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In this paper we construct sampling sets over the rotation group SO(3).
The proposed construction is based on a parameterization, which reflects
the product nature S2 × S1 of SO(3) very well, and leads to a spherical
Pythagorean-like formula in the parameter domain. We prove that by using
uniformly distributed points on S2 and S1 we obtain uniformly sampling
nodes on the rotation group SO(3). Furthermore, quadrature formulae on S2

and S1 lead to quadratures on SO(3), as well. For scattered data on SO(3)
we give a necessary condition on the mesh norm such that the sampling
nodes possess nonnegative quadrature weights. We propose an algorithm for
computing the quadrature weights for scattered data on SO(3) based on fast
algorithms. We confirm our theoretical results with examples and numerical
tests.
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1 Introduction

The rotation group SO(3) has important applications in crystallographic texture analy-
sis, chemical physics, molecular biology and robotics, to name but a few, cf. [1] and [7].
The efficient reconstruction of functions on the rotation group plays an important role.
Therefore the construction of sampling sets on the SO(3) as well as quadrature rules on
the SO(3) has attracted much attention. The aim of this paper is twofold. In the first
part we construct sampling sets on the rotation group SO(3). Recently a method to gen-
erate uniform deterministic sampling sets was suggested by J.C. Mitchell in [12]. Here
the author used the Frobenius norm to define a projective Euclidean distance metric on
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SO(3), which leads to uniformity assertions. In contrast we use the natural translation
invariant metric on the rotation group. The construction is based on a parameteriza-
tion by a tensor product on S2 × S1, where we denote as usual the two-sphere and the
one-sphere by S2 and S1, respectively. Other sampling methods, based on sampling over
half of the three-sphere S3 were suggested in [21],[7] and [6]. Our construction leads
to a spherical Pythagorean-like formula in the parameter domain and furthermore we
are able to construct sampling sets, which are uniformly distributed in some sense. D.
Schmid was able to present a trade-off result, based on a paper of Schaback [16], for
approximation problems using positive definite basis functions on the rotation group,
cf. [18]. This work made clear that it is impossible to come up with a positive definite
basis function that enables one to keep the estimate on the approximation error and the
condition number of the associated interpolation matrix arbitrarily small simultaneously.
These results reveal the importance of the distribution of the sampling points on SO(3).

In the second part we construct quadrature rules with degree of exactness N , i.e., the
integration of all polynomials ΠN (SO(3)) on SO(3) is exact. In order to estimate the
quality of the quadrature rules we introduce the efficiency, similar as in [10, 8] on the
two-sphere, as quotient of the dimension of the polynomial space ΠN (SO(3)) of degree N
and the degree of freedom, given by the number of sampling points. Based on efficient
quadrature rules on the two-sphere [10, 8, 13] and the one-sphere we obtain efficient
quadrature rules on the rotation group. Furthermore we obtain by our construction
immediately t-designs on the rotation group from the spherical t-designs, cf. [4]. Beside
the construction of quadrature rules for such special point sets, we investigate quadra-
ture rules for scattered data. D. Schmid proved recently Lp-Marcinkiewicz-Zygmund
inequalities for scattered nodes on SO(3), cf. [17]. Using this result in connection with
the result of H.N. Mhaskar, F.J. Narcowich and J.D. Ward [11, Proposition 4.1] one
obtains a sufficient condition on the mesh norm of the sampling set such that one can
construct positive quadrature rules on SO(3), cf. [19, Theorem 4.27]. In contrast we
give a necessary condition. For this purpose we apply a method which was used by M.
Reimer and V.A. Yudin [15, Theorem 6.21] on the d-sphere. Finally we confirm our
theoretical results by numerical examples. To this end, we develop an algorithm for
the fast computation of nonnegative quadrature weights for scattered nodes on SO(3),
which follows the method on the two-sphere given in [2]. This algorithm based on a fast
algorithm for nonequispaced Fourier transforms on the rotation group [14].

The outline of this paper is as follows: Section 2 starts by introducing the necessary
notation including different parameterizations on the rotation group. We utilize the
natural metric on SO(3) and compute the distance between two rotations in the param-
eterization based on the tensor product S2×S1, cf. Theorem 2.2. Furthermore we prove
in Theorem 2.4 that a sampling set on the rotation group constructed from q separated
sampling sets on S2 and S1, which are also uniform, leads to q separated sampling sets
on SO(3) which are uniform as well. In Section 3 we develop efficient quadrature for-
mulae on the rotation group. We prove a necessary condition on the mesh norm of the
sampling set on SO(3) in Theorem 3.3 for the existence of positive quadrature weights.
In the following Section 4 we give some special sampling sets on SO(3) which result
in t-designs, i.e., all quadrature weights are equal. Finally we present in Section 5 an
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algorithm for computing the quadrature weights for scattered data based on the fast
SO(3) Fourier transform [14]. We test the algorithm on various sampling sets on SO(3).

2 Uniform sampling sets

Throughout this paper we use the notation

S2 := {x ∈ R3 | ‖x‖2 = 1}, S1 := {ω ∈ [0, 2π)}

for the two and one dimensional sphere. Furthermore for x ∈ S2 we make use of the
parameterization in spherical coordinates

x = x(ϕ, θ) := (sin θ cosϕ, sin θ sinϕ, cos θ)>, (ϕ, θ) ∈ [0, 2π)× [0, π]. (2.1)

Now, let SO(3) :=
{
G ∈ R3×3 : G> = G−1, det G = 1

}
denote the rotation group. This

manifold can be naturally parameterized by

R(r, α) := (1− cos(α))rr> +

 cos(α) −z sin(α) y sin(α)
z sin(α) cos(α) −x sin(α)
−y sin(α) x sin(α) cos(α)

 , (2.2)

with rotation axis r = (x, y, z)> ∈ S2 and rotation angle α ∈ [0, π]. Besides this we also
consider the parameterization in Z-Y-Z Euler angles (ϕ, θ, ψ) ∈ [0, 2π) × [0, π] × [0, 2π)
given by

REuler(ϕ, θ, ψ) := R(ez, ϕ)R(ey, θ)R(ez, ψ), (2.3)

where ez := (0, 0, 1)>, ey := (0, 1, 0)>.
Besides these parameterizations we represent a rotation G ∈ SO(3) as an orthonormal

basis in R3 consisting of its columns (g0, g1, g2) = G. In order to get all possible
orthonormal bases we proceed as follows, cf. [12]. At first, we are able to choose g2 ∈ S2.
After this we can choose g0 ∈ S2, which has to satisfy g>0 g2 = 0. Hence, g0 lies in a
great circle of S2. Since g1 is uniquely determined by g1 = g2 × g0, we can identify the
rotation group SO(3) with the tensor product S2 × S1.

