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Zygmund inequalities and conditions for the existence of positive quadrature
formulae on the rotation group SO(3) to those on the sphere S3, respectively.

Keywords and Phrases : rotation group SO(3), sphere S3, quaternions, scat-
tered data, sampling sets, quadrature formulae, Marcinkiewicz-Zygmund in-
equalities

AMS subject classification. : 65T99, 43A90, 65D32

1 Introduction

Scattered data approximation on various domains is a problem with many applications
in science and engineering, cf. [17, 3, 15]. Typical ingredients to treat such multivariate
approximation problems are studies of scattered sampling nodes and quadrature formu-
lae. For example Schmid was able to present in [19] a trade-off result, based on a paper of
Schaback [16] for approximation problems using positive definite basis functions on the
rotation group SO(3). There was shown that it is impossible to come up with a positive
definite basis function that enables one to keep the estimate on the approximation error
and the condition number of the associated interpolation matrix arbitrarily small simul-
taneously. Another important result comes from Gröchenig. He investigated in [10] the
problem of the reconstruction of band-limited functions from scattered sampling data
and arrived on Marcinkiewicz-Zygmund type inequalities. Marcinkiewicz-Zygmund in-
equalities provide a norm equivalence between the discrete lp norm of the sampling values
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and the continuous Lp norm of the sampled function under certain conditions on the
geometric properties of the scattered sampling nodes. Mhaskar, Narcowich and Ward
proved in [12] such inequalities for the d-dimensional sphere Sd and they used them in
order to derive assertions for (positive) quadrature formulae of scattered data. In later
investigations such inequalities were improved and used for stability results of scattered
data approximation methods as well, cf. [11, 6]. Recently, one was able to state such
results of scattered data approximation on the rotation group SO(3) by using similar
methods, we refer to [18, 8] and the dissertation of Schmid [20].

All the above results reveal the importance of the distribution of the sampling sets.
In [9] a simple construction was proposed which leads to well distributed sampling sets
on the rotation group SO(3). The same construction can also be used in order to gen-
erate quadrature formulae on the rotation group from quadratures on the sphere S2. In
particular, one obtains immediately t-designs, which are equal weight quadratures, on
the rotation group SO(3) from t-designs on the S2. In addition the authors presented
a method, based on a fast algorithm for nonequispaced Fourier transforms on the rota-
tion group SO(3), cf. [14], for the computation of nonnegative quadrature weights for
scattered sampling sets on SO(3).

The aim of this paper is to consider the results on the sphere S3 and rotation group
SO(3) from a common point of view. Therefore, we recapitulate the well-known connec-
tion between the rotation group SO(3) and the sphere S3 by quaternions, see for example
[2]. Using this connection we show that the natural metrics, measures and polynomial
spaces on these manifolds are essentially the same. From these facts we carry over as-
sertions of sampling sets and quadrature formulae from S3 to SO(3) and vice versa. As
an application of these connections we present new proofs for the existence of nonnega-
tive quadrature weights and Marcinkiewicz-Zygmund inequalities on the rotation group
SO(3) based on results on S3. Moreover we obtain immediately constructions of well
distributed sampling sets and quadrature formulae on the sphere S3 by using the results
from [9]. As a consequence we are able to construct t-designs on S3 from t-designs on
the sphere S2 and can compute nonnegative quadrature weights for antipodal scattered
sampling sets on S3 in a fast way.

The outline of this paper is as follows. For the paper to be self contained we in-
troduce in Section 2 the necessary notations for deriving the well-known isomorphism
between the rotation group SO(3) and the three-dimensional projective space S3

∗, where
antipodal points on the sphere S3 are identified. Using this connection we show that the
even polynomials on S3 correspond to the polynomials on SO(3). With the mentioned
results at hand we connect in Section 3 sampling sets and quadrature formulae on these
manifolds. Afterwards this connection is applied to recent results on the rotation group
SO(3).

