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1 Introduction

From classical approximation theory we know interpolation problems in which we are given
at least two points in a certain normed vector space and try to construct a continuous
function going through them. So in essence we are trying to find a set of points that in a
certain sense are lying in between the initially given ones. We want to stick with this idea
and generalize it by replacing the points with whole sequence spaces and using the concept
of embeddings to describe their position to one another. Of particular interest will be the
`q-spaces of q-summable sequences for values 1 ≤ q ≤ ∞. Besides the fact that they are
all complete and normed, they possess a lexicographical order

`1 ↪→ `q ↪→ `∞

so that all `q-spaces with 1 < q <∞ are lying between `1 and `∞ in the sense of embeddings.
Clearly, this fits exactly into the desired description of normed space interpolation. A
general description is provided through real and complex interpolation space methods,
see [1] or [17]. They create a framework in which couples of Banach spaces (X0, X1)
automatically induce the spaces X0 ∩X1 and X0 +X1 in between which we will construct
intermediate Banach spaces X so that

X0 ∩X1 ↪→ X ↪→ X0 +X1.

Since we are only going to deal with real interpolation methods, we will only be able to
construct the respective real interpolation spaces Xθ,q among all the intermediate spaces.
At the same time we will see that the family of real interpolation spaces between `1 and
`∞ contains much more elements than just the `q-spaces, so that we will need to introduce
a more general class of sequence spaces - the Lorentz spaces `p,q.

Afterwards we will need two Banach couples (X0, X1) and (Y0, Y1) to have a look at
operators T acting between them. Originally defined as maps from X0+X1 to Y0+Y1 there
is a broad range of results which focus on how properties of the restrictions T : X0 → Y0
and T : X1 → Y1 can influence the operator T : Xθ,q → Y θ,q between the corresponding
real interpolation spaces.

In particular we are going to study how the compactness of operators behaves under
interpolation. For that we put BX = {x ∈ X : ‖x‖X ≤ 1} as the unit ball of a normed
space X and define the n-th (dyadic) entropy numbers [2]

en(T ) = en(T : X → Y ) = inf

{
ε > 0 : there exist q ≤ 2n−1 points y1, y2, . . . , yq in Y

so that T (BX) ⊂
q⋃
j=1

(yj + εBY )

}
.

We will see that the compactness of T is equivalent to (en(T ))n∈N being a null sequence.
Therefore the decay of entropy numbers for increasing n could be interpreted as way
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to quantify how compact or non-compact T is, which may have been the motivation to
actually call β(T ) := limn→∞ en(T ) ≥ 0 the measure of non-compactness. Regarding their
behaviour under interpolation it was shown in [4] that there is a constant C depending on
θ such that

β(T : Xθ,q → Y θ,q) ≤ Cβ(T : X0 → Y0)
1−θβ(T : X1 → Y1)

θ.

For quite some time it had been an open problem if there exists a similar inequality for
entropy numbers

ek(T : Xθ,q → Y θ,q) ≤ Cem(T : X0 → Y0)
1−θen(T : X1 → Y1)

θ

with finite k,m, n ∈ N when no further assumptions about the Banach couple (X0, X1)
and (Y0, Y1) are made. This problem was finally settled in [6] where D. Edmunds and
Yu. Netrusov constructed a counterexample for sequence space couples (`p0 , `p1) and (`q0 , `q1)
with p0 < q0 and p1 < q1 such that the entropy number of the interpolated operator
en(T : `p,u → `q,u) can not be bounded above by en(T : `p0 → `q0) and en(T : `p1 → `q1).
After discussing some properties of entropy numbers and a particular technique to estimate
them below (see [11]), we will go over the content of their paper [6] in order to grasp the
involved ideas and techniques of their given counterexample.
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2 Preliminaries

At first we fix some general conventions: Vector spaces are always going to be defined over
the field K = R or K = C. Constants are positive real numbers, if not further specified.
For any set S we denote by |S| ∈ N0 the number of elements in S.

Now we are going to collect some well-known facts about vector spaces, linear operators
and sequence spaces. Proofs will be omitted and can be found for example in [9].

2.1 Complete quasi-normed spaces

Definition 2.1 Let X be a vector space. The functional ‖ · ‖ : X → [0,∞) is called a
norm if for all α ∈ K and x, y ∈ X it holds

(N1) ‖x‖ = 0⇔ x = 0,

(N2) ‖αx‖ = |α|‖x‖,

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

If we substitute the triangle inequality (N3) with the quasi-triangle inequality, so that there
exists a constant C ≥ 1 such that for all x, y ∈ X

‖x+ y‖ ≤ C (‖x‖+ ‖y‖) ,

then we call ‖ · ‖ a quasi-norm. The pair (X, ‖ · ‖) is called a (quasi-)normed space.

Since every norm is a quasi-norm with C = 1, a lot of definitions and theorems will
be stated and proven in their more general quasi-normed version as they naturally include
their respective normed space cases.

Definition 2.2 Let (X, ‖ · ‖) be a quasi-normed space.

(a) A sequence (xn)n∈N in X converges to x ∈ X if for all ε > 0 there exists an nε ∈ N
such that ‖xn − x‖ < ε for all n ≥ nε, which is denoted by limn→∞ xn = x.

(b) A sequence (xn)n∈N in X is called a null sequence (or ‖ · ‖-null sequence) if it
converges to 0.

(c) A sequence (xn)n∈N in X is a Cauchy sequence if for all ε > 0 there exists an
Nε ∈ N such that ‖xn − xm‖ < ε for all m,n ≥ Nε.

(d) X is complete if every Cauchy sequence of X converges to an element in X.

(e) A complete quasi-normed space is called quasi-Banach space.

In order to prove completeness one can simply use the given definition. Yet, sometimes
this approach is unnecessarily tedious. Then the following characterization of completeness
through the absolute convergence of certain series can be useful:
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Lemma 2.3 Let (X, ‖ · ‖) be a quasi-normed space. The following are equivalent:

(a) X is complete.

(b) For every sequence (xn)n∈N in X with
∑∞

n=1 ‖xn‖ < ∞ there exists an x ∈ X such
that

lim
N→∞

∥∥∥∥∥x−
N∑
n=1

xn

∥∥∥∥∥ = 0.

In some cases it is possible to introduce several norms on a single vector space that yield
the same essential properties, for example completeness, which leads us to the concept of
norm equivalence.

Definition 2.4 Two quasi-norms ‖·‖ and ‖·‖′ on X are equivalent, denoted by ‖·‖ ∼ ‖·‖′,
if there are constants C,D such that

C‖x‖′ ≤ ‖x‖ ≤ D‖x‖′

for all x ∈ X.

Remark 2.5 We will use the same notation for the equivalence of scalars x, y ∈ R. As
before we denote by x ∼ y that there exist constants C,D such that Cx ≤ y ≤ Dx.

Equivalent norms are interchangeable as they induce the same notion of convergence:

Theorem 2.6 Let x be any sequence in X and let ‖ · ‖ and ‖ · ‖′ be quasi-norms on X.
The following are equivalent:

(a) ‖ · ‖ ∼ ‖ · ‖′

(b) x converges with respect to ‖ · ‖ if and only if x converges with respect to ‖ · ‖′, and
they both converge to the same point.

(c) x is a ‖ · ‖-null sequence if and only if x is a ‖ · ‖′-null sequence.

2.2 Linear operators and embeddings

Next we will look at operators between quasi-normed spaces X and Y which are maps
T : X → Y, x 7→ T (x). Usually we shorten the notation of images to Tx := T (x).
Besides the fundamental notions of linearity, continuity and boundedness of operators we
will introduce the concept of continuous embeddings.
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Definition 2.7 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be quasi-normed spaces and T : X → Y an
operator.

(a) T is linear if for all α, β ∈ K and x1, x2 ∈ X

T (αx1 + βx2) = αTx1 + βTx2.

We put L(X, Y ) := {T : X → Y, T linear}.

(b) Let (xn)n∈N be a sequence in X and x ∈ X. T is continuous if limn→∞ xn = x
implies limn→∞ Txn = Tx.

(c) T is bounded if there exists a constant C such that for all x ∈ X

‖Tx‖Y ≤ C‖x‖X .

The smallest such C is called the operator norm and denoted by

‖T‖ = ‖T‖X→Y := inf{C : ‖Tx‖Y ≤ C‖x‖X} = sup

{‖Tx‖Y
‖x‖X

: x ∈ X, x 6= 0

}
.

Lemma 2.8 Let T ∈ L(X, Y ). T is continuous if and only if T is bounded.

Remark 2.9 The collection of all linear and continuous (or bounded) operators will be
denoted by L(X, Y ) := {T ∈ L(X, Y ) : T continuous}.

Definition 2.10 Let (X, ‖·‖X) and (Y, ‖·‖Y ) be quasi-normed spaces and id : X → Y, x 7→
x the identity operator. X is continuously embedded into Y , denoted by X ↪→ Y , if

X ⊂ Y and id ∈ L(X, Y ).

With embeddings we can classify vector spaces in terms of their size and relative position
to one another which we will use heavily later on in interpolation space theory. Proving
an embedding usually comes down to just showing the existence of some constant C for
which the respective identity operator is bounded.

2.3 Sequence spaces

A common first example for Banach spaces are the `q sequence spaces of all q-summable
sequences with entries in K. They are not only complete but also well-structured in terms
of embeddings which is often described as a lexicographic order. Usually defined only for
values q ≥ 1, the concept of quasi-norms enables us to describe these sequence spaces for
values 0 < q < 1 as well.
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Definition 2.11 For 0 < q ≤ ∞ the sequence space `q is defined as

`q =
{
x = (xn)n∈N : xn ∈ K, ‖x‖`q <∞

}
with

‖x‖`q =


( ∞∑
n=1

|xn|q
) 1

q

for 0 < q <∞,

sup
n∈N

xn for q =∞,

where ‖ · ‖`q is a quasi-norm for 0 < q < 1. Additionally, (c0, ‖ · ‖`∞) denotes the Banach
space of all null sequences

c0 =
{
x = (xn)n∈N : xn ∈ K, lim

n→∞
xn = 0

}
.

Theorem 2.12 `q is a quasi-Banach space for 0 < q < 1 and a Banach space for 1 ≤ q ≤
∞.

Theorem 2.13 For 0 < q < r <∞ it holds

`q ↪→ `r ↪→ c0 ↪→ `∞.

Furthermore, the well-known inequalities by Hölder and Minkowski are almost impos-
sible to avoid within the theory of sequence spaces.

Theorem 2.14 (Hölder inequality) Let 1 ≤ q, r ≤ ∞ with 1
q

+ 1
r

= 1. For x ∈ `q, y ∈ `r it
holds

‖xy‖`1 ≤ ‖x‖`q‖y‖`r .
Theorem 2.15 (Minkowski inequality) For x, y ∈ `q with 1 ≤ q ≤ ∞ it holds

‖x+ y‖`q ≤ ‖x‖`q + ‖y‖`q .

2.4 Unit balls of sequence spaces

Another important structure in the context of quasi-normed spaces are their unit balls.
Later on they will become crucial in the theory of entropy numbers. For now we will just
define them and have a look at some examples.

Definition 2.16 Let (X, ‖ · ‖X) be a quasi-normed space. We call

BX = {x ∈ X : ‖x‖X ≤ 1}
the (closed) unit ball of X.

Going back to sequence spaces we have seen that ‖ · ‖`q is a proper norm for q ≥ 1 so
that it holds the triangle inequality and the respective unit balls are convex. Since we only
have a quasi-norm for q < 1 it needs to hold a quasi-triangle inequality. In fact, for any
x, y ∈ `q with 0 < q ≤ 1 it holds

‖x+ y‖`q ≤ 2
1
q
−1 (‖x‖`q + ‖y‖`q

)
.

This leads to concave unit balls as we can see in Figure 1 for two-dimensional `q-spaces.
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Figure 1: Side-by-side comparison of unit balls B`q .