For a better illustration we introduce the position vector of G by

~G := (g2, g0) = (Gez,Gex),

where g2 is the base point on S2 and g0 specifies a direction in the corresponding tangent
plane, cf. Figure 2.1. Furthermore, we can simply define an action on the position vector
by a rotation H via

H ~G := (Hg2,Hg0) =
−→
HG.

In order to obtain a parameterization, we compose G of two successive rotations.
The first rotation R1 rotates ez to g2 along a shortest geodesic between these points in
S2, i.e. g2 = R1ez. If we parameterize g2 = x(ϕ, θ) by spherical coordinates (ϕ, θ) ∈
[0, 2π)× [0, π], cf. (2.1), the rotation R1 takes the form

R1(ϕ, θ) := R((− sin(ϕ), cos(ϕ), 0)>, θ).

3



We remark, if θ = π there are no uniquely determined geodesics. The second rotation
R2 has to hold g2 fixed. One possible form is

R2(ω) := R(g2, ω), for ω ∈ [0, 2π),

where ω is uniquely determined by g0 = R2(g2, ω)R1(ϕ, θ)ex. Hence, we can parame-
terize SO(3) by

ROrtho(ϕ, θ, ω) := R2(ω)R1(ϕ, θ), for (ϕ, θ, ω) ∈ [0, 2π)× [0, π]× [0, 2π). (2.4)

For a more convenient notation we define

ROrtho(x, ω) := ROrtho(x(ϕ, θ), ω) := ROrtho(ϕ, θ, ω) and
REuler(x, ψ) := REuler(x(ϕ, θ), ψ) := REuler(ϕ, θ, ψ),

(2.5)

which reflects better the character of the tensor product S2 × S1 which can be identi-
fied bijectively with SO(3). Furthermore we have the following correspondence, which
enables us to carry over all the following assertions from one parameterization to the
other.

Lemma 2.1. For (ϕ, θ, ψ) ∈ [0, 2π)× [0, π]× [0, 2π) the identity

REuler(ϕ, θ, ψ) = ROrtho(ϕ, θ, ϕ+ ψ) (2.6)

is valid.

In the following we introduce measures to describe the quality of sampling sets on
SO(3). Since we can identify SO(3) in a natural way with S2 × S1, it should be no
surprise, that this involves such measures on S2 and S1, too.

Hence, we consider finite subsets X (M) of a metric space (M,dM) with metric dM.
Then the separation distance is given by

q(X (M)) := min
Gi 6=Gj∈X (M)

dM(Gi,Gj)

and the mesh norm by

δ(X (M)) := 2 max
H∈M

min
Gi∈X (M)

dM(H,Gi).

Furthermore, we say the sampling set X (M) is uniform of order L if the condition

L(X (M)) :=
δ(X (M))
q(X (M))

≤ L

is satisfied, where L(X (M)) denotes the uniformity of the sampling set X (M). We call
a sequence of sampling sets {Xk(M)}k∈N with mesh norms δ(Xk(M))→ 0, for k →∞,
uniform of order L, if

sup
k∈N

L(Xk(M)) ≤ L.
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Such sequences are for example required for assertions of probabilistic Marcinkiewicz-
Zygmund inequalities, cf. [3, Theorem 3.5]. Furthermore these are useful for approxima-
tion problems with positive definite basis functions in order to keep the approximation
error and the condition number of the corresponding interpolation matrix small, cf.
[16, 18].

For M = S2, M = S1 the natural metrics are given by

dS2(x1,x2) := arccos x>1 x2, for x1,x2 ∈ S2

dS1(ω1, ω2) := arccos cos(ω1 − ω2), for ω1, ω2 ∈ [0, 2π).

A (left and right) translation invariant metric on SO(3) is naturally given by

dSO(3)(G1,G2) := α(G1G
>
2 ) := arccos

(
1
2

(trace G1G
>
2 − 1)

)
, G1,G2 ∈ SO(3).

(2.7)
Using the parameterization (2.2) this reads as, cf. [20, p. 34],

dSO(3)(R(r1, ω1),R(r2, ω2)) = 2 arccos
(∣∣∣r>1 r2 sin

ω1

2
sin

ω2

2
+ cos

ω1

2
cos

ω2

2

∣∣∣) ,
which is related to the spherical cosine rule

cos c = cos γ sin a sin b+ cos a cos b

with angle γ = dS2(r1, r2) and sides a = ω1/2, b = ω2/2, c = dSO(3)(G1,G2)/2. In
particular, if the rotation axes r1, r2 ∈ S2 are perpendicular to each other the distance
satisfies the spherical Pythagorean

cos
dSO(3)(R(r1, ω1),R(r2, ω2))

2
=
∣∣∣cos

ω1

2
cos

ω2

2

∣∣∣ .
This is useful for the parameterization by ROrtho(ϕ, θ, ω), cf. equation (2.4), where the
rotation axes of the consecutive rotations R1 and R2 are perpendicular to each other.
There, we obtain the relation

cos
α(ROrtho(ϕ, θ, ω))

2
=
∣∣∣∣cos

θ

2
cos

ω

2

∣∣∣∣ . (2.8)

Theorem 2.2. The distance between two rotations, cf. (2.5),

G1 := ROrtho(x(ϕ1, θ1), ω1) = R2(ω1)R1(ϕ1, θ1),
G2 := ROrtho(x(ϕ2, θ2), ω2) = R2(ω2)R2(ϕ2, θ2)

satisfies

dSO(3)(G1,G2) = 2 arccos
∣∣∣∣cos

dS2(x(ϕ1, θ1),x(ϕ2, θ2))
2

cos
ω2 − ω1 −A

2

∣∣∣∣ , (2.9)
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where A is the area of the spherical triangle ∆ spanned by the points

ez, x(ϕ1, θ1) = G1ez, x(ϕ2, θ2) = G2ez,

and sides
s1 := {R1(ϕ1, t)ez | t ∈ [0, θ1]},
s2 := {R1(ϕ2, t)ez | t ∈ [0, θ2]}

with interior angle α := ϕ2 − ϕ1 at ez. If it is x(ϕ1, θ1) = −x(ϕ2, θ2), then the triangle
∆, respectively the area A, is not uniquely determined.