2 Preliminary: relations between quaternions and rotations

Throughout this paper we use the notation

Sd := {x = (x1, . . . , xd+1)> ∈ Rd+1 : ‖x‖2 = 1}
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for the d-dimensional sphere. The rotation group of the n-dimensional Euclidean space
is denoted by

SO(n) :=
{
G ∈ Rn×n : G> = G−1, detG = 1

}
,

and the group operation is given by composition. The rotation group SO(3) can be
naturally parameterized by

R(r, α) := (1− cos(α))rr> +

 cos(α) −z sin(α) y sin(α)
z sin(α) cos(α) −x sin(α)
−y sin(α) x sin(α) cos(α)

 , (2.1)

with rotation axis r = (x, y, z)> ∈ S2 and rotation angle α ∈ [0, π]. In the following we
introduce the space of unit quaternions which establishes the connection of the sphere
S3 to the rotation group SO(3). A unit quaternion is given by

q :=

(
s
v

)
∈ S3,

which consists of a scalar part s ∈ R and a vector part v ∈ R3. Via the multiplication
formula

q1 · q2 :=

(
s1s2 − v>1 v2

s1v2 + s2v1 + v1 × v2

)
, q1 =

(
s1

v1

)
, q2 =

(
s2

v2

)
∈ S3

one easily checks that the space of the unit quaternions forms a group. The inverse
element of q = (s,v>)> is the conjugated quaternion

q :=

(
s
−v

)
.

The connection between quaternions and rotations is given by the following operation.
For a vector p ∈ S2 we define the action of a unit quaternion q ∈ S3 by

p(q) := q ·
(

0
p

)
· q. (2.2)

If we parameterize a quaternion q by an axis r = (x, y, z)> ∈ S2 and an angle α ∈ [0, π]
due to

q(r, α) :=

(
cos α2
sin α

2 r

)
(2.3)

we obtain the identity

p(q(r, α)) =

(
0

R(r, α)p

)
, p ∈ S2, (2.4)

which shows that the actions of rotations and quaternions on vectors p ∈ S2 are identical.
Form this observation we call G := R(r, α) the corresponding rotation of the quaternion
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q = q(r, α). Since the quaternion multiplication is associative it follows immediately
that the quaternion multiplication of two unit quaternions q1, q2 ∈ S3 is consistent with
the composition of the corresponding rotations G1,G2 ∈ SO(3), i.e.,(

0
G2G1p

)
= p(q2 · q1), p ∈ S2.

By definition (2.3) the quaternion q(r, α) = (s,v>)> is in the upper hemisphere of
S3, i.e., s ≥ 0. Since q and −q corresponds by (2.2) and (2.4) to the same rotation
one obtains that S3 is a double cover of SO(3), cf. [2, Chap. III, Sect. 10]. So it is
convenient to pass to the quotient space S3

∗ := S3/{1,−1}, where we identify antipodal
quaternions. This space is also known as the three-dimensional projective space. With
it we obtain an isomorphism

q∗ : SO(3)→ S3
∗, q∗(R(r, α)) := {±q(r, α)} = {−q(r, α), q(r, α)}, (2.5)

between SO(3) and the projective space S3
∗ with the property

q∗(G2G1) = q∗(G2) · q∗(G1) := {±q2 · q1}. (2.6)

For simplicity we use a representative x ∈ S3 to identify the corresponding element of
the projective space S3

∗ by x∗ := {±x}.
We introduce on the sphere S3the natural metric

dS3(x1,x2) := arccos(x>1 x2), x1,x2 ∈ S3, (2.7)

and the natural rotation invariant surface measure µS3 , with normalization
∫
S3 dµS3(x) =

1. These definitions induce a metric and a measure on S3
∗ respectively. More precisely

we define the metric by

dS3∗(x1∗,x2∗) := min
y1 =±x1,
y2 =±x2

dS3(y1,y2) = arccos |x1x
>
2 |, x1∗ = {±x1}, x2∗ = {±x2} ∈ S3

∗

(2.8)
and the measure by

µS3∗(Ω∗) = µS3(Ω) + µS3(−Ω), Ω∗ = {x∗ : x ∈ Ω} ⊂ S3
∗, Ω ⊂ S3, (2.9)

where we assume µS3(Ω ∩ −Ω) = 0. Furthermore, the distance between two rotations
G1,G2 ∈ SO(3) is naturally given by

dSO(3)(G1,G2) := α(G>1 G2) := arccos

(
1

2
(traceG>1 G2 − 1)

)
, (2.10)

where α(G) is the rotation angle of the rotation G ∈ SO(3). Moreover, we use the
normalized (translation invariant) Haar measure µSO(3), i.e.,

µSO(3)(Ω) = µSO(3)(H · Ω), H ∈ SO(3), Ω ⊂ SO(3),
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with
∫

SO(3) dµSO(3)(G) = 1, where H · Ω := {HG : G ∈ Ω} is the translated set.
The following Lemma 2.1 seems to be well-known, but since the author was not able

to find it in the literature we give a proof. It states by virtue of the isomorphism q∗, cf.
(2.5), that the induced metric (2.8) on the projective space S3

∗ coincides with the metric
on the rotation group SO(3), as well as the induced measure (2.9) coincides with the
normalized Haar measure.

