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We compute quadrature weights for scattered nodes on the two-dimensional
unit-sphere, which are exact for spherical polynomials of high degree N . Different
algorithms are proposed and numerical examples show that we can compute non-
negative quadrature weights if approximately 4N2/3 well distributed nodes are
used. We compare these results with theoretical statements which guarantee non-
negative quadrature weights. The proposed algorithms are based on fast spherical
Fourier algorithms for arbitrary nodes which are publicly available. Numerical ex-
periments are presented to demonstrate that we are able to compute quadrature
weights for circa 1.5 million nodes which are exact for spherical polynomials up
to N = 1024.
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1 Introduction

Harmonic analysis on the sphere typically consists in the expansion of functions f : S2 → R
with respect to the orthonormal basis of spherical harmonics Y n

k , n ∈ N0, k = −n, . . . , n. The
computation of the Fourier coefficients

ank =
∫

S2

f(x)Y n
k (x)dx, (1.1)

can be approximated up to some finite degree n ≤ N ∈ N0 by a quadrature rule

ãnk =
M∑
i=1

wif(xi)Y n
k (xi) (1.2)
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with sampling nodes xi ∈ S2 and quadrature weights wi, i = 0, . . . ,M−1. The corresponding
synthesis computes function values from given expansion coefficients, i.e.,

fN (xi) =
N∑
k=0

k∑
n=−k

ankY
n
k (xi). (1.3)

For both transforms (1.2) and (1.3) fast approximate algorithms of complexity O(N2 log2N+
M) where suggested in [10] and [11], respectively. An implementation is publicly available
from the NFFT homepage [8]. The aim of this paper is to compute nonnegative quadrature
weights wi, for arbitrary sampling nodes such that we can compute the spherical Fourier
coefficients of a function f : S2 → R by the quadrature (1.2). We propose algorithms based
on iterative solvers making use of fast matrix vector multiplications.

Up to now, the following theoretical results are known. As a consequence of spherical
Marcinkiewicz-Zygmund inequalities [13, 2, 9] a sufficient condition for the existence of non-
negative quadrature weights is proven in [13]. Furthermore, with the constants established
in [9] we can guarantee nonnegative quadrature weights for M best arranged sampling nodes
and every polynomial degree N <

√
M/1530. These theoretical results are far from being

optimal, and [12] suggests an orthonormalization procedure for the computation of quadra-
ture weights to improve upon these results. In this note, we suggest simple and fast iterative
methods to compute nonnegative quadrature weights for M well distributed quadrature nodes
and a polynomial degree N ≈

√
3M/4.

The outline of this paper is as follows: In Section 2 we state an optimization problem to
compute nonnegative quadrature weights for a given sampling set and polynomial degree.
Lemma 2.1 gives a sufficient condition on the polynomial degree N for the existence of non-
negative quadrature. Subsequently, we present three algorithms in Section 3 for solving the
mentioned optimization problem and test these on several examples in Section 4.

2 Prerequisites

Let S2 :=
{
x ∈ R3 : ‖x‖2 = 1

}
denote the unit sphere and let (ϑ, ϕ)> ∈ [0, π] × [0, 2π) with

x = (sinϑ cosϕ, sinϑ sinϕ, cosϑ)> be its parameterization. For finite sampling sets X ={
xi ∈ S2 : i = 0, . . . ,M − 1

}
, we denote by

δX := 2 max
y∈S2

min
x∈X

arccos(x · y) (2.1)

their mesh norm. A good starting point on well and best distributed sampling nodes on the
sphere S2 can be found in [16].

We consider the spaces ΠN := span{Y n
k : n = 0, . . . , N, k = −n, . . . , n}, N ∈ N0, with the

spherical harmonics of degree n and order k,

Y n
k (x) = Y n

k (ϑ, ϕ) :=

√
2n+ 1

4π
Pn|k|(cosϑ)eikϕ (2.2)

obeying the orthogonality relation∫
S2

Y n
k (x)Y m

l (x) dx =
∫ 2π

0

∫ π

0
Y n
k (ϑ, φ)Y m

l (ϑ, φ) sin(ϑ) dϑ dϕ = δk,lδn,m. (2.3)
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Here, the associated Legendre functions Pnk : [−1, 1] → R and the Legendre polynomials
Pn : [−1, 1]→ R are given by

Pnk (x) =
(

(n− k)!
(n+ k)!

)1/2 (
1− x2

)k/2 dk

dxk
Pn(x), n ∈ N0, k ≤ n,

Pn(x) :=
1

2nn!
dn

dxn
(
x2 − 1

)n
, n ∈ N0.

