∥∥∥
L∞(T)

<∞

for all η2
`µ

2
` > 4. For j` = 2

∥∥∥
√
ω`(ψ`(x`, η`), µ`)ψ

′
`(x`, η`) (ψ′`(x`, η`))

5
2

∥∥∥
L∞(T)

<∞

for all η2
`µ

2
` ≥ 6.

• For m = 3 the individual conditions for k = 0, 1, 2, 3 are finite in case of η2
`µ

2
` > 6,

η2
`µ

2
` > 6, η2

`µ
2
` > 8 and η2

`µ
2
` ≥ 10 respectively. Hence, we need η2

`µ
2
` ≥ 10 in order to

have f ∈ H3
mix(Td).

In total we calculated that

f ∈





H1
mix(Td) for η2

`µ
2
` ≥ 2,

H2
mix(Td) for η2

`µ
2
` ≥ 6,

H3
mix(Td) for η2

`µ
2
` ≥ 10.

Contrary to the previous section concerned with the algebraic transformation (5.3), the L2-
approximation error can’t be discussed this time as we can’t compute the Fourier coefficients

f̂k =

∫

Td
f(x,η,µ) e−2πikx dx =

∫

T
h(ψ(x,η))

d∏

j=1

η
1
2
j e

1
2(1−µ2j η2j )erf−1(2xj)

2

e−2πikjxj dx

regardless of the chosen h. Even for trivial choices of h we’re not able to integrate the
transformed weight function.

Hence, we only discuss the application of the weighted L∞(Rd)-approximation error bound
from Theorem 3.6 for dimension d = 2. With the constant test function for d = 2 given by
h(y) = h(y1, y2) ≡ 1, the weight function (5.8) and the transformations (5.9), the correspond-
ing transformed functions f in (5.10) read as

f(x) =
2∏

j=1

√
ωj(ψj(xj , ηj), µj)ψ′j(xj , ηj).

Let N ≥ 8, the two-dimensional hyperbolic cross I2
N as in (2.2) and a reconstructing rank-

1 lattice Λ(z,M, I2
N ) be given. We already evaluated the sufficient conditions proposed in

Theorem 3.4, yielding lower bounds for η,µ ≥ 0 such that f is at least of Sobolev-smoothness
order m = 0, 1, 2, 3, i.e., f ∈ Hm

mix(T2) and thus f ∈ Hm(T2). We fix λ = 1 and for m ∈ N0 we
choose η = (η1, η2)>,µ = (µ1, µ2)> ∈ R2 such that f ∈ Hm+1(T2) ↪→ Am(T2). As outlined in
(4.5) we expect the discrete approximation error (4.4) to be bounded by

‖h− happrox‖`∞ ≤ ‖f − SΛ
IdN
f‖L∞(T2) .





N0 for η2
jµ

2
j > 0,

N−1 for η2
jµ

2
j > 2,

N−2 for η2
jµ

2
j ≥ 6,

N−3 for η2
jµ

2
j ≥ 10.
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Figure 5.4: Comparison of discrete `∞-approximation error ‖h−happrox‖`∞/‖h‖`∞ when using
the Gaussian weight function ω(◦,µ) as in (5.8) and the error function transfor-
mation ψ(◦,η) as in (5.9) with µ ∈ {1,

√
3,
√
6,
√
10} and fixed η = 1.

We actually observe this behavior numerically, as showcased in Figure 5.4, where we show
in the left graph the approximation error decay of the constant test function h(y) ≡ 1 for
N = 8, . . . , 80, fixed η = 1 and µ ∈ {1,

√
3,
√
6,
√
10}. The outlier with η = µ = 1 is

explained by the fact the corresponding Fourier coefficients are trivial as these parameters lead
to a constant weight function ω(y) ≡ 1. We repeat this numerical test with the non-constant
test function h(y) = e−y

2
1−y22 that is in L2(R2, ω(◦,µ)) for all µ ∈ R2 with µ1, µ2 > −2. Then

we have a similar decay of the discrete approximation error as shown in the right graph of
Figure 5.4.

6 Remarks on multiple rank-1 lattices and sparse frequency sets

Now that we are able to construct functions on the torus Td with a guaranteed minimal
Sobolev-smoothness degree m ∈ N0, we adapt the techniques of both multiple rank-1 lattices
[12] and sparse FFT algorithms [20]. Usually we consider the algebraic test function in (5.1)
that was given by

h(y) =
1

1 + ‖y‖2`2
, y ∈ Rd.

6.1 Multiple rank-1 lattices

In Lemma 2.1 we recalled that under mild assumptions it’s possible to generate a reconstruct-
ing rank-1 lattice Λ(z,M, I) with some frequency set I ⊂ Zd of finite cardinality |I| <∞ such
that

|I| ≤M ≤ |I|2.