3 Real interpolation of Banach spaces

In this chapter we want to unify ideas from interpolation theory with the embedding struc-
ture of Banach spaces. Classical interpolation theory is usually concerned with problems
where we are given a few points in a certain vector space and want to construct a continu-
ous function going through them. One of the simplest examples for this is to be given any
two points x, y ∈ R2 and having to draw a line between them. As it turns out, this line is
the set

{z ∈ R2 : z = αx+ (1− α)y, 0 ≤ α ≤ 1}

of convex combinations of x and y.
While our interpolation problems will soon become much more complicated, this simple

example is sufficient to motivate the upcoming interpolation space theory. For that we have
to capture the essentials of the line through two points problem: We start with a pair of
objects. The goal is to construct a whole family of such objects that are lying in between
the initially given ones. Eventually we want these objects to be Banach spaces whose
relative positions to one another will be described via embeddings.

With the K-method we will introduce just one particular out of many interpolation
methods. We start out by specifying the outer pair of Banach spaces in between which we
will interpolate other Banach spaces.

3.1 Banach couples

Definition 3.1 Let X0, X1 be Banach spaces and Z a Hausdorff topological vector space.
We call X = (X0, X1) a Banach couple if X0 ↪→ Z and X1 ↪→ Z. Given a Banach couple
X = (X0, X1) we can form the normed spaces X0 ∩X1 with

‖x‖X0∩X1 = max (‖x‖X0 , ‖x‖X1)

and X0 +X1 = {x ∈ Z : x = x0 + x1 with x0 ∈ X0, x1 ∈ X1} with the norm

‖x‖X0+X1 = inf
x=x0+x1

‖x0‖X0 + ‖x1‖X1 .
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Theorem 3.2 Let X be a Banach couple. X0 ∩X1 and X0 + X1 are Banach spaces and
we have

X0 ∩X1 ↪→ X0, X1 ↪→ X0 +X1.

Proof. At first, let (xn)n∈N be a Cauchy sequence in X0 ∩X1. Hence, (xn)n∈N is a Cauchy
sequence in X0 and there exists an x(0) ∈ X0 so that limn→∞ xn = x(0). Simultaneously
(xn)n∈N is a Cauchy sequence in X1 and there is an x(1) ∈ X1 so that limn→∞ xn = x(1).
Since both X0 and X1 are embedded into Z and its Hausdorffness implies unique limit
points, it follows that x(0) = x(1) and X0 ∩X1 is thus complete.

For the completeness of X0 +X1 we will follow the arguments in [1, Lemma 2.3.1] and
make use of Lemma 2.3. Let (xn)n∈N be in X0 +X1 so that

∞∑
n=1

‖xn‖X0+X1 <∞.

We can find a decomposition xn = xn0 + xn1 such that

‖xn0‖X0 + ‖xn1‖X1 ≤ 2‖xn‖X0+X1

which implies

∞∑
n=1

‖xn0‖X0 <∞,
∞∑
n=1

‖xn1‖X1 <∞.

With X0 and X1 being complete, Lemma 2.3 implies that
∑N

n=1 x
n
0 converges in X0 and∑N

n=1 x
n
1 converges in X1. We put

∑∞
n=1 x

n
0 = x0,

∑∞
n=1 x

n
1 = x1 and x = x0 + x1. Now we

have x ∈ X0 +X1. Finally,∥∥∥∥∥x−
N∑
n=1

xn

∥∥∥∥∥
X0+X1

≤
∥∥∥∥∥x0 −

N∑
n=1

xn0

∥∥∥∥∥
X0

+

∥∥∥∥∥x1 −
N∑
n=1

xn1

∥∥∥∥∥
X1

implies that
∑N

n=1 xn converges to x in X0 +X1.

Remark 3.3 The last Theorem shows that Z = X0 +X1 is an appropriate choice for our
interpolation purposes.

Besides X0 and X1 there are usually a lot more Banach spaces that are embedded
between X0 ∩ X1 and X0 + X1, as Figure 2 suggests. The family of all such spaces is
captured in the following term:

Definition 3.4 A Banach space X is called an intermediate space (with respect to X)
if

X0 ∩X1 ↪→ X ↪→ X0 +X1.
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X0 X1X0 ∩X1

X0 +X1

Figure 2: Scheme of the sum and intersection of a Banach couple (X0, X1).

3.2 The K-method

The next step is to figure out the intermediate spaces for any given Banach couple. There
is a variety of techniques to achieve this, see [17]. With the K-method, which is due to
Jack Peetre [13], we will get to know just one of many real interpolation approaches with
which we can construct a certain class of intermediate spaces.

Definition 3.5 Let X be a Banach couple, 0 < t < ∞ and x ∈ X0 + X1. The K-
functional is defined as

K(x, t) = K(x, t;X0, X1) = inf
x=x0+x1

‖x0‖X0 + t‖x1‖X1 .

Lemma 3.6 (a) For fixed x, K(x, t) is a positive, increasing and concave function.

(b) For t = 1 we have K(x, 1) = ‖x‖X0+X1.

(c) For fixed t > 0, it holds

min(1, t)‖x‖X0+X1 ≤ K(x, t) ≤ max(1, t)‖x‖X0+X1 ,

hence, K(x, t) is an equivalent norm in X0 +X1.

Proof. Most of these properties follow immediately from the Definition of the K-functional.
In order to show the concavity we fix x ∈ X and let t = αt0 + (1− α)t1 with t0, t1 > 0

and 0 ≤ α ≤ 1. For any decomposition x = x0 + x1 we have

αK(x, t0) + (1− α)K(x, t1) ≤ α (‖x0‖X0 + t0‖x1‖X0) + (1− α) (‖x0‖X0 + t1‖x1‖X1)

= (α + (1− α)) ‖x0‖X0 + (αt0 + (1− α)t1) ‖x1‖X1

= ‖x0‖X0 + t‖x1‖X1 .
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Taking the Infimum over all decompositions of x yields

αK(x, t0) + (1− α)K(x, t1) ≤ K(x, αt0 + (1− α)t1)

and the concavity of K(x, ·).
Definition 3.7 Let X be a Banach couple, 0 < θ < 1 and 1 ≤ q ≤ ∞. We call

Xθ,q = (X0, X1)θ,q = {x ∈ X0 +X1 : ‖x‖θ,q <∞}

the real interpolation space with the norm

‖x‖θ,q = ‖x‖(X0,X1)θ,q =


(∫ ∞

0

[
t−θK(x, t)

]q dt

t

) 1
q

for q <∞,

sup
0<t<∞

t−θK(x, t) for q =∞.

Now we will discuss certain properties of interpolation spaces. At first we show that
these spaces inherit the completeness of the respective Banach couple, see [17, page 25].

Theorem 3.8 Let X be a Banach couple, 0 < θ < 1 and 1 ≤ q ≤ ∞.

(a) For x ∈ Xθ,q it holds with some constant C (depending only on θ, q)

K(x, t) ≤ Ctθ‖x‖θ,q.

(b) Xθ,q is an intermediate space.

Proof. (a) Let q < ∞ and t > 0. Since the K-functional is increasing, we have K(x, t) ≤
K(x, s) for t ≤ s which implies

K(x, t) = K(x, t)
(
θqtθq

) 1
q

(∫ ∞
t

s−θq
ds

s

) 1
q

≤
(
θqtθq

) 1
q

(∫ ∞
t

K(x, s)qs−θq
ds

s

) 1
q

= (θq)
1
q tθ‖x‖θ,q.

The case q =∞ follows immediately from the definition of ‖ · ‖θ,∞.
(b) At first we have to show that Xθ,q is a Banach space. Let (xn)n∈N be a Cauchy

sequence in Xθ,q. (K(xn, t))n∈N is also a Cauchy sequence because of K(x, t) ≤ Ctθ‖x‖θ,q.
In particular we have ‖x‖X0+X1 = K(x, 1) ≤ C‖x‖θ,q so that (xn)n∈N is a Cauchy sequence
in X0 + X1 as well. Thus, there exists an x ∈ X0 + X1 such that limn→∞ xn = x. Now it
has to be shown that (xn)n∈N converges to x in Xθ,q.

Let q < ∞ (q = ∞ is shown analogously) and 0 < ε < N < ∞. Since (xn)n∈N is a
Cauchy sequence, for all δ > 0 there exists an n0(δ) ∈ N such that ‖xm − xn‖θ,q < δ for
m > n ≥ n0(δ) and in particular we have(∫ N

ε

[
t−θK(xm − xn, t)

]q dt

t

) 1
q

≤ ‖xm − xn‖θ,q < δ.
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The triangle inequality, the last estimate, the K-functional being increasing and the fact
that K(x, t) ≤ max(1, t)‖x‖X0+X1 yield(∫ N

ε

[
t−θK(x− xn, t)

]q dt

t

) 1
q

≤
(∫ N

ε

[
t−θK(xm − xn, t)

]q dt

t

) 1
q

+

(∫ N

ε

[
t−θK(x− xm, t)

]q dt

t

) 1
q

≤ δ +

(∫ N

ε

[
t−θK(x− xm, t)

]q dt

t

) 1
q

≤ δ +

(∫ N

ε

[
t−θK(x− xm, N)

]q dt

t

) 1
q

≤ δ +N‖x− xm‖X0+X1

(∫ N

ε

t−θq
dt

t

) 1
q

= δ +N‖x− xm‖X0+X1

(
1

θq

) 1
q (
ε−θq −N−θq

) 1
q

≤ δ +N‖x− xm‖X0+X1

(
1

θq

) 1
q

ε−θ.

For all ε,N, δ > 0 there exists an m0(ε,N, δ) ∈ N such that N‖x−xm‖X0+X1

(
1
θq

) 1
q
ε−θ ≤ δ

for all m ≥ m0(ε,N, δ) so that(∫ N

ε

[
t−θK(x− xn, t)

]q dt

t

) 1
q

≤ 2δ.

With N →∞ and ε→ 0 we finally have

‖x− xn‖θ,q ≤ 2δ

for n ≥ n0(δ) and therefore xn → x ∈ Xθ,q for n→∞ so that Xθ,q is complete.
In order to show that Xθ,q is an intermediate space we have to show the embeddings

X0 ∩X1 ↪→ Xθ,q ↪→ X0 +X1.

Xθ,q ↪→ X0 +X1 is an immediate consequence of (a) because for t = 1 and all x ∈ Xθ,q we
have ‖x‖X0+X1 = K(x, 1) ≤ C‖x‖θ,q.

Now let x ∈ X0 ∩X1. Since K(x, t) ≤ min(1, t)‖x‖X0∩X1 , we have

‖x‖θ,q =

(∫ ∞
0

[
t−θK(x, t)

]q dt

t

) 1
q

≤ ‖x‖X0∩X1

(∫ ∞
0

[
t−θ min(1, t)

]q dt

t

) 1
q

11



= ‖x‖X0∩X1

(∫ 1

0

t(−θ+1)q−1dt+

∫ ∞
1

t−θq−1dt

) 1
q

= ‖x‖X0∩X1

(
1

(1− θ)q +
1

θq

) 1
q

which implies X0 ∩X1 ↪→ Xθ,q.

After showing that the real interpolation spaces are indeed complete and a family of
intermediate spaces, we will now take a closer look at the individual spaces within this
family and how they position to one another. At first we will observe that we have an
ordered pair of Banach spaces in the notation of real interpolation spaces and switching
their roles in the K-functional leads to a different class of interpolation spaces. More
importantly, we will then observe that with two parameter there are also two ways to
make a real interpolation space bigger, either by increasing q for fixed θ or by simply
increasing θ.

Lemma 3.9 Let X be a Banach couple.

(a) If 0 < θ < 1 and 1 ≤ q ≤ ∞ then

(X0, X1)θ,q = (X1, X0)1−θ,q.

(b) If 0 < θ < 1 and 1 ≤ q ≤ r ≤ ∞ then

Xθ,q ↪→ Xθ,r.

(c) If X0 ↪→ X1, 0 < θ < η < 1 and 1 ≤ r, r̃ ≤ ∞ then

Xθ,r ↪→ Xη,r̃.