Figure 2.1: Relations between the rotations ROrtho(ϕ1, θ1, ω1) = R2(ω1)R1(ϕ1, θ1) and
ROrtho(ϕ2, θ2, ω2) = R2(ω2)R1(ϕ2, θ2) in terms of spherical trigonometry, by
the corresponding position vectors ~G1 and ~G2.

Proof. By equation (2.8) we have to specify the angles θ and ω of the rotation, cf. (2.4),

ROrtho(ϕ, θ, ω) = ROrtho(ϕ1, θ1, ω1)R>Ortho(ϕ2, θ2, ω2).

Therefore, in Figure 2.1 we illustrate the position vectors

~I, ~G1 = R2(ω1)R1(ϕ1, θ1)~I, ~G2 = R2(ω2)R1(ϕ2, θ2)~I.
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Then, we regard the rotation G2G
>
1 as the action on ~G1, which results in ~G2 =

G2G
>
1

~G1. Hence, the rotation angle θ of ROrtho(ϕ, θ, ω) is simply the spherical dis-
tance dS2(G1ez,G2ez) between the base points of ~G1 and ~G2. We remark if θ = π there
are no unique geodesics from one base point to the other. But since the distance of the
rotations G1 and G2 are already π, there is no need to specify ω. Of course, in this case
ω depends on the chosen geodesic, hence on the angle ϕ.

If we define α1 and α2 to be the adjacent and opposite angle of the interior angle of
the triangle ∆ at the base point of ~G1 and ~G2, respectively, we obtain

ω = γ − (−ϕ) = (ω2 − ϕ2 − α2)− (ω1 − ϕ1 − α1) = ω2 − ω1 − (α2 − α1 + α).

The assertion (2.9) follows, since the angles α1, α2 and α are related to the area A of the
triangle ∆. For example, if sin(ϕ2 −ϕ1) ≥ 0 we can express the area A by the spherical
excess E, of the spherical triangle spanned by the base points of ~I, ~G1, ~G2, via

A = E = α2 − α1 + α.

The other cases, where sin(ϕ2 − ϕ1) ≤ 0 or x(ϕi, θi) = −ez, i ∈ {1, 2}, follow similarly.

By virtue of the Pythagorean-like relation of Theorem 2.2 we obtain uniform sampling
sets on SO(3) easily, if we use uniform sampling sets on S2 and S1. For this we need the
following Lemma.

Lemma 2.3. For s, t ∈
[
0, π2

]
the following inequality is valid

cos s cos t ≥ cos
√
s2 + t2. (2.10)

Proof. At first, we use the well known facts, that

(tanx− x) cosx > 0, for x ∈
(

0,
π

2

)
,

(tanx− x) cosx = sinx− x cosx ≥ −x cosx > 0, for x ∈
(π

2
, π
]
,

and obtain for the second derivative of cos
√
x the estimate

(cos
√
x)′′ =

tan
√
x−
√
x

4
√
x3

cos
√
x > 0, for x ∈ [0, π2].

Hence, the function cos
√
x is convex for x ∈ [0, π2] and it follows for u, v ∈ [0, π], by

Jensen’s inequality, the relation

1
2

(cosu+ cos v) =
1
2

(cos
√
u2 + cos

√
v2) ≥ cos

√
1
2

(u2 + v2). (2.11)

Now, we let u := |s− t|, v = |s+ t|. Then (2.11) yields the assertion

cos s cos t =
1
2

(cos(s−t)+cos(s+t)) =
1
2

(cosu+cos v) ≥ cos

√
1
2

(u2 + v2) = cos
√
s2 + t2,

by using the addition theorem.
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Theorem 2.4. Let the sampling sets

X (S2) := {x(ϕi, θi) | i = 0, . . . ,M1 − 1}
X (S1) := {ωj | j = 0, . . . ,M2 − 1}

of uniformity L(X (S2)), L(X (S1)) and with separation distance q := q(X (S2)) = q(X (S1))
be given. Then, for arbitrary offsets ci ∈ S1, i = 0, . . . ,M1 − 1, the sampling set, cf.
(2.5),

X (SO(3)) := {Gi,j := ROrtho(x(ϕi, θi), ωj + ci) | i = 0, . . . ,M1 − 1, j = 0, . . . ,M2 − 1}
(2.12)

has separation distance q(X (SO(3))) = q and uniformity

L(X (SO(3))) ≤
√
L(X (S2))2 + L(X (S1))2. (2.13)

Proof. From equation (2.9) we infer for arbitrary pairs of rotations Gi,j ,Gk,l, i, k =
0, . . . ,M1 − 1, j, l = 0, . . . ,M2 − 1 the relations

dSO(3)(Gi,j ,Gk,l)

{
= dS1(ωj , ωl), i = k,

≥ dS2(x(ϕi, θi),x(ϕk, θk)), i 6= k.

Hence, the separation distance of the sampling set X (SO(3)) satisfies q(X (SO(3))) = q.
Furthermore we can estimate the uniformity using Theorem 2.2 by

L(X (SO(3))) =
δ(X (SO(3)))
q(X (SO(3)))

≤
4 arccos

∣∣∣cos δ(X (S2))
4 cos δ(X (S1))

4

∣∣∣
q(X (SO(3)))

=
4
q

arccos
(

cos
(q

4
L(X (S2))

)
cos
(q

4
L(X (S1))

))
.