Even though this upper bound is independent of the dimension d, if the lattice size M is
usually close to |I|2 and is therefore still pretty large. In order to overcome this limitation of
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the single rank-1 lattice approach L. Kämmerer suggested the use of multiple rank-1 lattices
which are obtained by taking a union of s rank-1 lattices

Λ(z1,M1, . . . , zs,Ms) :=
⋃

j=1,...,s

Λ(zj ,Mj),

see [12, 11]. Then it’s possible to determine a reconstructing sampling set for multivariate
trigonometric polynomials in ΠI supported on the given frequency set I with a probability of
at least 1− δs, where

δs = C1 e−C2s

is an upper bound on the probability that the approach fails and C1, C2 > 0 are constants.
In [11] it was proven that the upper bound on the lattice size improves with high probability
to

M ≤ C|I| log |I|
for these particular reconstructing lattices. For the adaptation of this approach in the con-
text of families of transformations ψ(◦,η) with η ∈ Rd we analogously consider unions of s
transformed rank-1 lattices

Λψ(◦,η)(z1,M1, . . . , zs,Ms) :=
⋃

j=1,...,s

Λψ(◦,η)(zj ,Mj)

in order to sample the test function h ∈ L2(Rd, ω).
For an example in dimension d = 2 we consider the test function h in (5.1), the algebraic

weight function

ω(y,µ) :=

(
1

1 + y2
1

)µ1 ( 1

1 + y2
2

)µ2

and algebraic transformation

ψ(x,η) =

(
2η1x1√
1− 4x2

1

,
2η2x2√
1− 4x2

2

)>
(6.1)

based on their univariate versions in (5.2) and (5.3). We consider the sample data vector

h =
(
h(yj)

√
ω(yj ,µ)
%(yj ,η)

)M−1

j=0
and the approximated data vector happrox =

(
SΛ
IdN
h(yj)

)M−1

j=0
with

lattice points yj in the multiple rank-1 lattice Λψ(◦,η)(z1,M1, . . . , zs,Ms, I) transformed by
the algebraic transformation ψ(◦,η) in (6.1). In (5.5) we already discussed that the discretized
approximation error defined in (4.4) is bounded above by

‖h− happrox‖`∞ ≤ ‖f − SΛ
I2N
f‖L∞(T2) . N−m

for µj ≥ 0 if m = 0 and for µj > 3m if m = 1, 2, 3. Similar to the results of the numerical
test with single rank-1 lattices shown in Figure 5.2, we achieve this behavior of the relative
discrete approximation error ‖h−happrox‖`∞/‖h‖`∞ when applying the multiple rank-1 algo-
rithms described in [12, 11]. In particular we adapted [11, Algorithm 6]. For N = 8, . . . , 80,
µ ∈ {0,4,10,16} and η = 1 we initialize this Algorithm with the parameters c = 30, n = 30
and δ = 0.5 and still have the proposed decay rates of the discrete approximation errors as
seen in Figure 6.1. A major advantage of this approach is that we don’t need to construct
the generating vector z via component-by-component construction methods, that generally
takes quite some time.
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Figure 6.1: Comparison of discrete `∞-approximation error ‖h − happrox‖`∞/‖h‖`∞ of test
function (5.1) for multiple rank-1 lattices Λψ(◦,η)(z1,M1, . . . , zs,Ms) with the al-
gebraic transformation ψ(◦,η) (5.3) and the algebraic weight function ω(◦,µ)
(5.2) in their two-dimensional versions with fixed η = 1 and µ ∈ {0,4,10,16} .

6.2 The construction of sparse frequency sets

Likewise, once we set up the transformed function f on the torus of the form (3.15), we can
make use of dimension incremental algorithms – the sparse fast Fourier transforms (sparse
FFT), see [20] and [28] – that reconstruct sparse multivariate trigonometric polynomials with
an unknown support in a frequency domain I ⊂ Zd. Based on component-by-component
construction of rank-1 lattices the approach of [20, Algorithm 1 and Algorithm 2] describes
a dimension incremental construction of a frequency set I ⊂ Zd belonging to the non-zero or
approximately largest Fourier coefficients. This is achieved by restricting the search space to
a full grid [−N,N ]d ∩ Zd of refinement N ∈ N and by assuming that the cardinality of the
support of the multivariate trigonometric polynomial is bounded by a sparsity s ∈ N. Then
we end up with up to s non-zero Fourier coefficients f̂k of the respective test function f .

We adapt these algorithms for transformed reconstructing rank-1 lattices Λψ(◦,η)(z,M, I)
by again calculating the relative discretized approximation error ‖h − happrox‖`∞/‖h‖`∞ as

in (4.4) with samples h =
(
h(yj)

√
ω(yj ,µ)
%(yj ,η)

)M−1

j=0
and happrox = (SΛ

I h(yj))
M−1
j=0 but use an

unknown frequency set I with cardinality |I| = s that was constructed via a dimensional
incremental construction method as outlined above.