Then, to given points xi ∼= (ϑi, ϕi), i = 0, . . . ,M − 1, and a polynomial degree N we ask
for nonnegative quadrature weights wi ≥ 0 such that for all fN ∈ ΠN the equation∫

S2

fN (x) dx =
M−1∑
i=0

wifN (xi) (2.4)

holds true. A sufficient condition on the existence of nonnegative quadrature weights follows
from [6, 13, 9, 2].

Lemma 2.1. For (sufficiently large) M ∈ N let XM = {x0, . . . ,xM−1} ⊂ S2 be a set of
sampling nodes with minimal mesh norm

δXM
= min
X⊂S2,|X |=M

δX . (2.5)

Then, for polynomial degree

N <

√
M

1530
(2.6)

there exists nonnegative quadrature weights w = (w0, . . . , wM−1), wi ≥ 0, i = 0, . . . ,M − 1,
satisfying equation (2.4).

Proof. A minimal spherical covering XM of cardinality M has mesh norm(
32π

3
√

3M

) 1
2

− C1M
−1 ≤ δXM

≤
(

32π
3
√

3M

) 1
2

+ C2M
− 2

3 (2.7)

for some constants C1, C2 ≥ 0, cf. [6]. Hence, for sufficiently large M we can bound the mesh
norm by

δXM
≤ 5√

M
,

which yields in conjunction with (2.6) the inequality

2(153δXM
N) ≤ 1530

N√
M

< 1. (2.8)

Moreover, from the proof of [9, Theorem 1] we have for 153NδXM
< 1, some (Voronoi) weights

vi > 0, i = 0, . . . ,M − 1, and fN ∈ ΠN the L1-Marcinkiewicz-Zygmund inequality∣∣∣∣∣
M−1∑
i=0

vi|fN (xi)| −
∫

S2

|fN (x)|dx

∣∣∣∣∣ ≤ 153NδXM
.

In conjunction with the arguments from the proof of [13, Theorem 4.1] this guarantees non-
negative quadrature weights under condition (2.8).
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Remark 2.2. The condition (N + 1)2 ≤M is necessary for exact quadrature formulae (2.4)
of degree 2N , cf. [17, Lemma 2]. Since the bounds in (2.7) are asymptotically optimal, the
pessimistic constant in (2.6) is due to the techniques employed in [13, 9, 2].

Quadrature weights in more realistic settings are obtained as follows. Using the series
expansion (1.3) with coefficients (1.1) and the relation Y 0

0 = 1/
√

4π, we see that equation
(2.4) is equivalent to the linear system of equations

Y ∗w =
√

4πe0, (2.9)

where Y is the nonequispaced spherical Fourier matrix

Y := (Y n
k (xi))i=0,...,M−1; n=0,...,N,|k|≤n ∈ CM×(N+1)2 ,

e0 is the unit vector
e0 := (1, 0, . . . , 0)> ∈ R(N+1)2

and w is the weight vector
w := (wi)i=0,...,M−1 ∈ RM .

Since we cannot say for which N the system (2.9) is solvable, except for N and XM satisfying
Lemma 2.1, we propose the following convex optimization problem

min
∥∥∥Y ∗w −√4πe0

∥∥∥
2

subject to w ≥ 0. (2.10)

3 Iterative solver

In order to use tools for real convex optimization we introduce the real convex optimization
problem

min
∥∥∥Aw −

√
4πe0

∥∥∥
2

subject to w ≥ 0 (3.1)

with

A :=
(

A>1
A>2

)
∈ R(N+1)2×M ,

A1 := Re (Y n
k (xi))i=0,...,M−1; n=0,...,N,0≤k≤n ∈ RM× (N+1)(N+2)

2 ,

A2 := Im (Y n
k (xi))i=0,...,M−1; n=1,...,N,−n≤k≤−1 ∈ RM×N(N+1)

2 .

This problem is equivalent to problem (2.10) due to the representation (2.2) of the spherical
harmonics

Y n
k (ϑ, ϕ) =

√
2n+ 1

4π
Pn|k|(cosϑ)(cos (kϕ) + i sin (kϕ)).

Recently, fast approximate algorithms for the matrix times vector multiplication with the
nonequispaced spherical Fourier matrix Y and its adjoint Y ∗ have been proposed in [11,
10]. For an implementation see [8]. Thus we immediately obtain a fast algorithm for the
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matrix times vector multiplication v := Aw ∈ R(N+1)2 based on the adjoint spherical Fourier
transform by computing ṽ := Y ∗w and setting

v = (vnk )n=0,...,N,−n≤k≤n with vnk :=

{
Re(ṽnk ) for k ≥ 0,
Im(ṽnk ) for k < 0.