(2.14)

In order to get the desired result we use the inequality of Lemma 2.3. There, we put
s := qL(X (S2))/4, t := qL(X (S1))/4 ∈ [0, π/2] into (2.10). Now we insert (2.10) in
(2.14), bearing in mind the monotony of the arccosine, and obtain the assertion

L(X (SO(3))) ≤ 4
q

arccos
(

cos
(q

4
L(X (S2))

)
cos
(q

4
L(X (S1))

))
≤
√
L(X (S2))2 + L(X (S1))2.

Remark 2.5. Let the sampling set X (SO(3)) be constructed as in Theorem 2.4. If the
separation distances q(X (S2)) and q(X (S1)) are not equal in the construction (2.12), we
obtain for i 6= k that

dSO(3)(Gi,j ,Gk,l) ≥ q(X (S2)),

but for j 6= l we only obtain

dSO(3)(Gi,j ,Gk,l) ≥ min
(
q(X (S2)), q(X (S1))

)
.
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3 Quadrature formulae

For measurable functions f : SO(3) → C the normalized Haar integral reads in Euler
angle parameterization as∫

SO(3)
f(G)dµ(G) =

1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f(ϕ, θ, ψ) sin(θ)dψdθdϕ.

A function only depending on the rotation angle α = α(G), cf. (2.7), is called conjugate
invariant (or central) and the above integral simplifies to∫

SO(3)
f(G)dµ(G) =

2
π

∫ π

0
f(α) sin2

(α
2

)
dα. (3.1)

For the space L2(SO(3)) := {f : SO(3) → C |
∫
SO(3) |f(G)|2 dµ(G) < ∞} of square

integrable functions over SO(3) the standard basis is given by the Wigner D-functions
Dm,n
l of degree l ∈ N0 and orders m,n = −l, . . . , l. In Euler angle parameterization

these can be represented in the form

Dm,n
l (ϕ, θ, ψ) = e−imϕdm,nl (θ)e−inψ, (3.2)

where dm,nl denote the Wigner d-functions, cf. [20, p. 76 et seqq]. Furthermore, we have
the following relation to the spherical harmonics Y m

l , cf. [20, p. 113],

(−1)m
√

4π
2l + 1

Y −ml (ϕ, θ) = e−imϕdm,0l (θ). (3.3)

Functions f ∈ L2(SO(3)) with finite expansion in Wigner D-functions are called polyno-
mials on SO(3) and we define the space ΠN (SO(3)) := span{Dm,n

l | l = 0, . . . , N ; m,n =
−l, . . . , l} of polynomials with degree at most N with dim(ΠN (SO(3))) = dN = (2N +
1)(2N + 2)(2N + 3)/6. We say a quadrature rule

Q(SO(3)) := {(Gi, wi) | i = 0, . . . ,M − 1}

with sampling nodes Gi ∈ SO(3) and quadrature weights wi ∈ C has degree of exactness
N , if for all polynomials f ∈ ΠN (SO(3)) the relation

M−1∑
i=0

wif(Gi) =
∫
SO(3)

f(G)dµ(G) (3.4)

is valid. To estimate the quality of such quadrature rules we introduce, similar as on S2

[10, 8], the efficiency

E(Q(SO(3))) :=
(2N + 1)(2N + 2)(2N + 3)

24M
=

dN
4M

. (3.5)

The idea behind this definition is, for quadrature rules with degree of exactness N we
have to satisfy dN equalities, where we can choose 4M free parameters, 3M for the
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coordinates of the sampling nodes and M for the weights. Moreover, we define the
efficiencies

E(Q(S2)) :=
(N + 1)2

3M1
, E(Q(S1)) :=

2N + 1
2M2

(3.6)

for quadrature rules Q(S2) and Q(S1) on S2 and S1, respectively. We remark that
Gauss quadrature on S1 is quite efficient with E(Q(S1)) → 1 as N → ∞, whereas the
efficiency of the Gauss-Legendre quadrature on S2 is only E(Q(S2))→ 2/3 as N →∞.
For efficient quadratures on the sphere S2 we refer to [10, 8, 13]. The quadrature rule
on SO(3) based on the Clenshaw-Curtis quadrature, cf. [14, Section 3.5] has only an
efficency E(Q(SO(3)))→ 1/24 as N →∞.

Lemma 3.1. For N ∈ N0, let a quadrature rule Q(S2) on the sphere S2 with degree
of exactness N by the sampling set X (S2) := {x(ϕi, θi) : i = 0, . . . ,M1 − 1} with
corresponding weights wi(S2), i = 0, . . . ,M1 − 1, be given, i.e.,

1
4π

∫ 2π

0

∫ π

0
Y m
k (ϕ, θ) sin(θ)dθdϕ =

M1−1∑
i=0

wi(S2)Y m
k (ϕi, θi), 0 ≤ k ≤ N, |m| ≤ k. (3.7)

Furthermore let a quadrature rule Q(S1) on S1 with degree of exactness N by the
sampling set X (S1) := {ψj : j = 0, . . . ,M2 − 1} with corresponding weights wj(S1),
j = 0, . . . ,M2 − 1, be given, i.e.,

1
2π

∫ 2π

0
einψdψ =

M2−1∑
j=0

wj(S1)einψj , |n| ≤ N. (3.8)

Then, we obtain for arbitrary offsets ci ∈ R, i = 0, . . . ,M1 − 1, a quadrature rule Q on
the rotation group

X (SO(3)) := {REuler(x(ϕi, θi), ψj + ci) : i = 0, . . . ,M1 − 1, j = 0, . . . ,M2 − 1} (3.9)

with corresponding weights

wi,j(SO(3)) := wi(S2)wj(S1), i = 0, . . . ,M1 − 1, j = 0, . . . ,M2 − 1. (3.10)

That is, we integrate exactly all polynomials f ∈ ΠN (SO(3)) by the formula

∫
SO(3)

f(G)dµ(G) =
M1−1∑
i=0

M2−1∑
j=0

wi,j(SO(3))f (REuler(x(ϕi, θi), ψj + ci)) . (3.11)