Lemma 2.1. The isomorphism q∗ : SO(3)→ S3
∗, cf. (2.5) yields the identities

dSO(3)(G1,G2) = 2dS3∗(q∗(G1), q∗(G2)), G1,G2 ∈ SO(3),

µSO(3)(Ω) = µS3∗(q∗(Ω)), Ω ⊂ SO(3),
(2.11)

where q∗(Ω) := {q∗(G) : G ∈ Ω}.
Proof. We obtain the first identity by using for G1 and G2 the parameterization with
rotation axes r1, r2 ∈ S2 and rotation angles α1, α2 ∈ [0, π], cf. (2.1). This yields with
(2.8) the desired result

dSO(3)(R(r1, α1),R(r2, α2)) = 2 arccos
∣∣∣r>1 r2 sin

α1

2
sin

α2

2
+ cos

α1

2
cos

α2

2

∣∣∣
= 2 arccos

∣∣∣q(r1, α1)> q(r2, α2)
∣∣∣

= 2 dS3∗(q∗(R(r1, α1)), q∗(R(r2, α2))).

In order to prove the second identity we make use of the uniqueness of the Haar measure,
cf. [7, Section 2.2]. Therefore let H ∈ SO(3) and Ω ⊂ SO(3) be given. From equation
(2.6) we infer that

q∗(H · Ω) = {q∗(H) · q∗(G) : G ∈ Ω}.
Since the quaternionic multiplication q · x of a vector x ∈ R4 with an unit quaternion
q ∈ S3 can be considered as a linear transformation Tx with determinant | detT | = 1,
we conclude that the antipodal quaternions q∗(H) represent some rotation T ∈ SO(4)
or −T ∈ SO(4). Let without loss of generality T ∈ SO(4), then we arrive at

q∗(H · Ω) = {{±Tx} : x∗ = q∗(G), G ∈ Ω} =: T · q∗(Ω).

Together with the rotation invariance of the measure µS3 on the sphere S3 and the
definition (2.9) we obtain the translation invariance of the induced measure

µS3∗(q∗(H · Ω)) = µS3∗(T · q∗(Ω)) = µS3∗(q∗(Ω)).

With the normalization 1 = µSO(3)(SO(3)) = µS3∗(S
3
∗) and the uniqueness of the Haar

measure we conclude that these two measures must coincide.

For our considerations we introduce the harmonic spaces on S3 and SO(3). The spaces
of square integrable functions are denoted by

L2(S3) :=

{
f : S3 → C :

∫
S3
|f(x)|2dµS3(x)

}
,

L2(SO(3)) :=

{
f : SO(3)→ C :

∫
SO(3)

|f(G)|2dµSO(3)(G)

}
,
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where the standard orthonormal bases are given by spherical harmonics Y k
l , l ∈ N0,

k = 0, . . . , (l + 1)2, and by the Wigner D-functions Dm,m′

l , l ∈ N0, m,m′ = −l, . . . , l,
respectively, cf. [13, 21]. Furthermore we define for degree l ∈ N0 the harmonic spaces

Γl(S3) := span
{
Y k
l : k = 0, . . . , (l + 1)2

}
,

Γl(SO(3)) := span
{
Dm,m′

l : m,m′ = −l, . . . , l
}
,

and

ΠN (S3) :=

N⊕
l=0

Γl(S3), ΠN (SO(3)) :=

N⊕
l=0

Γl(SO(3)),

where the firsts consist of all polynomials of degree l and the latter of all polynomials of
degree at most N .

3 Sampling sets, quadratures and Marcinkiewicz-Zygmund
inequalities

In the following we present three theorems which connect sampling sets, quadrature
formulae and Marcinkiewicz-Zygmund inequalities on the sphere S3 to those on the
rotation group SO(3) respectively.