Similar we compute the matrix times vector multiplication w := A>v ∈ RM again with the
spherical Fourier transform

w = Re (Y ṽ) after setting ṽnk :=

{
vnk for k ≥ 0,
ivnk for k < 0.

In both cases the arithmetical complexity is O
(
N2 log2N +M

)
.

In the following we present three methods used to solve problem (3.1). All of them make
use of the fast matrix vector multiplication proposed above. The first and second are adapted
standard algorithms for convex optimization whereas the third is a software package for
bound-constrained least-square problems [4].

3.1 Conjugate gradient method

To minimize the norm
∥∥Aw −

√
4πe0

∥∥
2

we consider the CGNR method. The drawback of the
CGNR method is that it does not take the constraints w ≥ 0 into account, so that we cannot
guarantee the nonnegativity of the solution. But we will see in the numerical tests in Section
4 that for well conditioned problems, i.e, the sampling sets are uniform distributed, we get
a nonnegative solution w by the CGNR method for problem (3.1) with polynomial degrees
close to the maximal degree of exactness. For ill conditioned problems we propose a reiterated
CGNR method. Here, we start with the CGNR method on the whole RM and restart the
CGNR method after deleting the nodes with negative weights. We repeat this until all remain-
ing weights wi are nonnegative or all nodes are deleted. Furthermore, the reiterated CGNR
method terminates the inner iteration besides the trivial termination conditions, if for the cur-
rent residual vector rl := Awl −

√
4πe0 the inequality ‖A∗rl‖2/‖A

∗b‖2 < 0.001‖rl‖2/‖b‖2
holds true or if the residual ‖rl‖2 /

∥∥√4πe0

∥∥
2

after 50 steps does not get lower.

3.2 Infeasible interior point method

Interior point methods are commonly used to solve linear optimization problems [14, 18].
Here we consider an adapted infeasible interior point method (IIPM) based on a damped
Newton iteration applied to the following nonlinear system of equations

Aw −
√

4πe0 = 0, 0 < w ∈ RM , (3.2)
A>y +∇b(w) = 0 (3.3)

with the barrier function b(w) := −
∑M−1

j=0 ln(wj) and dual variables y ∈ R(N+1)2 . For
µ = 1 and c = 0, these are the saddle-point conditions of the Lagrange function Lµ(w,y) :=
c>w + (Aw − b)>y + µb(w) of the minimization problem

min(c>w + µb(w)) subject to Aw =
√

4πe0, 0 < w,
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which motivates the primal-dual interior point methods. In our special case we are only
interested in nonnegative solutions w and do not care about the dual equations (3.3). The
challenge to use interior point methods with the CG method is that the condition number
of the linear system ADAT∆y = v in Algorithm 1 increases fast near the boundary of the
positive cone RM

+ where D denotes the inverse of the Hessian matrix

D := Hess (b(w))−1 :=
(
∂2b(w)
∂wi∂wj

)−1

i,j=0,...,M−1

= diag
(
w2
i

)
i=0,...,M−1

.

For the numerical tests we terminate the adapted IIPM, if in the outer iteration the current

Algorithm 1 adapted IIPM
Input: polynomial degree N ∈ N, number of nodes M ∈ N
sampling nodes xj ∈ S2, j = 1, . . . ,M
accuracy ε > 0, limit of iterations Lmax ∈ N, damping parameter % ∈ (0, 1)

Initialize w0 := (4π
M , . . . , 4π

M )> ∈ RM , y0 := (0, . . . , 0)> ∈ R(N+1)2 and l := 0

while ε <
‖Awl−

√
4πe0‖2

‖√4πe0‖2
and l < Lmax do

Dl := diag(w2
0, . . . , w

2
M−1)

∇b(wl) := −(w−1
0 , . . . , w−1

M−1)
Solve ADlA

>∆yl = Awl−
√

4πe0−ADl(A>yl+∇b(wl)) for ∆yl with the CG method
∆wl = −Dl(A>∆yl +∇b(wl) + A>yl)
Compute the maximal τmax,l such that wl + τmax,l ·∆wl > 0
τl := min(1, % · τmax,l)
wl+1 := wl + τl ·∆wl

yl+1 := yl + τl ·∆yl
l := l + 1

end while

Output: quadrature weights w > 0

residual
∥∥Awl −

√
4πe0

∥∥
2
/
∥∥√4πe0

∥∥
2

is greater than the previous residual or if it is lower
than the accuracy of the solution obtained in the CG method. The CG method stops, if the
residual after 50 steps does not get lower.