Proof. In order to show the assertion it is sufficient to confirm equation (3.11) for all
Wigner D-functions Dm,n

l ∈ ΠN (SO(3)). For 1 ≤ |n| ≤ N , and l = max{|m| , |n|}, . . . , N
we obtain due to the quadrature rule on S1 and the representation (3.2) of the Wigner
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D-functions the relation

1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
Dm,n
l (ϕ, θ, ψ)dψ sin(θ)dθdϕ

=
1

4π

∫ 2π

0

∫ π

0
e−imϕdm,nl (θ) sin(θ)dθdϕ

1
2π

∫ 2π

0
e−inψdψ

=0

=
M1−1∑
i=0

wi(S2)e−imϕidm,nl (θi)e−inci

M2−1∑
j=0

wj(S1)e−inψj

=
M1−1∑
i=0

M2−1∑
j=0

wi,j(SO(3))Dm,n
l (ϕi, θi, ci + ψj).

(3.12)

If n = 0 we obtain for l = |m| , . . . , N due to the quadrature rule on S1 and S2 and
relation (3.3) the equation

1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
Dm,0
l (ϕ, θ, ψ)dψ sin(θ)dθdϕ

=
1

4π

∫ 2π

0

∫ π

0
(−1)m

√
4π

2l + 1
Y −ml (ϕ, θ) sin(θ)dθdϕ

1
2π

∫ 2π

0
e0·ψdψ

=
M1−1∑
i=0

wi(S2)(−1)m
√

4π
2l + 1

Y −ml (ϕi, θi)e0·ci
M2−1∑
j=0

wj(S1)e0·ψj

=
M1−1∑
i=0

M2−1∑
j=0

wi,j(SO(3))Dm,0
l (ϕi, θi, ci + ψj).

(3.13)

Remark 3.2. We note, that by constructing quadrature formulae in the way of Lemma
3.1 we can get quite efficient quadrature rules Q on SO(3) simply by using quite efficient
quadrature rules Q1 and Q2 of S2 and S1, respectively. Since, we have

E(Q(SO(3))) =
(2N + 1)(2N + 2)(2N + 3)

24M1M2
≥ (N + 1)2

3M1

(2N + 1)
2M2

= E(Q(S2))E(Q(S1)).

D. Schmid proved recently a sufficient condition on the mesh norm δ(X (SO(3)) such
that one obtains positive quadrature rules on SO(3), cf. [19, Theorem 4.27]. This result
is based on a Lp-Marcinkiewicz-Zygmund inequality for scattered nodes on SO(3), cf.
[17] and a result of H.N. Mhaskar, F.J. Narcowich and J.D. Ward [11, Proposition
4.1]. More precisely, we can construct positive quadrature rules Q from a sampling set
X (SO(3)) if the condition

δ(X (SO(3)) ≤ 1
924N

,

11



is satisfied. It is well known that in practice one observe a much better behavior. In
contrast we prove a necessary condition and show in our numerical examples that very
close to this condition we are still able to compute positive quadrature weights, cf.
Example 5.5.

Theorem 3.3. Let the sampling set XN = {G0, . . . ,GM−1} ⊂ SO(3) supports nonneg-
ative quadrature weights wk, k = 0, . . . ,M − 1, integrating exactly all polynomials in
ΠN (SO(3)), N ∈ N, then the mesh norm satisfies

δ(XN (SO(3))) ≤ 4π
N + 2

. (3.14)

Proof. We follow the ideas of the proof of [15, Theorem 6.21 (Reimer, Yudin)]. If there
are zero weights wk, we can delete the corresponding sampling nodes Gk and the mesh
norm of the new sampling set does not decrease. Therefore we can assume that

wk > 0, k = 0, . . . ,M − 1.

We consider the function

pN (x) :=
U2
N+1(x)

x2 − cos2 π
N+2

,

where UN+1 ∈ ΠN+1([−1, 1]) is the (N + 1)-th Chebyshev polynomial of second kind.
Since ± cos π

N+2 are zeros of UN+1, the function pN is an even polynomial of degree 2N .
Hence, pN can be expanded in even Chebyshev polynomials U2l, l = 0, . . . , N , and due
to the addition theorem, cf. [20, p. 89],

U2l

(
cos

dSO(3)(G,H)
2

)
=

l∑
m,n=−l

Dm,n
l (G)Dm,n

l (H), G,H ∈ SO(3),

we infer for every G ∈ SO(3) that PN (G, ·) ∈ ΠN (SO(3)) with the kernel function

PN (G,H) := pN

(
cos

dSO(3)(G,H)
2

)
.

Let G ∈ SO(3) be arbitrary, then we have by the orthogonality of the Chebyshev
polynomials to the weight

√
1− x2 the following integral, cf. (3.1),∫

SO(3)
PN (G,H)dµ(H) =

2
π

∫ π

0
pN

(
cos

α

2

)
sin2

(α
2

)
dα

=
2
π

∫ 1

−1
UN+1(x)

UN+1(x)
x2 − cos2 π

N+2

√
1− x2dx = 0.

(3.15)

Now, assume that the assumption (3.14) is false and we have δ(XN (SO(3))) > 4π
N+2 .

Then, there exists a GM ∈ SO(3) with dSO(3)(GM ,Gk) > 2π
N+2 for all k = 0, . . . ,M − 1.

Furthermore there exists a neighborhood Bε(GM ) ⊂ SO(3) with ε > 0 such that

0 ≤ cos
dSO(3)(G,Gk)

2
< cos

π

N + 2
for all G ∈ Bε(GM ) and k = 0, . . . ,M − 1.