6.2.1 Example for the algebraic transformation

We use the algebraic test function (5.1) in combination with the multivariate version of
algebraic weight function (5.2) and the multivariate algebraic transformation based on (5.3),
reading as

ω(y,µ) =

d∏

j=1

(
1

1 + y2
j

)µj
, ψ(x,η) =


 2η1x1√

1− 4x2
1

, . . . ,
2ηdxd√
1− 4x2

d



>
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Figure 6.2: Relative discrete approximation error ‖h− happrox‖`∞/‖h‖`∞ in dimension d = 5
for the algebraic transformation with the hyperbolic cross IdN with N = 2, . . . , 10
compared to the frequency set generated by the sparse FFT algorithm (left). In
the center and on the right are the two-dimensional projections of I5

10 and of the
frequency set generated by the sparse FFT algorithm.

with µ = 4 and η = 1. Earlier we used a similar setup for d = 2 where we chose a hyperbolic
cross IdN as the frequency set.

Now we let the sparse FFT algorithm [20, Algorithm 2] determine a suitable frequency set
I. For dimension d = 5 and for each N = 2, 3, . . . , 10 we choose algorithm called ’a2r1l’ in
[28] and use the cardinality of the hyperbolic crosses I5

N as the sparsity parameter ’spar-
sity s’ = s = |I5

N |. As expected, the resulting discretized relative approximation errors
‖h − happrox‖`∞/‖h‖`∞ are just as good as the ones where we fixed the hyperbolic cross
IdN , but the two-dimensional projections of both frequency sets to their first two coordinates
differ substantially in size and shape, even though they have the same cardinality, as seen in
Figure 6.2.

6.2.2 Example for the error function transformation and logarithmic transformation

The sparse FFT algorithm is especially interesting for the error function transformation (3.8)
and the logarithmic transformation (3.9), because we can’t calculate the transformed Fourier
coefficients ĥk given in (3.40). Again we simply let the sparse FFT algorithm [20, Algorithm 2]
construct a suitable frequency set I depending on the sparsity s ∈ N.

We return to dimension d = 2, use

h(y) = e−y
2
1−y22

as the test function and consider the constant weight function ω(y) ≡ 1. We again apply two
different transformations. The two-dimensional error function transformation

ψ(x,η) = (η1erf−1(2x1), η2erf−1(2x2))>,

which we consider for η = 1, is based on its univariate version given in (5.9). The two-
dimensional logarithmic transformation is also based on its univariate version given in (3.9)
and reads as

ψ(x,η) :=

(
η1 log

(
1 + 2x1

1− 2x1

)
, η2 log

(
1 + 2x2

1− 2x2

))>
,
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Figure 6.3: Two-dimensional frequency sets IN with N = 20 and s ∈ {100, 500} for the error
function transformation (left column) and the logarithmic transformation (right
column).

which we consider only for η = 1, too.

At first we fix the refinement N = 20. Then the full 41 × 41-integer grid contains
(2 · 20 + 1)2 = 1681 elements. Again, we initialize the algorithm ’a2r1l’ in [28] with the default
threshold parameter ’threshold theta’ of 1e-12 and denote the sparsity parameter ’sparsity s’
as s ∈ N. For the sparsities s = 100 and s = 500 the error function transformation leads
to a frequency sets IN that reminds us of a hyperbolic cross, whereas the logarithmic trans-
formation leads to a frequency set that could also resemble an appropriately scaled unit ball{
x ∈ Z2 : (|x1|p + |x2|p)

1
p ≤ N

}
of a two-dimensional sequence space `p with 0 < p < 1, see

Figure 6.3.

Finally, we focus on the two-dimensional error function transformation with η = 1 and
compare the corresponding relative approximation errors ‖h − happrox‖`∞/‖h‖`∞ calculated
by the spare FFT algorithm in two different setups. At first we keep the refinement N = 20
and consider increasing sparsity parameters s = 2, . . . , 1681. Hence, for small sparsities we
have frequency sets that look like hyperbolic crosses as shown in the left column of Figure 6.3,
whose branches along the central axes become thicker as s increases and eventually we end
up with the full 41×41-grid. Based on these frequency sets, the relative approximation errors
stagnate at a certain point, shown on the left in Figure 6.4, because the relatively small
refinement value forces the algorithm to consider frequencies within the 41 × 41 grid, that
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Figure 6.4: Relative approximation errors ‖h−happrox‖`∞/‖h‖`∞ calculated by the spare FFT
algorithm for the error function transformation with η = 1, s = 2, . . . , 1681 and
refinement N = 20 on the left and N = 150 in the center. The automatically
constructed frequency set I for N = 150, s = 1681 is shown on the right.

don’t significantly improve the approximation of h. In comparison we raise the refinement
to N = 150 and let the sparsity parameter s run from 2 to 1681 again, so that the resulting
frequency sets have the same cardinality as before but keep their hyperbolic cross like shape,
which is shown on the right of Figure 6.4, where we have the frequency set constructed by
the sparse FFT algorithm for N = 150 and s = 1681. With these frequency sets we now have
steadily decreasing relative approximation errors for increasing sparsity values, as plotted in
the center of Figure 6.4.