First of all we consider finite subsets X (M) of a metric space (M,dM) with metric
dM. In this paper the space M stands for the sphere S3 and the rotation group SO(3).
In order to describe the quality of such a sampling set X (M) we introduce the following
two parameters. The first one is the separation distance

q(X (M)) := min
y 6=x∈X (M)

dM(x,y), (3.1)

which is the minimal distance of two distinct nodes of the sampling set X (M). On the
other hand the mesh norm

δ(X (M)) := 2 max
y∈M

min
x∈X (M)

dM(x,y) (3.2)

describes the “density” of X (M) in M.
Furthermore, we say a quadrature rule

Q(M) := {(xi, wi) | i = 0, . . . ,M − 1}

with sampling nodes xi ∈M and quadrature weights wi ∈ C has degree of exactness N ,
if for all polynomials f ∈ ΠN (M) the relation

M−1∑
i=0

wif(xi) =

∫
M
f(x)dµM(x)

is valid.
The following Theorem 3.1 states that antipodal sampling sets on the sphere S3 can

be considered as sampling sets on the rotation group SO(3) and that they share the
same metric properties.
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Theorem 3.1. For a sampling set X (S3) := {±x0, . . . ,±xM−1} with 2M ≥ 4 antipodal
nodes on the sphere S3 and the corresponding sampling set X (SO(3)) := {q−1

∗ (x0∗), . . . , q
−1
∗ (xM−1∗)}

with M nodes on the rotation group SO(3) the separation distances and mesh norms
obey

q(X (S3)) =
1

2
q(X (SO(3))) and δ(X (S3)) =

1

2
δ(X (SO(3))),

respectively.

Proof. At first, we observe that the extremal nodes of the antipodal sampling set X (S3)
in the definitions of the separation distance (3.1) and the mesh norm (3.2) occur in
antipodal pairs. Hence, by the definition of the distance (2.8) we conclude for the sam-
pling set X (S3

∗) := {x0∗, . . . ,xM−1∗} the relations q(X (S3)) = q(X (S3
∗)) and δ(X (S3)) =

δ(X (S3
∗)). So the assumption follows from Lemma 2.1.

A similar connection is valid for the harmonic spaces on S3 and SO(3), where we
identify even functions on the sphere S3 with functions on the rotation group SO(3).
For an even function f : S3 → C we define the function f̃ : S3

∗ → C by

f̃(q∗) := f(±q), (3.3)

where the isomorphism (2.5) yields a function f̄ : SO(3) → C by f̄(G) = f̃(q∗(G)),
G ∈ SO(3). Conversely, an arbitrarily function f̄ : SO(3) → C can be continued
uniquely to an even function f : S3 → C.

Lemma 3.2. The isomorphism q∗ : SO(3)→ S3
∗, cf. (2.5), and the definition (3.3) yield

the following equivalence

f(·) ∈ Γ2N (S3) ⇔ f̃(q∗(·)) ∈ ΓN (SO(3)). (3.4)

Proof. The addition theorems, cf. [13, Theorem 2] and [21, Section 4.7 and 4.14],

(l+1)2∑
k=0

Y k
l (x)Y k

l (y) = (l + 1)Ul(cos dS3(x,y)), x,y ∈ S3, l ∈ N0,

l∑
m,m′=−l

Dm,m′

l (G)Dm,m′

l (H) = (2l + 1)U2l

(
cos

dSO(3)(G,H)

2

)
, G,H ∈ SO(3), l ∈ N0,

where Un denotes the n-th Chebyshev polynomial of second kind, lead to reproducing
kernels of the spaces Γl(S3) and Γl(SO(3)) respectively. Similarly as stated in [13, The-
orem 3] we can express the polynomials on S3 and SO(3) by finite linear combinations
of translated kernels, that is

Γl(S3) =


M−1∑
j=0

ajUl(cos dS3(xj , ·)) : M ∈ N, aj ∈ C, xj ∈ S3

 ,

Γl(SO(3)) =


M−1∑
j=0

ajU2l

(
cos

dSO(3)(Gj , ·)
2

)
: M ∈ N, aj ∈ C, Gj ∈ SO(3)

 .

(3.5)
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Now, let f ∈ Γ2N (S3) be given. Then there exists M ∈ N, xj ∈ S3 and aj ∈ C,
j = 0, . . . ,M − 1, with

f(x) =
M−1∑
j=0

ajU2N (cos dS3(xj ,x)), x ∈ S3,

and since f is even we infer from Lemma 2.1 the relation

f(x) =

M−1∑
j=0

ajU2N (cos dS3(xj ,x)) =

M−1∑
j=0

ajU2N (cos dS3(±xj ,±x))

=
M−1∑
j=0

ajU2N

(
cos

dSO(3)

(
q−1
∗ (xj∗), q

−1
∗ (x∗)

)
2

)
.