12



Evaluating the integral (3.15) via the quadrature formula, we obtain for all G ∈ Bε(GM )
the relation

0 =
M−1∑
k=0

wkPN (G,Gk) =
M−1∑
k=0

wk
U2
N+1

(
cos dSO(3)(G,Gk)

2

)
cos2

(
dSO(3)(G,Gk)

2

)
− cos2 π

N+2

,

which implies by using cos2
(

dSO(3)(G,Gk)

2

)
− cos2 π

N+2 < 0 < wk that

UN+1

(
cos

dSO(3)(G,Gk)
2

)
= 0 for all G ∈ Bε(GM ) and k = 0, . . . ,M − 1. (3.16)

In particular we have G0 6= GM . So the rotation G0G
>
M has a rotation axis r ∈ S2 and

we can parameterize a geodesic from GM to G0 by

G(t) := R(r, t)GM , t ∈ [0,dSO(3)(GM ,G0)]

with distance

dSO(3)(G(t),G0) = α(G0G
>
MR(r, t)>) = α(R(r,dSO(3)(GM , G0))R(r,−t))

= dSO(3)(GM ,G0)− t.

Hence for t ∈ [0, ε] we obtain due to

dSO(3)(G(t),GM ) = α(R(r, t)>) = t

that G(t) ∈ Bε(GM ) and infer from (3.16) the relation

UN+1

(
cos

dSO(3)(G(t),G0)
2

)
= UN+1

(
cos

dSO(3)(GM ,G0)− t
2

)
= 0, t ∈ [0, ε],

(3.17)
which contradicts UN+1 6≡ 0. So our assumption δ(XN (SO(3))) > 4π

N+2 was false and
(3.14) is valid.

In the following we consider only quadrature nodes X (SO(3)) constructed as in Lemma
3.1. We already know from [15, Theorem 6.21] that for nonnegative quadrature weights
and degree of exactness N = 2L the mesh norms of the corresponding sampling sets
X (S2) and X (S1) have to be bounded by

δ(X (S2)) ≤ 2 arccos zL, δ(X (S1)) ≤ π

L
, (3.18)

where zL is the greatest zero of the L-th Legendre polynomial PL. We remark that these
bounds are also valid for a degree of exactness N = 2L−1, which can be seen, if we follow
the proof of [15, Theorem 6.21] line by line. In this case the bounds (3.18) are sharp,
since the Gauss-Legendre quadrature grid on S2 has holes with diameter 2 arccos zL at
the poles and in the Gauss quadrature on S1 the nodes are equidistant with distance π

L .
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Now, we arrive at a bound on the mesh norm of the sampling set X (SO(3)) constructed
as in Lemma 3.1 from the Pythagorean-like relation of Theorem 2.2 by

δ(X (SO(3))) ≤ 4 arccos
∣∣∣∣cos

δ(X (S2))
4

cos
δ(X (S1))

4

∣∣∣∣
= 4 arccos

(
cos

arccos zL
2

cos
π

4L

)
.

(3.19)

Furthermore, we can easily construct a sampling set X (SO(3)) from sampling sets X (S2)
and X (S1) by a suitable choice of the offsets ci in Lemma 3.1, such that it holds equality
in (3.19). For L = 1 the bounds of (3.19) and that of the scattered data version in
Theorem 3.3 are equal. But for L = 2, respectively N = 3, the bound of (3.19), is about
5% smaller. In order to get an asymptotic result between these to estimates, we make
use of the asymptotic behavior of the zeros of the Legendre Polynomials PL, stated in
[15, Theorem 2.11]. Let ε > 0 be sufficiently small, then there is some L′ ∈ N such that

j0,1 − ε ≤ L arccos zL ≤ j0,1 + ε, for all L ≥ L′,

is valid, where j0,1 is the smallest zero of the Bessel function J0(x) of first kind. Therefore,
we obtain for the quotient of the upper bounds of (3.19) and (3.14) the asymptotic
behavior√

1 +
(
j0,1 − ε
π

)2

= lim
L→∞

2L+ 1
π

arccos
(

cos
j0,1 − ε

2L
cos

π

4L

)
≤ lim
L→∞

2L+ 1
4π

· 4 arccos
(

cos
arccos zL

2
cos

π

4L

)
≤ lim
L→∞

2L+ 1
π

arccos
(

cos
j0,1 + ε

2L
cos

π

4L

)
=

√
1 +

(
j0,1 + ε

π

)2

,

since ε was arbitrary we arrive at

lim
L→∞

2L+ 1
4π

· 4 arccos
(

cos
arccos zL

2
cos

π

4L

)
=

√
1 +

(
j0,1
π

)2

≈ 0.9143.

So, we conclude that the necessary condition of Theorem 3.3 is also quite sharp for
grids constructed in the way of Lemma 3.1. Furthermore, in Section 5 we try to show
numerically that the bound of (3.14) is best-possible for scattered data.

4 Examples of t-designs

We call a set X (SO(3)) of M sampling nodes a t-design, as in the case of S2 [4], if the
integral of any polynomial of degree up to t over the rotation group SO(3) is equal to
the average value of the polynomial over the set of M nodes. By virtue of Lemma 3.1
we obtain immediately t-designs on the rotation group from t-designs on S2 and S1.
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Let us consider the three dimensional rotation groups XT ,XO,XI of the tetrahedron,
octahedron (or hexahedron) and icosahedron (or dodecahedron), respectively. The ver-
tices of the tetrahedron, octahedron and icosahedron are given as

T :=
{

x0 := ez, xi := x

(
2
3
iπ, arccos−1

3

)
| i = 1, 2, 3

}
,

O :=
{

x0 := ez, x5 := −ez, xi := x

(
1
2
iπ,

1
2
π

)
| i = 1, . . . , 4

}
,

I :=
{

x0 := ez, x11 := −ez, xi := x

(
2
5
iπ, arctan 2

)
,

xi+5 := x

(
2
5
iπ +

1
5
π, π − arctan 2

)
| i = 1, . . . , 5

}
.