Proof. The original proof can be found in [17, pages 25-26].
(a) Let q < ∞. Substituting t−1 = s, dt = s−2ds in the definition of the K-functional

yields

‖x‖(X0,X1)θ,q =

(∫ ∞
0

[
t−θK(x, t;X0, X1)

]q dt

t

) 1
q

=

(∫ ∞
0

[
t−θ inf

x=x0+x1
(‖x0‖X0 + t‖x1‖X1)

]q
dt

t

) 1
q

=

(∫ ∞
0

[
t−θ+1 inf

x=x0+x1
(t−1‖x0‖X0 + ‖x1‖X1)

]q
dt

t

) 1
q

=

(∫ ∞
0

[
sθ−1 inf

x=x0+x1
(s‖x0‖X0 + ‖x1‖X1)

]q
s−2ds

s−1

) 1
q

12



=

(∫ ∞
0

[
s−(1−θ)K(x, s;X1, X0)

]q ds

s

) 1
q

= ‖x‖(X1,X0)1−θ,q .

(b) Let 1 ≤ q < r < ∞. We have to show the existence of a constant C so that
‖x‖θ,r ≤ C‖x‖θ,q for all x ∈ Xθ,q. By increasing t−θK(x, t) to its supremum over all t and
using the fact that there is a constant such that K(x, t) ≤ Ctθ‖x‖θ,q for all x ∈ Xθ,q (see
Lemma 3.8) we get

‖x‖θ,r =

(∫ ∞
0

[
t−θK(x, t)

]q [
t−θK(x, t)

]r−q dt

t

) 1
r

≤
[

sup
0<t<∞

t−θK(x, t)

] r−q
r
(∫ ∞

0

[
t−θK(x, t)

]q dt

t

) 1
r

≤ (C‖x‖θ,q)1−
q
r

(∫ ∞
0

[
t−θK(x, t)

]q dt

t

) 1
r

= C1− q
r ‖x‖1−

q
r

θ,q ‖x‖
q
r
θ,q

= C1− q
r ‖x‖θ,q.

The arguments for r =∞ with the respective supremum norm are essentially the same.
(c) Let X0 ↪→ X1, 0 < θ < η < 1 and 0 < q ≤ ∞. By the definition of real interpolation

spaces we know that

X0 ∩X1 = X0 ↪→ Xθ,q ↪→ X1 = X0 +X1.

In particular we have Xθ,∞ ↪→ X1. Thus, there is a constant C such that for all x ∈ Xθ,∞
it holds

‖x‖X1 ≤ C‖x‖θ,∞

and the definition of the K-functional yields for x ∈ X1 that

K(x, t) ≤ t‖x‖X1 .

With property (b) we have in particular the embeddings

Xθ,q ↪→ Xθ,∞ and Xη,1 ↪→ Xη,r.

Thus, all we need to show is that Xθ,∞ ↪→ Xη,1 for θ < η. Let x ∈ Xθ,∞. By the previous
observations we have

‖x‖η,1 =

∫ 1

0

t−ηK(x, t)
dt

t
+

∫ ∞
1

t−ηK(x, t)
dt

t

13



≤ ‖x‖X1

∫ 1

0

t−η+1dt

t
+ sup

0<t<∞
t−θK(x, t)

∫ ∞
1

t−η+θ
dt

t

≤ C‖x‖X1 + C ′‖x‖θ,∞
≤ C ′′‖x‖θ,∞

with constants C,C ′, C ′′ depending only on θ and η.

14



4 The interpolation of sequence spaces

So far we have seen two major concepts. On one hand, among the classical `q sequence
space with q ≥ 1, which are all Banach spaces, we have `1 as the smallest and `∞ as the
biggest one. On the other hand, within the interpolation space theory we have built a
framework where we have a smallest and a biggest Banach space in between which we can
construct a family of intermediate Banach spaces.

We will combine these two particular ideas by asking which spaces lie in between `1
and `∞ and utilizing real interpolation theory to provide an answer. Since `1 ↪→ `∞, we
have

`1 = `1 ∩ `∞ ↪→ (`1, `∞)θ,q ↪→ `1 + `∞ = `∞.

Our next task is to find a precise description for the real interpolation spaces (`1, `∞)θ,q.
Once we have defined the Lorentz spaces `p,q, it will turn out that

(`1, `∞)θ,q = ` 1
1−θ ,q

for 1 ≤ q ≤ ∞ and 0 < θ < 1. The proof for this is rather technical and while the major
steps can be found in [17, pages 125-126], we will work it out more detailed to showcase
the difficulties in figuring out the actual interpolation spaces.

4.1 Lorentz spaces

Despite their lexicographical order in the form of `q ↪→ `r for 0 < q < r, the embedding
structure of the `q-spaces is still pretty coarse. A massive refinement is caused by keeping
the general structure of the quasi-norms ‖ · ‖`q but additionally rearranging and weighting
the sequences before evaluation.

Definition 4.1 Let x = (xn)n∈N be a sequence. If there is a permutation π : N→ N such
that

|xπ(1)| ≥ |xπ(2)| ≥ |xπ(3)| ≥ . . . ≥ 0,

we call x∗ = (x∗n)n∈N =
(
|xπ(n)|

)
n∈N the decreasing (or non-increasing) rearrangement

of x.

Remark 4.2 As suggested in [8, page 10], the decreasing rearrangement could also be
defined as the sequence (x∗n)n∈N with the elements

x∗n := inf {m > 0 : |{k ∈ N : xk ≥ m}| < n}

which is the discrete version (using the counting measure) of the usual definition of the
non-increasing rearrangement of a function. In both cases the rearrangement is unique if
it exists.

15
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Figure 3: The major steps in forming the decreasing rearrangement of a sequence.

Example 4.3 We want to observe the effect of a decreasing rearrangement for a single
oscillation of a discretized sinusoidal function which is filled up zeros at the end:

(xn)n∈N = (0, 1, 2, 2, 1, 0,−1,−2,−2,−1, 0, . . .)

We eliminate negative elements by only considering their absolute values

(|xn|)n∈N = (0, 1, 2, 2, 1, 0, 1, 2, 2, 1, 0, . . .)

and rearrange the entries of the resulting sequence in descending order

(x∗n)n∈N = (2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, . . .).

In Figure 3 we have a side-by-side comparison of these three states.

Definition 4.4 For 0 < p, q ≤ ∞ the Lorentz (sequence) space `p,q is defined as

`p,q =
{
x ∈ c0 : ‖x‖`p,q <∞

}
with the quasi-norm

‖x‖`p,q =
∥∥∥(n 1

p
− 1
qx∗n

)
n∈N

∥∥∥
`q

=


( ∞∑
n=1

(
n

1
p
− 1
qx∗n

)q) 1
q

for 0 < q <∞,

sup
n∈N

n
1
px∗n for q =∞.

We observe that ‖ · ‖`q,q = ‖ · ‖`q and `q,q = `q for 0 < q ≤ ∞ because the weights n
1
p
− 1
q

disappear for p = q and the rearrangement becomes irrelevant for the value of the `q-norm.

4.2 Lorentz spaces as interpolation spaces

Now we are ready to show that

(`1, `∞)θ,q = ` 1
1−θ ,q

with equivalent norms. For this we need two major steps:

16



1. Find an explicit expression for the K-functional K(x, t; `1, `∞).

2. Show the existence of all constants for the equivalences

‖x‖q(`1,`∞)θ,q
∼

∞∑
k=1

k−1−θq
(

k∑
n=1

x∗n

)q

∼ ‖x‖q` 1
1−θ ,q

.

The first step will be summarized in the following Lemma, whose proof utilizes only some
properties of the K-functional and decreasing rearrangements.

Lemma 4.5 Let N ∈ N, x = (xk)k∈N ∈ `∞ with x = y + z and y ∈ `1, z ∈ `∞. Then

K(x, t; `1, `∞) = tx∗1 (0 < t ≤ 1)

and

K(x,N ; `1, `∞) =
N∑
k=1

x∗k (N ∈ N).

Proof. Let 0 < t ≤ 1. We know that `1 ↪→ `∞ with ‖x‖`∞ ≤ ‖x‖`1 for all x ∈ `∞. It follows
that

K(x, t; `1, `∞) = inf
x=y+z

‖y‖`1 + t‖z‖`∞ ≥ inf
x=y+z

‖y‖`∞ + t‖z‖`∞
≥ inf

x=y+z
‖y + tz‖`∞

= t inf
x=y+z

∥∥∥y
t

+ z
∥∥∥
`∞

≥ t inf
x=y+z

‖y + z‖`∞ = t‖x‖`∞ = tx∗1.

The converse inequality is obtained by decomposing x into y = 0, z = x. Then we get

K(x, t; `1, `∞) ≤ ‖y‖`1 + t‖z‖`∞ = t‖x‖`∞ = tx∗1.

Now let N ∈ N and again we have to show both inequalities. Without loss of generality
we can assume that x is a decreasing rearrangement, so that xk = x∗k for all k ∈ N. At
first let x∗k = yk + zk be any decomposition. Then we have

N∑
k=1

x∗k ≤
N∑
k=1

|yk + zk| ≤
N∑
k=1

|yk|+
N∑
k=1

|zk| ≤ ‖y‖`1 +N sup
k
|zk|

for all decompositions of x∗k, so in particular it holds

N∑
k=1

x∗k ≤ inf
x=y+z

‖y‖`1 +N‖z‖`∞ = K(x,N ; `1, `∞).
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For the converse inequality we choose specific y and z in the following way

yk =

{
x∗k − x∗N for k = 1, . . . , N ,

0 for k ≥ N + 1,

zk = x∗k − yk =

{
x∗k − (x∗k − x∗N) = x∗N for k = 1, . . . , N ,

x∗k for k ≥ N + 1.

For the `1-norm we use the fact that y is a decreasing and positive sequence and get

‖y‖`1 =
N∑
k=1

|x∗k − x∗N | =
N∑
k=1

(x∗k − x∗N) =
N∑
k=1

x∗k −Nx∗N

and for the `∞-norm we have

‖z‖`∞ = max

(
sup

k=1,...,N
x∗N , sup

k≥N+1
x∗k

)
= x∗N ,

yielding in total

K(x,N ; `1, `∞) ≤ ‖y‖`1 +N‖z‖`∞ =

(
N∑
k=1

x∗k −Nx∗N

)
+Nx∗N =

N∑
k=1

x∗k.

Remark 4.6 If x is not decreasing then it is not guaranteed that the first N entries of x
are also its N absolute largest entries. Therefore we introduce an index set I ⊂ N with
|I| = N associated with N entries of largest absolute value of x so that I is a set of indices
such that for all i ∈ I, j ∈ N \ I it holds |xi| ≥ |xj|. By xN , N ∈ I we still want to denote
the smallest element (of absolute value) among those identified with I, hence, for all i ∈ I
it holds |xN | ≤ |xi|. Now we can adjust the decomposition of x into y and z in the following
way:

yk =

xk −
xk
|xk|
|xN | for k ∈ I,

0 else,

zk = xk − yk =


xk
|xk|
|xN | for k ∈ I,

xk else.

The second major step of showing the equivalence of the interpolation space norm and
the Lorentz norm will be divided into two parts. The first one is the following Lemma.

Lemma 4.7 Let 1 ≤ q <∞, 0 < t <∞ and x = (xk)k∈N ∈ `∞. Then

‖x‖q(`1,`∞)θ,q
∼

∞∑
k=1

k−1−θq
(

k∑
n=1

x∗n

)q

with some constants depending on q and θ.

18



Proof. At first we recall that the K-functional is increasing so that

K(x, t) ≤ K(x, u)

for all 0 < t ≤ u. Now we split the interpolation norm in the following way

‖x‖q(`1,`∞)θ,q
=

∫ ∞
0

(
t−θK(x, t)

)q dt

t

=

∫ 1

0

t−1−θqK(x, t)q dt+

∫ ∞
1

t−1−θqK(x, t)q dt

=

∫ 1

0

t−1−θqK(x, t)q dt+
∞∑
k=1

∫ k+1

k

t−1−θqK(x, t)q dt.