Hence, it is f̃(q∗(·)) ∈ ΓN (SO(3)) by equation (3.5). The other direction follows simi-
larly.

The above Theorem yields the following Corollary 3.3 which states an equivalence
between antipodal quadrature formulae on the sphere S3 and quadrature formulae on
the rotation group SO(3).

Corollary 3.3. A quadratureQ(S3) with antipodal nodes X (S3) := {±x0, . . . ,±xM−1)}
and corresponding weights wi, i = 0, . . . ,M−1, on S3, integrates exactly all polynomials
up to degree 2N + 1, i.e.,∫

S3
f(x)dµS3(x) =

M−1∑
i=0

wi(f(−xi) + f(xi)), f ∈ Π2N+1(S3),

if and only if the quadrature Q(SO(3)) with weights w̃i = 2wi and nodes X (SO(3)) :=
{q−1
∗ (x0∗), . . . , q

−1
∗ (xM−1∗)} integrates exactly all polynomials upto degree N , i.e.,∫

SO(3)
g(G)dµSO(3)(G) =

M−1∑
i=0

w̃ig(q−1
∗ (xi∗)), g ∈ ΠN (SO(3)).

Proof. For the constant functions f ≡ 1 and g ≡ 1 the assertion is trivial, since the
measures are normalized∫

SO(3)
1dµSO(3)(G) = 1 =

∫
S3

1dµS3(x).

Furthermore, arbitrary odd functions f on S3 are integrated exactly by∫
S3
f(x)dµS3(x) = 0 =

M−1∑
i=0

wi(−f(xi) + f(xi)).

Hence, the assertion follows by Lemma 3.2.
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Remark 3.4. For the quadrature Q(S3) with antipodal nodes we can assume without
loss of generality that the weights for antipodal nodes are equal. Since, the quadrature
keeps the same degree of exactness by setting wi = 1

2(w+
i + w−i ), if w+

i , w−i are the
weights for xi, −xi, respectively.

For a construction of well distributed sampling sets and quadrature formulae on the
rotation group SO(3) we refer to [9]. The proposed construction is based on a tensor like
product of spheres S2 and S1. Therefore, “nice” sampling sets and quadrature formulae
on these spheres yield “nice” sampling sets and quadrature formulae on the rotation
group SO(3). Hence, by Corollary 3.3 and Theorem 3.1 one obtains easily quadrature
formulae and well distributed sampling sets on the sphere S3 via the isomorphism q∗ :
SO(3)→ S3

∗, as well. It was also shown in [9] that the finite three-dimensional rotation
groups XT,XO,XI of the tetrahedron, octahedron (or hexahedron) and icosahedron (or
dodecahedron), respectively, are t-designs on the rotation group SO(3). More precisely,
they are sampling sets of quadrature formulae with equal weights for degree N = 2, 3
and 5, respectively. The antipodal vertices of the four-dimensional polyhedra 24-cell
and 600-cell can be identified with the tetrahedral group and the icosahedral group
respectively. Hence, the former statement is equivalent to the assertion that these form
a 5-design and a 11-design on the three-dimensional sphere, which are well known facts,
cf. [1, Example 2.8].

Moreover, the above results lead to a new proof of a necessary condition for the exis-
tence of nonnegative quadrature weights on the rotation group SO(3), cf. [9, Theorem
3.3]. We remark that the condition there is exactly the same as stated in the following
Theorem 3.5.

Theorem 3.5. Let the sampling set XN (SO(3)) = {G0, . . . ,GM−1} ⊂ SO(3) support
nonnegative quadrature weights wk, k = 0, . . . ,M−1, integrating exactly all polynomials
in ΠN (SO(3)), N ∈ N, then the mesh norm satisfies

δ(XN (SO(3))) ≤ 4π

N + 2
. (3.6)

Proof. Let X2N+1(S3) := {±x0, . . . ,±xM−1} be the corresponding antipodal sampling
set on S3, which supports by assumption and Corollary 3.3 nonnegative quadrature
weights. Then from [15, Theorem 6.21] we have the bound