Then, the corresponding rotation groups can be parameterized by the following tensor-
like products

XT :=
{

ROrtho

(
xi,

2
3
kπ + ci

)
| xi ∈ T, ci = (1− δ0,i)

π

3
; i = 0, . . . , 3, k = 0, 1, 2

}
,

XO :=
{

ROrtho

(
xi,

1
2
kπ + ci

)
| xi ∈ O, ci = 0; i = 0, . . . , 5, k = 0, . . . , 3

}
,

XI :=
{

ROrtho

(
xi,

2
5
kπ + ci

)
| xi ∈ I, ci = (1− δ0,i)(1− δ11,i)

π

5
;

i = 0, . . . , 11, k = 0, . . . , 4
}
,

(4.1)
where the spherical coordinates of −ez are set to (0, π) and

δ0,k :=

{
1, k = 0,
0, else,

denotes the Kronecker symbol. These sets are illustrated in Figure 4.1. Using these
representations we can apply Lemma 3.1 and 2.1. Therefore, the sampling sets XT , XO
lead to quadrature formulae QT , QO of degree N = 2 and 3, respectively, since the
vertices of these platonic solids provide spherical t-designs of the corresponding degrees,
cf [4]. These quadrature rules are quite efficient with efficencies

E(QT ) =
35

4 · 12
≈ 0.729, E(QO) =

84
4 · 24

= 0.875.

However, by applying Lemma 3.1 we obtain for the quadrature rule based on the icosa-
hedral rotation group XI only a degree of exactness N = 4. But the following Lemma
4.1 shows that XT provides for equal weights wi, i = 0, . . . , 59 a quadrature rule QI with
degree of exactness N = 5, which results in a very efficient quadrature formula with

E(QI) =
286

4 · 60
≈ 1.19.

There the quadrature QI satisfies 286 equalities with only 60 sampling nodes.
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Lemma 4.1. The icosahedral group XI is a 5-design, i.e. for all f ∈ Π5(SO(3)) the
following equation is valid

1
60

∑
G∈XI

f(G) =
∫
SO(3)

f(G)dµ(G). (4.2)

Proof. By Lemma 2.1 we have XI =
{
REuler

(
xi,

2
5kπ + c̃i

)
| i = 0, . . . , 11, k = 0, . . . , 4

}
,

for some c̃i (4.1), and can apply Lemma 3.1. Moreover we conclude by equation
(3.12) and (3.13) that the assertion (4.2) is true for all Wigner D-functions Dm,n

l with
m = −5, . . . , 5, n = −4, . . . , 4 and l = max{|m|, |n|}, . . . , 5. Since the Wigner D-
functions of degree l are matrix elements of an unitary l-dimensional representation of
the rotation group SO(3), we have the property, cf. [20, p. 72],

Dm,n
l (G−1) = Dn,m

l (G), G ∈ SO(3).

From this and the group structure of XI we infer∑
G∈XI

Dm,n
l (G) =

∑
G∈XI

Dm,n
l (G−1) =

∑
G∈XI

Dn,m
l (G).

Hence, we can interchange the orders n, m and the only case left to consider is |m| =
|n| = 5 = l. In the case m = n = 5 the sum splits up into

∑
G∈XI

D5,5
5 (G) =

1
60

4∑
k=0

(
5∑
i=1

(
d5,5

5 (arctan 2) + d5,5
5 (π − arctan 2)

)
−
(
d5,5

5 (0) + d5,5
5 (π)

))

=
1
12

(
5

(
1
32

((
1 +

1√
5

)5

+
(

1− 1√
5

)5
))
− (1 + 0)

)
= 0

=
∫
SO(3)

D5,5
5 (G)dµ(G).

The remaining three cases follow similarly.

The bound on the mesh norm δ(X (SO(3))) stated in Theorem 3.3 is actually sharp
for degrees of exactness N = 1, 2. Since for all nodes of the 1-design

XA :=
{

ROrtho

(
iπ,

π

2
, jπ +

π

2

)
| i, j = 0, 1

}
the identity I = ROrtho(0, 0, 0) has distance 2

3π and for all nodes of the tetrahedron
rotation group XT the rotation ROrtho(0, π, 0) has at least distance π

2 .
It is likely that the sampling sets XA and XT , XO, XI , like their pendants T , O, I on

the sphere [4], are minimal 1-, 2-, 3- and 5-designs, respectively. That is, there are no
corresponding t-designs with smaller cardinality.
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Figure 4.1: The finite rotation groups XT , XO and XI , represented by position vectors
of their nodes.

5 Numerical results on quadrature formulae

We shall confirm the theoretical results of Lemma 3.1 and Theorem 3.3 in the follow-
ing section, where we follow the approach of [2] to compute (nonnegative) quadrature
weights. Therefore we introduce for the polynomial degree N and the sampling set
X := {G0, . . . ,GM−1} the SO(3) Fourier matrix

D := (Dm,n
l (Gi))i=0,...,M−1;l=0,...,N,|m|,|n|≤l ∈ CM×dN . (5.1)

Then, equation (3.4) is equivalent to the linear system of equations

D∗w = e0, (5.2)

where e0 is the unit vector
e0 := (1, 0, . . . , 0) ∈ RdN

and w is the weight vector

w := (wi)i=0,...,M−1 ∈ RM .

Since we cannot say for which degree N the equation system (5.2) is solvable, we propose
the following convex optimization problem

min ‖D∗w − e0‖2 subject to w ≥ 0, (5.3)

In order to use tools for real convex optimization problems we split the SO(3) Fourier
matrix D ∈ CM×dN into its real and imaginary part. Afterwards we can eliminate some
redundant equalities due to the representation (3.2) of the Wigner D-functions

Dm,n
l (ϕ, θ, ψ) = e−imϕdm,nl (cos θ)e−inψ = dm,nl (cos θ) (cos(mϕ+ nψ)− i sin(mϕ+ nψ)) .

Hence, the problem (5.3) is equivalent to

min ‖Aw − e0‖2 subject to w ≥ 0, (5.4)
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with

A :=
(

A>1
A>2

)
∈ RdN×M ,

A1 := Re
(
Dm,n
l (Gi)

)
i=0,...,M−1; l=0,...,N,(m,n)∈I1l

∈ RM× 1
3
(1+N)(3+4N+2N2),

A2 := −Im
(
Dm,n
l (Gi)

)
i=0,...,M−1; l=0,...,N,(m,n)∈I2l

∈ RM× 2
3
N(N+1)(N+2),

where we use the index sets

I1
l := {(m,n) | m ≤ 0 ≤ n} ∪ {(m,n) | m > 0 > n},
I2
l := {(m,n) | m ≤ 0 < −n} ∪ {(m,n) | m > 0 ≥ −n}.