With the previously shown expression of K(x, t, `1, `∞) for 0 < t ≤ 1 we can write∫ 1

0

t−1−θqK(x, t)q dt =

∫ 1

0

t−1−θq(tx∗1)
q dt =

∫ 1

0

tq(1−θ)−1(x∗1)
q dt =

(x∗1)
q

q(1− θ)

and end up with

‖x‖q(`1,`∞)θ,q
=

(
1

q(1− θ)

)
(x∗1)

q +
∞∑
k=1

∫ k+1

k

t−1−θqK(x, t)q dt. (1)

Now we have to find upper and lower bounds for the series in (1). In order to estimate
above we observe that it holds K(x, t) ≤ K(x, k+1) and t−1−θq ≤ k−1−θq for k ≤ t < k+1.
Plugging this in yields

∞∑
k=1

∫ k+1

k

t−1−θqK(x, t)qdt ≤
∞∑
k=1

k−1−θqK(x, k + 1)q

=
∞∑
k=2

(k − 1)−1−θqK(x, k)q

=
∞∑
k=2

(
k − 1

k

)−1−θq
k−1−θqK(x, k)q

≤
∞∑
k=2

k−1−θqK(x, k)q. (2)

The lower bound is obtained analogously by observing that for k ≤ t < k + 1 it holds
K(x, t) ≥ K(x, k) and t−1−θq ≥ (k + 1)−1−θq, thus

∞∑
k=1

∫ k+1

k

t−1−θqK(x, t)qdt ≥
∞∑
k=1

(k + 1)−1−θqK(x, k)q
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=
∞∑
k=1

(
k + 1

k

)−1−θq
k−1−θqK(x, k)q

≥
∞∑
k=2

k−1−θqK(x, k)q. (3)

By combining (1) and (2) we have

‖x‖q(`1,`∞)θ,q
≤ max

(
1

q(1− θ) , 1
) ∞∑

k=1

k−1−θq
(

k∑
n=1

x∗n

)q

,

and combining (1) and (3) yields

‖x‖q(`1,`∞)θ,q
≥ min

(
1

q(1− θ) , 1
) ∞∑

k=1

k−1−θq
(

k∑
n=1

x∗n

)q

.

Before we continue with the second part we have to establish two specific estimates for
partial harmonic series.

Lemma 4.8 Let n ∈ N, 0 < λ < 1 and 1 < γ <∞. It holds

(a)
n∑
k=1

k−λ ≤
(

1

1− λ

)
n1−λ ,

(b)
∞∑
k=n

k−γ ≤
(

1 +
1

γ − 1

)
n1−γ .

Proof. If n ∈ N and 0 < λ < 1 then

n∑
k=1

k−λ ≤ 1 +
n∑
k=2

∫ k

k−1
x−λ dx = 1 +

∫ n

1

x−λ dx = 1 +
n1−λ − 1

1− λ =
n1−λ − λ

1− λ ≤ n1−λ

1− λ.

For n ∈ N and 1 < γ <∞ we have with the same kind of argument that

∞∑
k=n

k−γ ≤ n−γ +

∫ ∞
n

x−γ dx = n−γ − n1−γ

1− γ =

(
1

n
+

1

γ − 1

)
n1−γ ≤

(
1 +

1

γ − 1

)
n1−γ.

Lemma 4.9 Let 1 ≤ q <∞ and x = (xk)k∈N ∈ `∞. Then

∞∑
k=1

k−θq−1
(

k∑
n=1

x∗n

)q

∼
∞∑
k=1

kq(1−θ)−1(x∗k)
q = ‖x‖q`p,q

with 1− θ = 1
p

and some constants depending on q and θ.
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Proof. The lower bound is obtained by

∞∑
k=1

k−θq−1
(

k∑
n=1

x∗n

)q

≥
∞∑
k=1

k−θq−1 (kx∗k)
q =

∞∑
k=1

kq(1−θ)−1(x∗k)
q.

On the other hand, let 1 > θ > ε > 0 and 1
q

+ 1
q′

= 1. By the Hölder inequality and
changing the order of summation it holds that

∞∑
k=1

k−θq−1
(

k∑
n=1

x∗n

)q

=
∞∑
k=1

k−θq−1
(

k∑
n=1

(
x∗nn

(1−θ)− 1
q
+ε
)
n
θ− 1

q′−ε
)q

≤
∞∑
k=1

k−θq−1
k∑

n=1

(x∗n)q n(1−θ)q−1+εq
(

k∑
n=1

n(θ−ε)q′−1
) q

q′

=
∞∑
n=1

(x∗n)q n(1−θ)q−1+εq
∞∑
k=n

k−θq−1
(

k∑
l=1

l(θ−ε)q
′−1
) q

q′

.

Now we use the fact that

k∑
l=1

l(θ−ε)q
′−1 ≤

k · k
(θ−ε)q′−1 = k(θ−ε)q

′
for (θ − ε)q′ − 1 ≥ 0,(

1
(θ−ε)q′

)
k(θ−ε)q

′
for (θ − ε)q′ − 1 < 0,

where the second case follows by Lemma 4.8 (a). We put C1 := max
(

1, 1
(θ−ε)q′

)
and obtain

∞∑
k=1

k−θq−1
(

k∑
n=1

x∗n

)q

≤ C1

∞∑
n=1

(x∗n)q n(1−θ)q−1+εq
∞∑
k=n

k−θq−1+θq−εq.

By Lemma 4.8 (b) we have

nεq
∞∑
k=n

k−(1+εq) ≤ nεq
(

1 +
1

εq

)
n−εq =

(
1 +

1

εq

)
=: C2,

thus, we have finally found some constant C ′ = C1 · C2 such that

∞∑
k=1

k−θq−1
(

k∑
n=1

x∗n

)q

≤ C ′
∞∑
n=1

(x∗n)q n(1−θ)q−1.
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Theorem 4.10 Let 1 ≤ q ≤ ∞ and p = 1
1−θ with 0 < θ < 1.

Then we have (with equivalent norms)

(`1, `∞)θ,q = `p,q.

Proof. Let q <∞. With Lemma 4.7 and Lemma 4.9 we have already shown that

‖x‖(`1,`∞)θ,q
∼ ‖x‖`p,q .

For the case q =∞ we only need to slightly adjust the proofs of these Lemmas.

As these kind of proofs are quite lengthy we will leave it at the one above, but it should
be mentioned that the last result can be considered as a special case of even more general
Theorems. Since real interpolation spaces Xθ,q are always Banach spaces, they themselves
can form feasible Banach couples

(
Xθ0,q0 , Xθ1,q1

)
that yield certain families of interpolation

spaces. This idea of interpolating between interpolation spaces is captured in the so called
reiteration theorem, see [1, pages 50-51]. The next result (see [17, page 127, Theorem 2])
shows the application of this theorem for Banach couples of Lorentz spaces:

Theorem 4.11 Let 0 < θ < 1 and 1 < p0, p1 <∞ with p0 6= p1 such that

1

p
=

1− θ
p0

+
θ

p1
.

and let 1 ≤ q, q0, q1 ≤ ∞. It holds (with equivalent norms)

(`p0,q0 , `p1,q1)θ,q = `p,q.

If we had shown this statement first, then everything concerning the real interpolation
of `q-spaces would have been just a special case. For example, if we put p0 = q0, p1 = q1,
then

(`q0 , `q1)θ,q = `p,q and `q0 ↪→ `p,q ↪→ `q1

and additionally putting q0 = 1 and q1 =∞ yields the content of Theorem 4.10.

4.3 Properties of Lorentz spaces

It certainly is possible to study Lorentz spaces without ever mentioning interpolation space
theory. For 1 ≤ p, q ≤ ∞ proofs of their completeness and embeddings can be found for
example in [10], which can be adapted for values 0 < p, q < 1. But because we have proven
that for 1 < p <∞ and 1 ≤ q ≤ ∞ Lorentz spaces are interpolation spaces, we can go back
to the general interpolation theory to collect a couple of immediate consequences caused
by choosing the particular Banach couple (`1, `∞). About completeness we can say the
following, with (b) and (c) being implied by Lemma 3.8:

Theorem 4.12 (a) (`p,q, ‖ · ‖`p,q) is a quasi-Banach space for 0 < p <∞, 0 < q ≤ ∞.
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(b) (`p,q, ‖ · ‖`p,q) is a Banach space for 1 < p <∞, 1 ≤ q ≤ p.

(c) For 1 < p < ∞, 1 ≤ q ≤ ∞ there is an equivalent norm ‖ · ‖′`p,q in `p,q such that
(`p,q, ‖ · ‖′`p,q) is a Banach space.

With two parameters the embedding structure of `p,q-spaces also becomes a little bit
more complicated, as shown in Figure 4. Now there are two ways to make them bigger -
either by increasing the value of p regardless of q or by fixing p and increasing q.
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Figure 4: Side-by-side comparison of two-dimensional unit balls B`p,q .

Theorem 4.13 Let 0 < p1, p2 <∞, 0 < q1, q2 ≤ ∞. It holds

(a) `p1,q1 ↪→ `p2,q2 for p1 < p2,

(b) `p,q1 ↪→ `p,q2 for p = p1 = p2 and q1 ≤ q2.

Once again, the cases in which the Lorentz spaces are normed have turned into a
Corollary of Lemma 3.9.

23



4.4 Remark on the interpolation of quasi-normed spaces

Originally the definition of Lorentz spaces included the values 0 < p, q < 1 for which they
turned out to be quasi-Banach spaces. This naturally leads to the question whether these
particular spaces can be interpolated as well.

In [16] we find an approach to extend the real interpolation methods and in particular
the K-method for couples of quasi-Banach spaces. For this we need another kind of norm:
Let X be a vector space over K and 0 < r ≤ 1. The functional ‖ · ‖ : X → [0,∞) is called
an r-norm, if for all α ∈ K and x, y ∈ X it holds

(N1) ‖x‖ = 0⇔ x = 0,

(N2r) ‖αx‖ = |α|r‖x‖,

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

(X, ‖ · ‖) is therefore called r-normed space or r-Banach space, if it is complete.
Y. Sagher proceeds in [16] by introducing and proving all majors notions and properties

of interpolation space theory for couples of r-Banach spaces, that we have already seen for
Banach couples. Since we know by the Aoki-Rolewicz theorem [15] that every quasi-norm is
also an r-norm, he had established the real interpolation methods for quasi-Banach couples
as well. Furthermore he proved several results, for example the reiteration theorem, in the
context of Lorentz function spaces Lp,q. While these proofs are adjustable for their discrete
counterparts in form of the Lorentz sequence spaces `p,q, we would need in both cases quite
a few more advanced techniques and therefore omit the details.

The sole purpose of this remark is to indicate that the reiteration of Lorentz spaces
as seen in Theorem 4.11 is certainly possible for values 0 < p0, p1, q0, q1 ≤ 1 as well and
that there are ways to describe the quasi-normed Lorentz spaces as interpolation spaces,
too. However, this is only meant to be an outlook on even more general theory and since
the previously mentioned interpolation theory was only discussed thoroughly for Banach
couples, we will from now on restrict statements concerning `p,q-spaces to values p, q ≥ 1.
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5 Entropy numbers

We have to introduce a couple more terms and properties before we start investigating
the behavior of operators and their properties under interpolation. We will start out by
recalling the necessary definitions to describe compact sets and operators and introduce
an equivalent description of relative compactness (see again [9]).

Definition 5.1 Let X be a quasi-Banach space and M ⊂ X.

(a) Let I be any index set and Ui ⊂ X open for i ∈ I. The system {Ui}i∈I is an open

cover of M if M ⊂
⋃
i∈I
Ui.

(b) Let {Ui}i∈I be an open cover of M and J ⊂ I with |J | ∈ N. If M ⊂
⋃
j∈J

Uj then we

call {Uj}j∈J is a finite cover of M .

(c) We put U(x, ε) := {y ∈ X : ‖x− y‖X < ε}.

(d) Let ε > 0. K ⊂ X is an ε-net for M , if M ⊂
⋃
x∈K

U(x, ε).

(e) M is compact, if every open cover of M contains a finite cover of M .

(f) M is relative compact, if the closure of M is compact.

As we can see, an ε-net is just an open cover with a specific system of open sets U(x, ε).