δ(X2N+1(S3)) ≤ 2 arccos zN+1 =
2π

N + 2
,

where zN+1 = cos π
N+2 is the greatest zero of the Chebyshev polynomial of second kind

UN+1. Actually the bound stated by Reimer is given for quadratures with degree of
exactness 2N + 2, but if we follow the proof of [15, Theorem 6.21] line by line we see
that this is also true for degree of exactness 2N + 1. By Theorem 3.1 the assertion
follows from

δ(XN (SO(3))) = 2δ(X2N+1(S3)) ≤ 4π

N + 2
.
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Finally we consider Marcinkiewicz-Zygmund inequalities on the manifoldsM∈ {S3,SO(3)}.
Therefor we introduce for a given sampling set X (M) := {x0, . . . ,xM−1} its associated
partition R(M) := {Ω0, . . . ,ΩM−1} of closed regions Ωi ⊂ M, i = 0, . . . ,M − 1, where
we require that xj is an interior point of Ωj , i.e., xj ∈ Ω̊j . Moreover, the regions cover

the whole space M =
⋃M−1
i=0 Ωi and share no common interior point, i.e., Ω̊j ∩ Ω̊i = ∅

for i 6= j. For such partitions R(M) we define the partition norm

‖R(M)‖ := max
i=0,...,M−1

max
x,y∈Ωi

dM(x,y) (3.7)

and obtain a weighted lp norm over the sampling values of a continuous function f :
M→ C as follows

‖f‖X (M),p :=


(
M−1∑
i=0

|f(xi)|pdµM(Ωi)

) 1
p

, 1 ≤ p <∞,

max
x∈X (M)

|f(x)| , p =∞.

Additionally, for 1 ≤ p ≤ ∞ the Lp norms of measurable functions f : M → C are
defined as usual by

‖f‖p :=


(∫
M
|f(x)|pdµM(x)

) 1
p

, 1 ≤ p <∞,

ess sup
x∈M
|f(x)| , p =∞.

Marcinkiewicz-Zygmund inequalities state the equivalence between Lp norms of polyno-
mials and lp norms of their sampling values under certain conditions on the sampling
set. These inequalities are an important tool in approximation theory, see the references
[10, 12, 11, 6] to name but a few. For example, in the case p = 1 these inequalities
yield, in contrast to Theorem 3.5, sufficient conditions for the existence of nonnegative
quadrature weights as presented in [12]. Generalizations to Riemannian manifolds are
given in [5, 4].

Marcinkiewicz-Zygmund inequalities on the rotation group SO(3) were already estab-
lished in [18] by using reproducing kernel techniques on the rotation group directly. Here
we derive such inequalities from Marcinkiewicz-Zygmund inequalities on the sphere S3,
cf. [12, 6]. Theorem 3.6 shows that the involved constants on the rotation group SO(3)
do not exceed the corresponding constants on the sphere S3.

Theorem 3.6. Let 1 ≤ p ≤ ∞ and a constant Cp > 0 be given.
If for arbitrary sampling sets X (S3) = {x0, . . . ,xM−1} with associated partitions
R(S3) = {Ω0, . . . ,ΩM−1} the Marcinkiewicz-Zygmund inequalities

(1− η) ‖f‖pp ≤ ‖f‖
p
X (S3),p

≤ (1 + η) ‖f‖pp (1 ≤ p <∞),

(1− η) ‖f‖∞ ≤ ‖f‖X (S3),∞ ≤ (1 + η) ‖f‖∞ (p =∞)
(3.8)

are valid for all polynomials f ∈ ΠN (S3) with degree N ≤ Cpη/‖R(S3)‖, η ∈ (0, 1),
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then for arbitrary sampling sets X (SO(3)) = {G0, . . . ,GM−1} with associated parti-
tions R(SO(3)) = {Ω̄0, . . . , Ω̄M−1} the Marcinkiewicz-Zygmund inequalities

(1− η) ‖g‖pp ≤ ‖g‖
p
X (SO(3)),p ≤ (1 + η) ‖g‖pp (1 ≤ p <∞),

(1− η) ‖g‖∞ ≤ ‖g‖X (SO(3)),∞ ≤ (1 + η) ‖g‖∞ (p =∞)
(3.9)

are valid for all polynomials g ∈ ΠN (SO(3)) with degree N ≤ Cpη/‖R(SO(3))‖, η ∈
(0, 1).