6.2.3 Example with the tangens transformation

Finally, we consider a different algebraic test function that is given in product form by

h(y) =
d∏

j=1

1

1 + y2
j

.

Additionally we consider the constant weight function ω(y) ≡ 1 and the multivariate tangens
transformation

ψ(x,η) := (η1 tan(πx1), . . . , ηd tan(πxd))
>

with η = 1 based on the univariate version defined in (3.7). The resulting transformed
function is of the form

f(x,1,µ) :=

d∏

j=1

1

1 + tan(πxj)2
. (6.2)

This product form extends to the corresponding Fourier coefficients, i.e., ĥk =
∏d
j=1 ĥkj and

the one-dimensional Fourier coefficients ĥkj are of the form

ĥkj =

∫ 1/2

−1/2

e−2πikjxj

1 + tan(πxj)2
dxj =

∫ 1/2

−1/2
cos(πxj)

2 e−2πikjxjdxj =





1
2 for kj = 0,
1
4 for |kj | = 1,

0 otherwise.

(6.3)
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Hence, over a full grid [−N,N ]d ∩ Zd with (2N + 1)d points there are just 3d non-zero
multivariate Fourier coefficients ĥk. Again we check this for dimension d = 12 and N = 4
with the sparse FFT algorithm, see [20, Algorithm 2] and [28]. We initialize this algorithm
with the test function f in (6.2), choose the algorithm name ’a2r1l’, set the sparsity parameter
’sparsity s’ to 106 and the threshold parameter ’threshold theta’ to 1e-12. This results in an
exact reconstruction as the algorithm indeed only detected the 312 = 531441 out of (2 · 4 +
1)12 ≈ 2.8 · 1011 possible frequencies, corresponding to the 12-dimensional integer unit cube
of radius 1 for which the transformed Fourier coefficients ĥkj are non-zero, as calculated in
(6.3).

7 Conclusion

In this paper we considered functions h ∈ L2(Rd, ω(◦,µ)) ∩Hm
mix(Rd) with a parameterized

weight function ω(◦,µ) : Rd → [0,∞),µ ∈ Rd and discussed strategies for transforming them
into functions f on the torus Td. A parameterized transformation ψ(◦,η) : (−1

2 ,
1
2)d → Rd

with η ∈ Rd in combination with the weight function ω(◦,µ) let us control the degree of
smoothness m ∈ N of a function h defined on Rd, that is preserved under the change of
variables ψ(◦,η). Hence, the parameters η and µ control which Sobolev space Hm

mix(Td) the
transformed functions f(◦,η,µ) = h(ψ(◦,η))

√
ω(ψ(◦,η),µ)ψ′(◦,η) belong to. Due to the

embedding of the Sobolev space Hm
mix(Td) into the Wiener algebra A(Td) of functions with ab-

solutely summable Fourier coefficients, we have information on the rate of decay of the Fourier
coefficients f̂k and ĥk without having to calculate them – which in a lot of cases is not possible
in the first place. Thus, the essential theoretical L2- and L∞-approximation error bounds on
the torus Td, proposed in [29, Theorem 2.30] and [13, Theorem 3.3], can be transfered to Rd
by means of the inverse transformation ψ−1(◦,η) : Rd → (−1

2 ,
1
2)d. Furthermore, only slight

modifications are necessary to incorporate such transformations into the algorithms based on
single reconstructing rank-1 lattices for the evaluation and the reconstruction of transformed
multivariate trigonometric polynomials presented in [8, Algorithm 3.1 and 3.2]. Algorithms
based on multiple reconstructing rank-1 lattices [12] and sparse fast Fourier transformations
[20] can be adjusted, too.

Our numerical tests show that these algorithms are still working within the proposed up-
per bounds for the approximation error. Additionally, special cases in which we can actually
calculate the Fourier coefficients confirm the theoretical parameter bounds for µ and η, that
are sufficient to achieve a certain degree of Sobolev-smoothness under a change of variables.
In several examples we apply the adapted multiple rank-1 lattice methods and adjusted di-
mension incremental construction methods for sparse frequency sets.
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