Theorem 5.2 Let X be a quasi-Banach space and M ⊂ X. M is relative compact if and
only if for all ε > 0 there exists a finite ε-net for M .

Definition 5.3 Let X, Y be quasi-Banach spaces and BX the unit ball of X.

(a) A linear map T : X → Y is compact, if T (BX) is relative compact.

(b) K(X, Y ) := {T ∈ L(X, Y ) : T compact}.
Apparently, the compactness of an operator is characterized by the possibility to find

a finite ε-net for T (BX) for all ε > 0. Following the example of [2] we want to go a step
further by restricting the number of sets involved in such nets. More precisely, after fixing
a certain number of open sets we want to know for which values ε > 0 we can still form an
ε-net for T (BX) and in particular what the smallest one amongst them is. This problem
motivates the following definitions:

Definition 5.4 Let X, Y be quasi-Banach spaces and T ∈ L(X, Y ).

(a) The n-th (dyadic) inner entropy number of T is defined by

ϕn(T ) = sup{δ > 0 : there exist x1, x2, . . . , xp in BX , p > 2n−1,

such that ‖Txi − Txj‖Y > 2δ for i 6= j, 1 ≤ i, j ≤ p}.
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(b) The n-th (dyadic) entropy number of T is defined by

en(T ) = inf

{
ε > 0 : there exist y1, y2, . . . , yq in Y, q ≤ 2n−1,

such that T (BX) ⊂
q⋃
j=1

(yj + εBY )

}
.

(c) The measure of non-compactness of T is defined by

β(T ) = inf

{
η > 0 : there is a finite number of y1, y2, . . . , yq in Y

such that T (BX) ⊂
q⋃
j=1

(yj + ηBY )

}
.

Clearly, β(T ) = limn→∞ en(T ).

Remark 5.5 For the rest of this section we keep on using the introduced short notation
β(T ), en(T ) and ϕn(T ). Later on we repeatedly have to specify the domain and co-domain
of T in order to avoid ambiguities and write

β(T : X → Y ), en(T : X → Y ) and ϕn(T : X → Y ).

Overall we will discuss only a small selection of the properties of these numbers. For
more details see [2]. At first we will observe that the entropy numbers are always decreasing
and bounded above by the operator norm. Afterwards we will prove the equivalence of
entropy and inner entropy numbers.

Theorem 5.6 Let X, Y be quasi-Banach spaces and T ∈ L(X, Y ). Then

(a) ‖T‖X→Y ≥ e1(T ) ≥ e2(T ) ≥ . . . ≥ 0,

(b) ‖T‖X→Y = e1(T ) if Y is a Banach space.

Proof. We will only show (b) and slightly modify the original proof in [8, page 8]. First of
all, we know ‖T‖X→Y = inf{λ ≥ 0 : T (BX) ⊂ λBY } and thus ‖T‖X→Y ≥ e1(T ).

Now let Y be a Banach space. If T (BX) ⊂ y0 + λBY for y0 ∈ Y and λ ≥ 0 then for
all x ∈ BX there are y1, y2 ∈ BY such that Tx = y0 + λy1 and −Tx = y0 + λy2 yielding
2Tx = λ(y1 − y2). Since ‖ · ‖Y is considered to be a norm and ‖y1‖Y ≤ 1, ‖y2‖Y ≤ 1, we
get

‖Tx‖Y =
λ

2
‖y1 − y2‖Y ≤

λ

2
(‖y1‖Y + ‖y2‖Y ) ≤ λ

with the right hand side being independent of x. Taking the supremum over all x im-
plies ‖T‖X→Y ≤ λ and taking the infimum over all λ for which e1(T ) < λ finally yields
‖T‖X→Y ≤ e1(T ).
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Theorem 5.7 Let X, Y be quasi-Banach spaces and T ∈ L(X, Y ). Then

ϕn(T ) ≤ en(T ) ≤ 2ϕn(T )

for all n ∈ N.

Proof. We present the proof found in [2, pages 7-8] which was adjusted accordingly to the
dyadic version of the (inner) entropy number of an operator.

In order to show the left inequality, let ε > en(T ) and 0 < δ < ϕn(T ). Then there
are y1, y2, . . . , yq in Y with q ≤ 2n−1 such that T (BX) ⊂ ⋃q

j=1(yj + εBY ), and there exist

x1, x2, . . . , xp in BX with p > 2n−1 such that ‖Txi − Txj‖Y > 2δ for i 6= j. Since q ≤
2n−1 < p, there are more such xi than sets yj + εBY . Hence, there must be a yj + εBY

containing two Txi. Suppose Txi ∈ yj + εBY and Txk ∈ yj + εBY . Then we have

‖Txi − Txk‖Y ≤ ‖Txi − yj‖Y + ‖yj − Txk‖Y ≤ 2ε

and therefore 2δ < ‖Txi − Txk‖Y ≤ 2ε which implies ϕn(T ) ≤ en(T ).
Conversely, for any δ with ϕn(T ) < δ there exists a maximal subset {x1, x2, . . . , xp} of

BX with p > 2n−1 such that ‖Txi − Txj‖ > 2δ for i 6= j. The maximality is due to the
fact that for any x ∈ BX there is at least one element xi in this subset such that

‖Tx− Txi‖ ≤ 2δ.

Hence,

T (BX) ⊂
q⋃
j=1

(yj + 2δBY ).

This implies en(T ) ≤ 2δ and thus, en(T ) ≤ 2ϕn(T ).

At last we will prove the equivalence of an operator being compact and the respective
entropy numbers being a null sequence. This characterization will be crucial for the next
chapter in which we want to prove the non-compactness of certain operators.

Theorem 5.8 Let X, Y be quasi-Banach spaces and T ∈ L(X, Y ). Then

T ∈ K(X, Y ) ⇔ lim
n→∞

en(T ) = 0.

Proof. Let T ∈ K(X, Y ). Therefore T (BX) is relatively compact and thus, for every ε > 0
there is a finite ε-net for T (BX). Without loss of generality we can assume that these finite
ε-nets consist of a dyadic number of open sets, hence, limn→∞ en(T ) = 0.

Conversely, let limn→∞ en(T ) = 0. For all ε > 0 there is an nε ∈ N such that for all
n > nε it holds en(T ) < ε and the involved elements y1, y2, . . . , y2n−1 form a finite ε-net
for T (BX). Since this holds for all ε > 0, it follows that T (BX) is relative compact and
T ∈ K(X, Y ).

Because 0 6= β(T )(= limn→∞ en(T )) is sufficient to determine that T is not compact,
the value of β(T ) might be interpreted as a way to quantify how non-compact T is. We
might go so far as to say that it is a measure of non-compactness - hence its name.
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6 Operators between interpolation spaces

Finally we want to look at the behavior of operators and their respective entropy numbers
under interpolation. Previously in the theory of interpolation spaces we started out with a
Banach couple X = (X0, X1) yielding a pair of outer Banach spaces X0 ∩X1 and X0 +X1

in between which the spaces X0, X1 and Xθ,q were embedded. Taking another Banach
couple Y = (Y0, Y1) yields the same embedding structure with Y0, Y1 and Y θ,q lying in
between Y0 ∩ Y1 and Y0 + Y1.

In order to study operators between interpolation spaces we initially define them in
terms of the biggest appearing spaces so that they map from X0 + X1 to Y0 + Y1 and
restrict them afterwards to X0, X1 and Xθ,q. In the end we want to describe relationships
between these restrictions. We will see that certain properties of the operators over X0

and X1 are handed down to the operator over Xθ,q. Furthermore we will have a close look
at how the entropy numbers of these three restrictions relate.

6.1 Compactness under interpolation

At first we introduce the notation of operators between Banach couples:

Definition 6.1 (a) For Banach couples X and Y we denote by T ∈ L
(
X,Y

)
that

T : X0 +X1 → Y0 + Y1

is linear and that the restrictions to X0 and Y0

T |X0
: X0 → Y0 and T |X1

: X1 → Y1

are linear and bounded.

(b) If the Banach couple X or Y is reduced to a single space, so that X0 = X1 = X or
Y0 = Y1 = Y , we just write T ∈ L

(
X, Y

)
or T ∈ L

(
X,Y

)
.

In Figure 5 we have summarized all the previously mentioned restrictions in a single
scheme. In the sequel we will denote those by just T as well and additionally state the
domain and co-domain, when we need to avoid ambiguity.

X0 ∩X1 X0 Xθ,q X1 X0 +X1

Y0 ∩ Y1 Y0 Y θ,q Y1 Y0 + Y1

T |X0
T |Xθ,q T |X1 T

Figure 5: Scheme of the definition of an operator T ∈ L
(
X,Y

)
.

28



The next result is the first one of the kind that the restriction of T to Xθ,q inherits a
property of T : X0 → Y0 or T : X1 → Y1 or both, which in this case will be continuity (or
boundedness).

Theorem 6.2 (Interpolation property, [3, Theorem 1.3]) Let X and Y be Banach couples
and T ∈ L

(
X,Y

)
. For all 0 < θ < 1 and 1 ≤ q ≤ ∞

T : Xθ,q → Y θ,q

is a bounded operator and it holds

‖T‖Xθ,q→Y θ,q ≤ ‖T‖
1−θ
X0→Y0‖T‖

θ
X1→Y1 . (4)

Proof. Let X and Y be Banach couples, T ∈ L
(
X,Y

)
and x0 + x1 = x ∈ X0 + X1 with

x0 ∈ X0 and x1 ∈ X1. Then Tx0 + Tx1 = Tx ∈ Y0 + Y1 with Tx0 ∈ Y0 and Tx1 ∈ Y1. We
put

M0 := ‖T‖X0→Y0 and M1 := ‖T‖X1→Y1 .

The definition of the K-functional as well as T : X0 → Y0 and T : X1 → Y1 being bounded
yield

K(Tx, t;Y0, Y1) = inf {‖Tx0‖Y0 + t‖Tx1‖Y1 : Tx = Tx0 + Tx1}
≤ ‖Tx0‖Y0 + t‖Tx1‖Y1
≤M0‖x0‖X0 + tM1‖x1‖X1

= M0

(
‖x0‖X0 + t

M1

M0

‖x1‖X1

)
,

so that by taking the infimum over all decompositions of x we get

K(Tx, t;Y0, Y1) ≤M0K

(
x, t

M1

M0

;X0, X1

)
.

With this estimate and the substitution s := tM1

M0
, dt = M0

M1
ds we have

‖Tx‖Y θ,q =

(∫ ∞
0

[
t−θK(Tx, t;Y0, Y1)

]q dt

t

) 1
q

≤
(∫ ∞

0

[
t−θM0K

(
x, t

M1

M0

;X0, X1

)]q
1

t
dt

) 1
q

= M0

(∫ ∞
0

[(
M0

M1

s

)−θ
K (x, s;X0, X1)

]q (
M1

M0

1

s

)
M0

M1

ds

) 1
q

= M0

(
M1

M0

)θ (∫ ∞
0

[
s−θK (x, s;X0, X1)

]q ds

s

) 1
q
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= M1−θ
0 M θ

1‖x‖Xθ,q

and thus, it holds

‖T‖Xθ,q→Y θ,q ≤ ‖T‖
1−θ
X0→Y0‖T‖

θ
X1→Y1 .

Remark 6.3 In general, (4) contains a constant C ≥ 1 in the upper bound, so that

‖T‖Xθ,q→Y θ,q ≤ C‖T‖1−θX0→Y0‖T‖
θ
X1→Y1 , (5)

see for example [1, page 27]. For all the interpolation spaces we are dealing with it holds
C = 1, yet we mention this constant to emphasize the similarities to other inequalities that
we will see later on in this section.

Since continuous operators have a finite norm, the interpolation property shows in
particular that the continuity of T : X0 → Y0 and T : X1 → Y1 is handed down to the
interpolated operator T : Xθ,q → Y θ,q. A similar effect is known for compactness:

Theorem 6.4 ([3, Theorem 3.2]) Let X and Y be Banach couples, T ∈ L(X,Y ), 0 < θ < 1
and 1 ≤ q ≤ ∞. If

T ∈ K(X0, Y0) or T ∈ K(X1, Y1)

then

T ∈ K(Xθ,q, Y θ,q).