Recently, fast approximate algorithms for the matrix times vector multiplication with
the nonequispaced SO(3) Fourier matrix D and its adjoint D∗ have been proposed in
[14]. We use these algorithms and obtain a fast method for the matrix times vector mul-
tiplication v := Aw ∈ RdN based on the adjoint SO(3) Fourier transform by computing
ṽ := D∗w and setting

v = (vm,nl )l=0,...,N,|m|,|n|≤l with vm,nl :=

{
Re(ṽm,nl ) for (m,n) ∈ I1

l ,

Im(ṽm,nl ) for (m,n) ∈ I2
l .

Similarly we compute the matrix times vector multiplication w := A>v ∈ RM again
with the SO(3) Fourier transform

w = Re (Dṽ) after setting ṽm,nl :=

{
vm,nl for (m,n) ∈ I1

l ,

ivm,nl for (m,n) ∈ I2
l .

In both cases the arithmetical complexity is O(N3 log2N +M). In order to solve prob-
lem (5.3) we make use of the modified CGNR algorithm proposed in [2].

Example 5.1. We test the algorithm with the t-designs of Section 4 and some tensor
products of spherical t-designs from [4] and Gauss quadratures on S1 of the correspond-
ing polynomial degree N . The results are listed in Table 5.1 which confirms that our
algorithm computes all weights very precisely.

Example 5.2. We consider efficient quadrature formulae on SO(3), obtained from effi-
cient quadrature formulae on S2. There, we used the 72 nodes formula of degree N = 14
from McLaren [10] and some formulae from Lebedev, cf. [8, 9]. The results by using
the modified CGNR method are given in Table 5.2. We remark that for the formula of
degree 41 we have to solve an system with 24780 variables and 98770 equations.

Example 5.3. Now we compute nonnegative quadrature weights for some sampling sets
from [5]. The degree N in Table 5.3 is the maximal one that our algorithm achieves up
to the given precision.
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degree N size M ‖Aw − e0‖2 iterations
2 12 6.656288e-11 4
3 24 1.727262e-11 6
5 60 1.439418e-11 7
13 1316 3.763450e-12 10
17 2808 1.251657e-07 21
21 5280 1.113901e-06 25

Table 5.1: Test results for N -designs.

degree N size M ‖Aw − e0‖2 iterations
14 1080 2.721707e-12 18
29 9060 1.512788e-12 28
31 11200 1.458048e-12 29
41 24780 1.238677e-12 34

Table 5.2: Test results for efficient quadrature formulae.

Example 5.4. We consider an uniform random distribution over SO(3). This is gener-
ated with the parameter x ∈ S2 and ω of the parameterization ROrtho(x, ω) taken from
an uniform distribution over S2 and S1, respectively. Even for small polynomial degrees
N we have to take many nodes to obtain positive quadrature weights. In Table 5.4 we
list the results.

Example 5.5. At last, we show the bound of (3.14) in Theorem 3.3 is very sharp. The
results are shown in Table 5.5. There, we construct random sampling sets of cardinality
M over SO(3) with a hole of diameter at least 0.99· 4π

N+2 and use the proposed algorithms
to compute nonnegative quadrature weights.

6 Conclusion

In this paper we constructed uniform sampling sets on the rotation group SO(3) by
sampling the first two Euler angles over the two-sphere S2 and the third over the one-
sphere S1. The same construction scheme yields quadrature formulae with degree of
exactness N from quadratures of the same degree over the spheres S2 and S1 as well.
With it we easily obtained that the finite rotation groups of the Platonic solids are t-
designs on SO(3). We carried over the necessary condition for the existence of positive
quadrature formulae from the d-sphere to the rotation group. At the end we presented
some numerical examples on the computation of nonnegative quadrature weights based
on the fast SO(3) Fourier transform.
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name degree N size M ‖Aw − e0‖2 iterations
c600vc 9 360 1.030884e-09 17
c600vec 11 720 5.143112e-10 21
c48u27 8 648 4.707011e-11 19
c48u309 17 7416 2.502115e-13 259
c48n309 17 7416 1.388484e-13 168
c48u527 21 12648 3.539870e-13 656
c48n527 21 12648 2.790298e-13 1500
c48u8649 51 207576 3.604940e-13 929

Table 5.3: Test results for sampling sets from [5] with cardinality M and numerical
maximal degree of exactness N .

degree N size M zero weights ‖Aw − e0‖2 iterations
3 200 43 3.452291e-15 390
4 400 101 5.175212e-15 560
5 700 276 7.054088e-15 1278
6 1100 329 6.532730e-15 1011
7 1700 752 1.097145e-14 1919
8 2400 768 7.805511e-15 1848
9 3200 1070 9.360416e-15 1516
10 4200 1544 1.260515e-14 2293

Table 5.4: Test results for random sampling sets with cardinality M and requested degree
of exactness N .
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2003.

21



[16] R. Schaback. Error estimates and condition numbers for radial basis function in-
terpolation. Adv. Comput. Math., 3:251 – 264, 1995.

[17] D. Schmid. Marcinkiewicz-Zygmund inequalities and polynomial approximation
from scattered data on SO(3). Numer. Funct. Anal. Optim., 29:855 – 882, 2008.

[18] D. Schmid. A trade-off principle in connection with the approximation by positive
definite kernels. In C. K. Chui, M. Neamtu, and L. L. Schumaker, editors, Approx-
imation Theory XII: San Antonio, pages 348 – 359, Brentwood, 2008. Nashboro
Press.

[19] D. Schmid. Scattered data approximation on the rotation group and generalizations.
Dissertation, Fakultät für Mathematik, Technische Universität München, 2009.

[20] D. Varshalovich, A. Moskalev, and V. Khersonskii. Quantum Theory of Angular
Momentum. World Scientific Publishing, Singapore, 1988.

[21] A. Yershova and S. M. LaValle. Deterministic sampling methods for spheres and
SO(3). In Proceedings. IEEE International Conference on Robotics and Automa-
tion., volume 4, pages 3974 – 3980, ICRA 2004.

22