Proof. Let g ∈ ΠN (SO(3)) be given. From Lemma 3.2 we know, there exists a unique
even extension f ∈ Π2N (S3), i.e.,

g(G) = f̃(q∗(G)), G ∈ SO(3). (3.10)

Furthermore, we consider to the sampling set X (SO(3)) and its associated partition
R(SO(3)) the corresponding antipodal sampling set X (S3) := {±x0, . . . ,±xM−1} and
its associated antipodal partition R(S3) := {±Ω0, . . . ,±ΩM−1} on S3, respectively, i.e.,

q∗(Gi) = {±xi}, q∗(Ω̄i) = {±Ωi}, i = 0, . . . ,M − 1.

Since the partition norm of R(S3) obeys the relation ‖R(S3)‖ = 1
2‖R(SO(3))‖, cf.

Lemma 2.1 and Theorem 3.1, we obtain from the condition N ≤ Cpη/‖R(SO(3))‖ that

2N ≤ 2Cpη/‖R(SO(3))‖ = Cpη/‖R(S3)‖.

Hence, by the Marcinkiewicz-Zygmund inequalities (3.8) on the sphere S3 we have

(1− η) ‖f‖pp ≤ ‖f‖
p
X (S3),p

≤ (1 + η) ‖f‖pp.

In the case p = ∞ the assertion (3.9) follows immediately from (3.10). In the cases
1 ≤ p <∞ we infer from Lemma 2.1 that

‖f‖pp =

∫
|f(x)|pdµS3(x) =

∫
|f̃(x∗)|pdµS3∗(x∗) =

∫
|g(G)|pdµSO(3)(G) = ‖g‖pp,

and derive from definition (2.8) the relation µS3(Ωi) = µS3(−Ωi) = 1
2µS3∗(Ωi∗) = 1

2µSO(3)(Ω̄i).
Together with f(±xi) = g(q−1

∗ (xi∗)) = g(Gi) we obtain the assertion (3.9).

Remark 3.7. The converse statement of Theorem 3.6 need not to be true, due to the
missing counterpart on the rotation group SO(3) for odd functions on the sphere S3.
Hence, this approach might not lead to sharp conditions and one has to operate on the
rotation group directly as proposed by Schmid in [18, 20].

One should not that by no means it is obvious that the constants Cp in Theorem 3.6
exists for every 1 < p < ∞, but such results were recently proved in a broad context
in [4]. In the case p ∈ {1,∞} we can apply Theorem 3.6 to [6, Theorem 4.2] and
obtain explicit constants for Marcinkiewicz-Zygmund inequalities on the rotation group
SO(3). Unfortunately the Marcinkiewicz-Zygmund inequalities in [6, Theorem 4.2] and
[20, Theorem 4.22] are stated in slightly different form such that a direct comparison of
the involved constants is pointless.
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4 Conclusion

In this paper we showed that in the setting of scattered data approximation the rotation
group SO(3) and the sphere S3 can be treated almost equally. That is for scattered
sampling nodes one obtains in the natural metrics the same values for the mesh norm
and the separation distance up to a proportional factor, if we identify antipodal nodes on
S3 with a rotation in SO(3). For the polynomial spaces we can identify even functions on
S3 with functions on SO(3). However this leads to a discrepancy in the approximation
behavior for scattered data on those manifolds, since the odd functions on S3 lack a
counter part on SO(3).
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[10] K. Gröchenig. Reconstruction algorithms in irregular sampling. Math. Comput.,
59:181 – 194, 1992.

12



[11] J. Keiner, S. Kunis, and D. Potts. Efficient reconstruction of functions on the sphere
from scattered data. J. Fourier Anal. Appl., 13:435 – 458, 2007.

[12] H. N. Mhaskar, F. J. Narcowich, and J. D. Ward. Spherical Marcinkiewicz-Zygmund
inequalities and positive quadrature. Math. Comput., 70:1113 – 1130, 2001. Corri-
gendum on the positivity of the quadrature weights in 71:453 – 454, 2002.

[13] C. Müller. Spherical Harmonics. Springer, Aachen, 1966.

[14] D. Potts, J. Prestin, and A. Vollrath. A fast algorithm for nonequispaced Fourier
transforms on the rotation group. Numer. Algorithms, 52:355 – 384, 2009.

[15] M. Reimer. Multivariate Polynomial Approximation. Birkhäuser Verlag, Basel,
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