We notice that this time the compactness of just one of the operators T : X0 → Y0 or
T : X1 → Y1 is sufficient for T : Xθ,q → Y θ,q to inherit it. This behaviour of compact
operators under real interpolation can also be expressed in an inequality of the form (5)
that yields the previous result by recalling that β(T ) = 0 is equivalent to T ∈ K(X, Y ).

Theorem 6.5 ([4]) Let X and Y be Banach couples and T ∈ L
(
X,Y

)
. For all 0 < θ < 1

and 1 ≤ q ≤ ∞ there is a constant C depending on θ such that

β(T : Xθ,q → Y θ,q) ≤ Cβ(T : X0 → Y0)
1−θβ(T : X1 → Y1)

θ.

Naturally the question arises if there are such an inequalities for entropy numbers en(T )
with n < ∞, too. Indeed, those can be proven if we one of the end spaces is fixed, which
is achieved by replacing X or Y in T ∈ L(X,Y ) with a single Banach space X or Y . The
resulting notation of T ∈ L

(
X, Y

)
or T ∈ L

(
X,Y

)
was already introduced in Definition

6.1.
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Theorem 6.6 Let m,n ∈ N, 0 < θ < 1, 1 ≤ q ≤ ∞ and let X,Y be Banach couples.

(a) If Y is a Banach space and T ∈ L(X,Y ), then

en+m−1(T : Xθ,q → Y ) ≤ 2Cen(T : X0 → Y )1−θem(T : X1 → Y )θ.

(b) If X is a Banach space and T ∈ L(X, Y ), then

en+m−1(T : X → Y θ,q) ≤ 2Cen(T : X → Y0)
1−θem(T : X → Y1)

θ.

A proof for this Theorem can be found in [14, page 170, Prop. 12.1.11. and 12.1.12].

6.2 Entropy numbers under real interpolation

The final question is if there exists an inequality of the form

ek(T : Xθ,q → Y θ,q) ≤ Cem(T : X0 → Y0)
1−θen(T : X1 → Y1)

θ,

for finite k,m, n ∈ N when no further assumptions about the Banach couples are made.
This problem was finally settled in [6] where D. Edmunds and Yu. Netrusov constructed a
counterexample for a pair of Banach couples (`p0 , `q0) and (`p1 , `q1) such that the entropy
number of the interpolated operator T : Xθ,q → Y θ,q can not be bounded above by the
product of the entropy numbers of the original two operators.

Besides going over the content of [6] we will discuss some additional aspects of bounding
entropy numbers in order to be able to grasp the involved ideas and techniques of the final
counterexample.

6.2.1 Combinatorial Lemmas

Estimates of entropy numbers in any direction are most commonly based on either a couple
of volume arguments or a combination of some combinatorial arguments. Since proving
those is sometimes quite technical, we will prepare some combinatorial Lemmas right away
so that they are ready to be used afterwards when we want to actually show certain upper
and lower bounds of entropy numbers.

Lemma 6.7 Let v, d ∈ N, v ≤ d. Then(
d

v

)v
≤
(
d

v

)
≤
(
ed

v

)v
and

(
2d

d

)
≤ 22d.

Proof. For the lower bound in the first inequality we have to show(
d

v

)v
≤

v−1∏
k=0

d− k
v − k =

d(d− 1) . . . (d− v + 1)

v(v − 1) . . . 1
=

d!

v!(d− v)!
=

(
d

v

)
,
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which is implied by the fact that d
v
≤ d−k

v−k is equivalent to v ≤ d for all k ∈ {0, 1, . . . , v−1}.
For the upper bound we will use the fact that

ev =
∞∑
k=0

vk

k!
≥ vv

v!
⇔ 1

v!
≤ ev

vv

and conclude that(
d

v

)
=

d!

v!(d− v)!
=
d(d− 1) . . . (d− v + 1)

v!
≤ dv

v!
≤
(
ed

v

)v
.

The second inequality is implied by the Binomial theorem, yielding(
2d

d

)
≤

2d∑
k=0

(
2d

k

)
= (1 + 1)2d = 22d.

For the next result we introduce a notation for a set of subsets with a fixed number of
elements. Given any set E and any v ∈ N with v ≤ |E|, we put

L(E, v) := {D ⊂ E : |D| = v}.

Lemma 6.8 Let E be a set and v ∈ N such that |E| ≥ 64e3v. Then there exists a subset
S(E, v) ⊂ L(E, v) with the following properties:

(a) for any distinct D1, D2 ∈ S(E, v)

|D1 ∩D2| ≤
v

2
,

(b)

|S(E, v)|4 ≥ |L(E, v)| =
(|E|
v

)
.

Proof. We will only discuss the case of n being even. The odd cases can be handled
analogously. Let v

2
∈ N, n = |E| ∈ N so that n ≥ 64e3v, and let D1 ∈ L(E, v). For the

sake of readability we will shorten the notation of certain sets by putting

L≥k := {D2 ∈ L(E, v) : |D1 ∩D2| ≥ k} ,
L≤k := {D2 ∈ L(E, v) : |D1 ∩D2| ≤ k}

with k ∈ {0, 1, . . . , v}. At first we observe that

|L≤v| =
v∑
k=0

(
v

k

)(
n− v
v − k

)
=

(
n

v

)
=

(|E|
v

)
,
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which is the well-known Vandermonde identity. Additionally it holds

|L≤v| ≤ |L≤ v
2
|+ |L≥ v

2
| ≤ |L≤ v

2
| · |L≥ v

2
| (6)

for whenever |L≤ v
2
| ≥ 2 and |L≥ v

2
| ≥ 2, which is obviously the case for all v

2
∈ N.

The next step is to show

|L≥ v
2
| ≤

(
v
v
2

)(
n
v
2

)
. (7)

By using
(
v
k

)
≤
(
v
v/2

)
for k = 0, 1, . . . , v/2 we get

|L≥ v
2
| =

v∑
k= v

2

(
v

k

)(
n− v
v − k

)
≤
(
v
v
2

) v∑
k= v

2

(
n− v
v − k

)
=

(
v
v
2

) v
2∑

k=0

(
n− v
k

)
.

Hence, it remains to show that

v
2∑

k=0

(
n− v
k

)
≤
(
n
v
2

)
.

By using the Vandermonde identity,
(
v/2
k

)
≥ 1 for all k ∈ {0, . . . , v/2} and inverting the

order of summation, we have(
n
v
2

)
=

v
2∑

k=0

(
v
2

k

)(
n− v

2
v
2
− k

)
≥

v
2∑

k=0

(
n− v

2
v
2
− k

)
=

v
2∑

k=0

(
n− v

2

k

)
≥

v
2∑

k=0

(
n− v
k

)
,

where the last estimate holds for n− v ≥ v/2, which fits our initial assumption on the size
of E. Therefore (7) holds. By combining (6) and (7) we conclude that(

n
v

)(
v
v/2

)(
n
v/2

) ≤ |L≤v||L≥ v
2
| ≤ |L≤

v
2
|

and thus we have found a subset L≤ v
2

=: S(E, v) ⊂ L(E, v) having property (a) and

containing at least
(nv)

( v
v/2)(

n
v/2)

elements.

In order to show property (b) we apply Lemma 6.7 which yields

|S(E, v)| ≥
(
n
v

)(
v
v/2

)(
n
v/2

) ≥ (
n
v

)v
2v
(
2en
v

)v/2 =

(
n
v

)v
2v2v/2

(
en
v

)v/2 · evev =

(
ne
v

)v/2
2v2v/2ev

=

(
ne
v

)2·v/4
(64e4)v/4

and by the initial assumption of n ≥ 64e3v and again Lemma 6.7 we finally get(
ne
v

)v/4 (ne
v

)v/4
(64e4)v/4

≥

(
ne
v
· 64e3ve

v

)v/4
(64e4)v/4

=
(ne
v

)v/4
≥
(
n

v

)1/4

.
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The next statement is quite similar to the previous one and its proof is based on pretty
much the same core ideas.

Lemma 6.9 Let a ∈ N, a ≥ 8 and suppose that (Fi)
n
i=1 is a family of sets with |Fi| ≥ a for

all i. Then there exists a subset A ⊂∏n
i=1 Fi such that

|A| ≥ a
n
6

and for any f = (fi)
n
i=1, g = (gi)

n
i=1 ∈ A with f 6= g, it holds the estimate

|{i ∈ {1, . . . , n} : fi = gi}| ≤
n

2
.

Proof. Without loss of generality let n
2
∈ N, |Fi| = a for all i and g ∈ ∏n

i=1 Fi. Again we
will shorten the notation by putting

F≥k :=

{
f ∈

n∏
i=1

Fi : |{i ∈ {1, . . . , n} : fi = gi}| ≥ k

}
,

F≤k :=

{
f ∈

n∏
i=1

Fi : |{i ∈ {1, . . . , n} : fi = gi}| ≤ k

}
.

Already we can make some observations. First of all we have

an =

∣∣∣∣∣
n∏
i=1

Fi

∣∣∣∣∣ =
n∑
k=0

∣∣∣∣∣
{
f ∈

n∏
i=1

Fi : |{i ∈ {1, . . . , n} : fi = gi}| = k

}∣∣∣∣∣ ≤ |F≤n2 |+ |F≥n2 |
and it holds

|F≤n
2
|+ |F≥n

2
| ≤ |F≤n

2
| · |F≥n

2
| (8)

for |F≤n
2
| ≤ 2, |F≥n

2
| ≥ 2 which indeed holds for all n

2
∈ N. Additionally we have∣∣∣∣∣

{
f ∈

n∏
i=1

Fi : |{i ∈ {1, . . . , n} : fi = gi}| = k

}∣∣∣∣∣ =

(
n

k

)
(a− 1)n−k,

because after choosing k of the n coordinates that will coincide, there are n−k coordinates
with each (a− 1) elements left to be chosen.

Now we show that

|F≥n
2
| ≤ a

5
6
n. (9)

By using our above observations we have

|F≥n
2
| =

n∑
k=n

2

∣∣∣∣∣
{
f ∈

n∏
i=1

Fi : |{i ∈ {1, . . . , n} : fi = gi}| = k

}∣∣∣∣∣
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=
n∑

k=n
2

(
n

k

)
(a− 1)n−k ≤

(
n

n/2

) n∑
k=n

2

(a− 1)n−k

=

(
n

n/2

) n
2∑

k=0

(a− 1)k ≤
(
n

n/2

)
a
n
2 ,

where the last estimate
∑n

2
k=0 (a− 1)k ≤ a

n
2 can be shown via induction (n→ n+ 2) such

that

n
2
+1∑

k=0

(a− 1)k ≤ a
n
2 + (a− 1)

n
2
+1 = a

n
2
+1

(
1

a
+

(
a− 1

a

)n
2
+1
)

= a
n
2
+1

(
1

a
+

(
1− 1

a

)n
2
+1
)
≤ a

n
2
+1,

where we used for the last estimate that

1

a
+

(
1− 1

a

)n
2
+1

≤ 1 ⇔
(

1− 1

a

)n
2

≤ 1,

which obviously holds for all n.
Furthermore, because we assumed a ≥ 8, it holds(

n

n/2

)
a
n
2 ≤ 2na

n
2 = 8

n
3 a

n
2

(
an/3

an/3

)
=

(
8

a

)n/3
a

5
6
n ≤ a

5
6
n.

By combining (8) and (9) we finally arrive at

a
n
6 =

an

a
5
6
n
≤
|F≤n

2
|+ |F≥n

2
|

|F≥n
2
| ≤ |F≤n

2
|

so that choosing F≤n
2

= A yields the claim.

6.2.2 Bounds of entropy numbers

In the sequel we will encounter finite-dimensional `q-spaces and sequences spaces whose
norms sum over index sets different from the natural numbers. For that we need more
precise notation: Let E be any non-empty countable set. We put

‖x‖`q(E) =

(∑
n∈E
|xn|q

) 1
q

for finite q (with the usual adjustment for q = ∞) and `q(E) denotes the space of all
sequences with ‖x‖`q(E) <∞.

35



In particular, for E = {1, 2, . . . , n} we end up with the finite dimensional `q-spaces,

denoted by `nq , which are basically the Rn equipped with the norm ‖x‖`nq = (
∑n

k=1 |xk|q)
1
q .

And choosing E = N yields the usual `q-spaces. Additionally, all the logarithms will have
base 2, even though we will keep writing log(x) instead of log2(x).

Now we are going to be concerned with the actual bounds for entropy numbers of
the identity operator acting between `nq -spaces. The upper bounds can be found in [8,
Proposition 3.2.2] and the lower bounds in [5, Theorem 2]. We will go over the proof of
one of the lower bounds as it showcases a particular combinatorial argument that we will
encounter again in the main result.

Theorem 6.10 Let n ∈ N and 0 < p < q ≤ ∞ and id : `np → `nq . There are constants
C1, C2 independent of k and n such that

C1A(k, n) ≤ ek(id) ≤ C2A(k, n)

with

A(k, n) =


1 if k ≤ log n,(

log(1+n
k
)

k

) 1
p
− 1
q

if log n ≤ k ≤ n,

2−
k
nn−( 1

p
− 1
q ) if k ≥ n.

Proof. We will follow the arguments in [11] and show the lower bound of ek(id : `np → `nq )
for log n ≤ k ≤ n:

Let m,n ∈ N with n ≥ 4 and 1 ≤ m ≤ n
4
. We put

S :=

{
x = (xk)

n
k=1 ∈ {−1, 0, 1}n :

n∑
k=1

|xk| = 2m

}

and observe that |S| =
(
n
2m

)
22m. Additionally we have (2m)−

1
pS ⊂ B`np . We define the

Hamming distance h on S by

h(x, y) = |{k ∈ {1, 2, . . . , n} : xk 6= yk}|.

Obviously, for fixed x ∈ S we have

|{y ∈ S : h(x, y) ≤ m}| ≤
(
n

m

)
3m.

Now take any subset A ⊂ S with |A| ≤ N :=
(
n
2m

)
/
(
n
m

)
. The estimate

|{y ∈ S : there exists an x ∈ A with h(x, y) ≤ m}| ≤ |A|
(
n

m

)
3m ≤

(
n

2m

)
3m < |S|
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implies the existence of an element y ∈ S with h(x, y) > m for all x ∈ A. Hence, it is

possible to construct a set A′ ⊂ S with |A′| > N and h(x, y) > m and thus ‖x−y‖`nq > m
1
q

for all distinct x, y ∈ A′. So, we have found with (2m)−
1
pA′ a subset of B`np containing

more than N elements that have a mutual `nq -distance

‖x− y‖`nq > ε := (2m)−
1
pm

1
q . (10)

Recalling the definition of inner entropy numbers ϕk(·), see Definition 5.4, and the fact
that ek(·) ≥ ϕk(·), it becomes apparent that by putting k := blogNc we can write (10) as

ek(id : `np → `nq ) ≥ ε

2
= c1m

1
q
− 1
p

with c1 = 2−(1+
1
p
).

With a couple more arguments regarding the relationship of N, k and n it can be shown
that

ek(id : `np → `nq ) ≥ c

(
log(n

k
+ 1)

k

) 1
p
− 1
q

for log n ≤ k ≤ n, but we omit them.

The main reason to mention this proof was to highlight the particular chain of ar-
guments revolving around the relationship ϕk(·) ≤ ek(·) ≤ 2ϕk(·) that we had seen in
Theorem 5.7. With this approach the difficult task of precisely evaluating an entropy
number ek(T : X → Y ) changes into the construction of an appropriate subset of BX

containing a sufficiently large number of elements, so that their images under T have a
minimal non-zero distance to one another. But as useful as this approach might be, finding
such subsets can still be quite difficult depending on the respective operator T as well as
its domain and co-domain spaces.

Next we state another Theorem regarding bounds of entropy numbers and this time
not for the identity map but a diagonal operator that weights the elements of a sequences.

Theorem 6.11 ([12]) Let 0 < p < q ≤ ∞. We put λ := 1
p
− 1

q
> 0 and define the diagonal

map D by

D : `p → `q, (xi)i∈N 7→
(

xi
(log(i+ 1))λ

)
i∈N

.

There exist constants C1, C2 independent of n such that

C1n
−λ ≤ en(D) ≤ C2n

−λ.

After establishing these general entropy bounds we will have to introduce just one more
tool in the form of bounds for the Lorentz norm of certain sequences, which will be crucial
for deriving a lower bound for certain (inner) entropy numbers afterwards.
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2 6 10 14 18 22 26 30

α1

α2

α3

α4

Figure 6: The first entries of the unweighted decreasing rearrangement of
∑n

i=1 αiχEi with
|Ei| = 2i and decreasing αi.

Lemma 6.12 Let 0 < u, p ≤ ∞ and let E be any set and (Ei)
n
i=1 any family of disjoint

subsets of E with |Ei| = 2i for all i = 1, . . . , n. Then there are positive constants C1, C2,
depending on u and p, such that for any scalars α1, . . . , αn it holds

C1

(
n∑
i=1

2i
u
p |αi|u

) 1
u

≤
∥∥∥∥∥

n∑
i=1

αiχEi

∥∥∥∥∥
`p,u

≤ C2

(
n∑
i=1

2i
u
p |αi|u

) 1
u

.

Proof. We will only discuss the cases where u and p are finite. Without loss of generality
we assume that (αi)i=1,...,n is a non-increasing rearrangement. We can interpret αiχEi to
be a sequence of length

∑n
i=1 2i = 2(2n − 1), where the first 2 entries are equal to α1, the

next 22 entries are equal to α2, and so forth, and the last 2n entries are equal to αn, see
Figure 6. This leads to the expression of the `p,u-norm as∥∥∥∥∥

n∑
i=1

αiχEi

∥∥∥∥∥
`p,u

=

 n∑
i=1

2(2i−1)∑
j=2i−1

(
j

1
p
− 1
u |αi|

)u 1
u

.

The estimates of this norm are based on the following idea: Above every sector of length

2i we have the same αi that is multiplied with different weights of the form j
1
p
− 1
u which

are either increasing or decreasing, depending on whether p ≤ u or p > u. In both cases

there is a biggest (and a smallest) element j
1
p
− 1
uαi on the left or right end of a sector with

which all the other elements of each sector are estimated above (or below). Additionally

we will repeatedly use the fact that 1 ≤ 2i

2i−1 ≤ 2 for i ∈ N.

At first, let p ≤ u (or equivalently 1
p
− 1

u
≥ 0) so that (j

1
p
− 1
u )j=1,...,2(2i−1) is an increasing

sequence. We get n∑
i=1

2(2i−1)∑
j=2i−1

(
j

1
p
− 1
u |αi|

)u 1
u

≤
(

n∑
i=1

2i
(

[2(2i − 1)]
1
p
− 1
u |αi|

)u) 1
u

=

(
n∑
i=1

2i

2(2i − 1)
[2(2i − 1)]

u
p |αi|u

) 1
u
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≤
(

n∑
i=1

(2i+1)
u
p |αi|u

) 1
u

= 2
1
p

(
n∑
i=1

2i
u
p |αi|u

) 1
u

and  n∑
i=1

2(2i−1)∑
j=2i−1

(
j

1
p
− 1
u |αi|

)u 1
u

≥
(

n∑
i=1

2i
(

[2i − 1]
1
p
− 1
u |αi|

)u) 1
u

=

(
n∑
i=1

2i

2i − 1
[2i − 1]

u
p |αi|u

) 1
u

≥
(

n∑
i=1

[2i−1]
u
p |αi|u

) 1
u

= 2−
1
p

(
n∑
i=1

2i
u
p |αi|u

) 1
u

.

Conversely, if p > u so that (j
1
p
− 1
u )j=1,...,2(2i−1) is a decreasing sequence, then we have n∑

i=1

2(2i−1)∑
j=2i−1

(
j

1
p
− 1
u |αi|

)u 1
u

≤
(

n∑
i=1

2i
(

[2i − 1]
1
p
− 1
u |αi|

)u) 1
u

=

(
n∑
i=1

2i

2i − 1
[2i − 1]

u
p |αi|u

) 1
u

≤ 2
1
u

(
n∑
i=1

2i
u
p |αi|u

) 1
u

and  n∑
i=1

2(2i−1)∑
j=2i−1

(
j

1
p
− 1
u |αi|

)u 1
u

≥
(

n∑
i=1

2i
(

[2(2i − 1)]
1
p
− 1
u |αi|

)u) 1
u

=

(
n∑
i=1

2i

2(2i − 1)
[2(2i − 1)]

u
p |αi|u

) 1
u

≥
(

n∑
i=1

1

2
[2(2i−1)]

u
p |αi|u

) 1
u
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= 2−
1
u

(
n∑
i=1

2i
u
p |αi|u

) 1
u

.

In total we have shown that

min
(

2−
1
u , 2−

1
p

)( n∑
i=1

2i
u
p |αi|u

) 1
u

≤
∥∥∥∥∥

n∑
i=1

αiχEi

∥∥∥∥∥
`p,u

≤ max
(

2
1
u , 2

1
p

)( n∑
i=1

2i
u
p |αi|u

) 1
u

.

Remark 6.13 We will need two particular modifications of the previous Lemma in which
the αi still ought to be decreasing scalars while the number of elements in the sets Ei are
changed into different powers of 2. The arguments used for the estimates stay exactly the
same and lead to similar looking constants:

(a) For any family (Ei)
n
i=1 of disjoint subsets of E with |Ei| = 2i−1 for each i it holds

2−
1
u
− 1
p

(
n∑
i=1

2i
u
p |αi|u

) 1
u

≤
∥∥∥∥∥

n∑
i=1

αiχEi

∥∥∥∥∥
`p,u

≤
(

n∑
i=1

2i
u
p |αi|u

) 1
u

. (11)

(b) For any family (Ei)
n
i=1 of disjoint subsets of E with |E1| = 2 and |Ei| = 2i−1 for each

i ∈ {2, 3, . . . , n} it holds once again

2−
1
u
− 1
p

(
n∑
i=1

2i
u
p |αi|u

) 1
u

≤
∥∥∥∥∥

n∑
i=1

αiχEi

∥∥∥∥∥
`p,u

. (12)

Remark 6.14 For the next result let E be any countably infinite set and (Ei)i∈N a family
of disjoint subsets of E with |Ei| = 22i for all i. Let λ be a positive constant and denote
by T the linear operator defined by

T ((xi)i∈N) =
(
2−iλxi

)
i∈N , xi ∈ Ei,

where the xi are allowed to be vectors, so that all elements from Ei are weighted with 2−iλ.

Theorem 6.15 Let 1 ≤ p, q, u, v ≤ ∞ be such that λ := 1
p
− 1

q
> 0 and q ≥ v and we put

σ := 1
u
− 1

v
. Let T : `p,u(E)→ `q,v(E) and E be as in the previous Remark. Then there is

a constant C = C(p, q, u, v) such that

em(T ) ≥ Cm−λ(logm)−σ+λ

for all m ∈ N.
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L(Ek0+1, 2
s−k0−1) L(Ek0+2, 2

s−k0−2) L(Es−1, 2) L(Es, 1)

A Ak0+1 Ak0+2 . . . As−1 As⊂ ×
∪

×
∪

× ×
∪ ∪

Figure 7: Visualization of the set A constructed in the proof of Theorem 6.15.

Proof. By substituting m = 2ss we get the estimate

e2ss(T ) ≥ C(2ss)−λ(log(2ss))−σ+λ

= C2−sλs−λ(s+ log s)λ(s+ log s)−σ

≥ C2−sλs−λsλ min(1, 2−σ)s−σ

= C2−sλs−σ

for all s ∈ N. In order to derive such a lower bound for e2ss(T ) we recall that e2ss(T ) ≥
ϕ2ss(T ) and

ϕ2ss(T ) = sup{δ > 0 : there exist x1, x2, . . . , xp in B`p,u , p > 22ss−1,

such that ‖Txi − Txj‖`q,v > 2δ for i 6= j, 1 ≤ i, j ≤ p},

revealing two main tasks. At first we need to construct a subset A ⊂ B`p,u containing more
than 22ss−1 elements. Afterwards we have to verify that the images of the elements in A
under T have a certain minimal distance to one another.

Before we take on the first task, we need to make the following consideration: Let s ∈ N
be sufficiently large and put k0 := min

{
k ∈ N : s ≤ 2k

}
. Then obviously 2k0−1+1 ≤ s ≤ 2k0

and furthermore it holds

s− k0 ≥
1

3
s. (13)

Since 1 − k0
s
≥ 1 − k0

2k0−1+1
, (13) is already implied by observing that the sequence(

k0
2k0−1+1

)
k0∈N

= (1
2
, 2
3
, 3
5
, 4
9
, . . .) is strictly decreasing for all 2 ≤ k ∈ N so that 2

3
is the

largest possible entry.
Now we recall that the sets Ei contain 22i elements and L(Ei, 2

s−i) is the collection
of all subsets of Ei containing exactly 2s−i elements. We claim that there exists a set
A ⊂ Ak0+1 × Ak0+2 × . . . × As−1 × As and Ai ⊂ L(Ei, 2

s−i) for i ∈ {k0 + 1, . . . , s}, see
Figure 7, possessing the following properties:

(a) For all distinct F0, F1 ∈ Ai, i ∈ {k0 + 1, . . . , s} it holds

|F0 ∩ F1| ≤ 2s−i−1.
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(b) For all f = (fi)
s
i=k0+1, g = (gi)

s
i=k0+1 ∈ A with f 6= g it holds

|{i ∈ {k0 + 1, . . . , s} : fi = gi}| ≤
s− k0

2
.

(c) There is a constant C such that

log(|Ai|) ≥ C2s.

(d) There is a constant C1 such that

log(|A|) ≥ C12
ss.

(a) and (c) are consequences of Lemma 6.8. Putting v = 2s−i directly yields the existence of
sets Ai which take the role of the subsets S(E, 2s−i). For these we had shown the inequality
|Ai|4 = |S(E, 2s−i)|4 ≥ |L(E, 2s−i)|. This implies (c) when we apply Lemma 6.7, because

log |Ai| ≥ log |L(E, 2s−i)| ≥ log

(
22i

2s−i

)
≥ 2s−i log

(
22i

2s−i

)
= 2s−i log

(
22i−s+1

)
and by recalling that we are using base 2 logarithms we get

2s−i log
(

22i−s+1
)

= 2s−i
(
2i − s+ 1

)
≥ 2s

(
1− s

2i

)
≥ 2s

(
1− 1

2

)
,

where we used for the last estimate that s ≤ 2k0 and 2−i ≤ 2−(k0+1) for i ∈ {k0 + 1, . . . , s}.
Similarly, properties (b) and (d) are implied by Lemma 6.9 with n = s−k0. By putting

a := min(|Ak0+1|, |Ak0+2|, . . . , |As|) and applying the just shown property (c) we get

log |A| ≥
(
s− k0

6

)
log a ≥

(
s− k0

6

)
C2s =

1

6
C

(
s− k0
s

)
2ss ≥ 1

18
C2ss,

where we used the fact that s− k0 ≥ 1
3
s.

Now that we are sure of the existence of A we take any f = (fi)
s
i=k0+1 ∈ A and put

xf := s−
1
u

(
s∑

i=k0+1

2−
s−i
p χfi

)
= s−

1
u

(
s−k0∑
i=1

2−
i−1
p χfs+1−i

)

with inverted order of summation in the second series. Since |χfs+1−i | = 2i−1 for all

i ∈ {1, . . . , s − k0}, we can apply inequality (11) with the coefficients αi = 2−
i−1
p . By

additionally using the fact that s−
1
u (s− k0)

1
u ≤ 1 we get

‖xf‖p,u = s−
1
u

∥∥∥∥∥
s−k0∑
i=1

2−
i−1
p χfs+1−i

∥∥∥∥∥
`p,u

≤ s−
1
u

(
s−k0∑
i=1

2i
u
p |2− i−1

p |u
) 1

u
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= s−
1
u

(
s−k0∑
i=1

2
u
p

) 1
u

= 2
1
p s−

1
u (s− k0)

1
u ≤ 2

1
p .

Hence, A can be scaled down such that it is a subset of the unit ball of `p,u. With the
previous estimate and property (d) we have already shown that the set A contains enough
elements and can be scaled accordingly to fit into the definition of ϕ2ss(T ). Hence, it only
remains to show that there exists some constant C2 so that

‖Txf − Txg‖`q,v ≥ C22
−sλsσ

for distinct f, g ∈ A. At first we simply use the definition of T and once again reverse the
order of summation so that

‖Txf − Txg‖`q,v =

∥∥∥∥∥T
(
s−

1
u

s∑
i=k0+1

2−
s−i
p (χfi − χgi)

)∥∥∥∥∥
`q,v

=

∥∥∥∥∥s− 1
u

s∑
i=k0+1

2−
s−i
p
−iλ(χfi − χgi)

∥∥∥∥∥
`q,v

=

∥∥∥∥∥s− 1
u

s−k0∑
i=1

2−
i−1
p
−(s+1−i)λ(χfs+1−i − χgs+1−i)

∥∥∥∥∥
`q,v

= s−
1
u2−sλ+

1
q

∥∥∥∥∥
s−k0∑
i=1

2−
i
q (χfs+1−i − χgs+1−i)

∥∥∥∥∥
`q,v

and notice the decreasing coefficients 2−
i
q .

For further estimates of the `q,v-norm we have to look back at the definition ofA and the
properties of distinct elements f = (fs+1−i)

s−k0
i=1 , g = (gs+1−i)

s−k0
i=1 from this set. Property

(b) tells us that f and g can coincide in at most half their coordinates and by (a) we know
that if fs+1−i 6= gs+1−i, then these two sets share at most half of their elements. Thus, for
the widths of the difference of the indicator functions it holds |χfs+1−i − χgs+1−i| ≤ 2i for
all i ∈ {1, . . . , s− k0} and

|χfs+1−i − χgs+1−i |


= 0 if fs+1−i = gs+1−i,

= 2 if fs+1−i 6= gs+1−i and i = 1,

≥ 2i−1 if fs+1−i 6= gs+1−i and i ≥ 2.

So as long as the respective coordinates do not coincide, we will have exactly 2 elements
above Es and the number of elements above every other component Es+1−i with i ≥ 2 is a
multiple of 2 between 2i−1 and 2i. In particular, if f and g are disjoint then the resulting
sequences have the same form as

∑n
i=1 αiχEi that we had seen in Lemma 6.12, see Figure 6.
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Figure 8: The first entries of the decreasing rearrangement of
∑s−k0

i=1 2−
i
q (χfs+1−i − χgs+1−i)

after applying property (a) of A; after additionally applying property (b) of A; and how
it ought be weighted and estimated in the proof of Theorem 6.15.

Finally we need to combine the assumption of q ≥ v with the properties (a) and (b) of
A and the lower bound in (12) in order to derive the desired lower bound for

‖Txf − Txg‖`q,v = s−
1
u2−sλ+

1
q

∥∥∥∥∥
s−k0∑
i=1

2−
i
q (χfs+1−i − χgs+1−i)

∥∥∥∥∥
`q,v

.

The first step to minimize the `q,v-norm is to suppose that f and g are so that there
is maximal overlay above every Ei in the sense of (a), such that |χfs − χgs| = 2 and
|χfs+1−i − χgs+1−i | = 2i−1 for all i ∈ {2, 3, . . . , s − k0}. Hence, (12) is applicable with

Ei = χfs+1−i − χgs+1−i and αi = 2−
i
q , yielding∥∥∥∥∥

s−k0∑
i=1

2−
i
q (χfs+1−i − χgs+1−i)

∥∥∥∥∥
`q,v

≥ 2−
1
v
− 1
q

(
s−k0∑
i=1

2i
v
q |2− i

q |v
) 1

v

≥ 2−
1
v
− 1
q

(
s− k0

2

) 1
v

, (14)

where we supposed for the second estimate that in the sense of (b) the maximum possible
number of coordinates coincide. Since we assumed q ≥ v and thus have decreasing weights

n
1
q
− 1
v in the Lorentz norm, we would get the same lower bound even if we applied (b)

first. As shown in Figure 8, if some coordinates are eliminated by property (b) then the
rest are pushed to the left as the Lorentz norm decreasingly rearranges the sequence. But
because of the decreasing weights, the norm can only get smaller if we shift the remaining
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coordinates to where they would have ended up before applying (b). With the same
argument inequality (12) remains valid even if we allow some αi = 0. By using s−k0 ≥ 1

3
s

in (14) we finally have

‖Txf − Txg‖`q,v ≥ s−
1
u2−sλ+

1
q 2−

1
v
− 1
q

(s
6

) 1
v

= 12−
1
v 2−sλs−( 1

u
− 1
v )

for all distinct f, g ∈ A.

This finally enables us to formulate the result in which entropy numbers do not behave
well under real interpolation:

Theorem 6.16 For all λ ∈ (0, 1) there exist Banach spaces X0, X1, Y0, Y1 and a linear
map T : X0 + X1 → Y0 + Y1 such that for all 1 ≤ u ≤ ∞, 0 < θ < 1 with 1 − θ ≥ 1

u
and

n ∈ N

en(T : X0 → Y0) ≤ c0n
−λ,

en(T : X1 → Y1) ≤ c1n
−λ

and

en(T : (X0, X1)θ,u → (Y0, Y1)θ,u) ≥ cn−λ(log n)λ,

where the constants c, c0, c1 are positive and independent on n.

Proof. We put X0 = `p0 , X1 = `p1 , Y0 = `q0 , Y0 = `q1 with 1 < p0, p1, q0, q0 < ∞, p0 6= q0
and

1

p0
− 1

q0
=

1

p1
− 1

q1
= λ > 0

With the same operator T as in Theorem 6.15 it follows by Theorem 6.11 that

en(T : `p0 → `q0) ≤ C0n
−λ and en(T : `p1 → `q1) ≤ C1n

−λ,

which was applicable since T was specifically defined as a diagonal operator acting over
some sets Ei with lengths |Ei| = 22i and the respective weights 2−iλ.

Additionally we had seen in the Theorems 4.10 and 4.11 that

(`p0 , `p1)θ,u = `p,u and (`q0 , `q1)θ,u = `q,u

with 0 < θ < 1, 1 ≤ u ≤ ∞ and

1

p
=

1− θ
p0

+
θ

p1
and

1

q
=

1− θ
q0

+
θ

q1
.

Hence, Theorem 6.15 implies

en(T : (`p0 , `p1)θ,u → (`q0 , `q1)θ,u) ≥ C2n
−λ(log n)λ

when q ≥ u.
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6.3 Summary

A lot of preparations had to be done, but we finally have an example for an operator
acting between real interpolation spaces with an ill-behaving entropy number. Yet, it
should be noted that Theorem 6.15 and Theorem 6.16 were originally stated in [6] without
the restriction q ≥ v. Since there are strong similarities with certain arguments in the
earlier work [5] by Edmunds and Netrusov, there might be a way to derive the lower bound
just with the help of Lemma 6.12 for q < v as well. But so far we could not figure out such
an argument. Additionally their main result includes the quasi-normed Lorentz spaces.
Even though we excluded these cases previously, our presented argument in the proof of
Theorem 6.15 works for those as well.

As a general note we want to highlight that among several follow-up papers, Edmunds
and Netrusov themselves quickly provided another counterexample in [7] with an even worse
behaviour of the entropy numbers for vector-valued sequence spaces and in particular for
Besov spaces.

While we can consider the problem of the behaviour of entropy numbers under real
interpolation to be settled, the exact same problem is still open for complex interpola-
tion methods. Similarly it can already be shown that they behave well under specific
assumptions. Yet, there is missing an answer when no further assumptions are made on
the involved spaces. Hence, we can be excited when and how this problem will be solved,
too.
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