3.3 Bound-constrained least-squares formulation

For solving bound-constrained least-squares problems (BCLS) of the more general form

min
l≤w≤u

1
2

∥∥∥Aw −
√

4πe0

∥∥∥2

2
+

1
2
µ ‖w‖2 + c>w

where the vectors l,u are bounds for the solution w and µ ∈ [0,∞) is a regularization
parameter, we use the BCLS software package [4]. The used algorithm is based on iterative
solvers, which makes it suitable for our considerations. To obtain the optimization problem
(3.1) we set l = 0 ∈ RM , u = (4π, . . . , 4π)T ∈ RM , µ = 0 and c = 0 ∈ RM . Furthermore, we
set the flags BCLS PROJ SEARCH EXACT and BCLS NEWTON STEP CGLS.
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4 Numerical results

The methods were tested on an Intel Pentium 4 with 3.2 GHz and 1 GB memory and a
standard 32 Bit Linux using the nfft3 library [8]. For the nonequispaced fast spherical Fourier
transform (nfsft) we set the flag PRE PSI, the threshold parameter κ = 1000 and the cutoff
parameter m = 9. Furthermore, we set the requested accuracy to ε =1e-15. Because of
this high precision the algorithms terminate in the most cases before this accuracy could be
achieved.

We consider four different examples of sets of sampling nodes on the sphere, which are
almost uniformly distributed, as well as a random set of nodes on the sphere. Furthermore we
consider a special grid based on a tensor product, where the polynomial degree of exactness is
already known, and nodes given by positions along a satellite track. In the Tables 4.1 - 4.7 we
illustrate some numerical results. We list the final residual

∥∥Aw −
√

4πe0

∥∥
2
/
∥∥√4πe0

∥∥
2
, the

number of outer and the average number of inner iterations according to the used methods.
Due to the lack of further termination conditions in the BCLS package we give a limit of
maximal iterations, which depends on the examples, and mark this intervention by *.

We start with grids where the quadrature weights are known analytically.

Example 4.1. The Gauss-Legendre quadrature grid XG
S of size S ∈ N0 is the Cartesian

product

XG
S :=

{
ϑG
j : j = 0, . . . , S

}
×
{

kπ

S + 1
: k = 0, . . . , 2S + 1

}
with equispaced latitudinal nodes. For the longitudinal direction we use the Gauss-Legendre
quadrature with nodes ϑG

j . The corresponding weights wG
j can be obtained as the unique

solution of an eigenvalue problem, see [1, pp. 95]. The weights for the entire quadrature
formula are then given by

WG
S :=

{
wG
j,k :=

2π
2S + 2

wG
j : j = 0, . . . , S; k = 0, . . . , 2S + 1

}
.

The number of nodes is M = 2S2+4S+2 and the quadrature formula is exact for polynomials
with degree N ≤ 2S + 1. We choose S = 48, i.e., M = 4802 and compute the weights
for the polynomial degree N = 2S + 1 = 97. It is remarkable that we obtain the Gauss-
Legendre weights for N = 97, even though the system of equations in (3.1) is overdetermined.
Furthermore we test our algorithms for the case N = 98 where all algorithms fail in finding
nonnegative quadrature weights, cf. Table 4.1.

Example 4.2. A set of M sampling nodes is called a spherical t-design if the integral of any
polynomial of degree at most t over the sphere S2 is equal to the average value of the polyno-
mial over the set of M nodes. For the tests we choose some t-designs with minimal cardinality
from [7]. We remark that in these cases the system of equations (3.1) is overdetermined, too.
Table 4.2 shows the results obtained using the CGNR method, all other methods work as
well.
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iterations
algorithm N residual outer inner time

reiterated CGNR 97 2.134744e-14 1 38.0 29s
adapted IIPM 97 2.148676e-14 3 78.3 163s

BCLS 97 1.647701e-07 7∗ 5.0 26s
reiterated CGNR 98 7.906984e-01 2 10.5 15s

adapted IIPM 98 9.199394e-01 1 51.0 34s
BCLS 98 7.906984e-01 4∗ 25.0 44s

Table 4.1: Results for the Gauss-Legendre grid of size M = 4802, i.e. S = 48, and requested
polynomial degree of exactness N .

set of sampling nodes M N residual iterations time
vertices of the regular octahedron 6 3 2.944461e-16 1 0s
vertices of the regular icosahedron 12 5 1.749046e-15 2 0s

13-design 94 13 1.506909e-11 10 0s
17-design 156 17 6.542798e-07 10 0s
21-design 240 21 6.524231e-06 9 0s

Table 4.2: Results for spherical t-design of size M and requested polynomial degree of exact-
ness N .

Example 4.3. The HEALPix grid XH
S is an equal area partitioning scheme on the sphere and

has importance in several applications, e.g. for cosmic microwave background data analysis
[5]. It comprises M = 12S2 nodes and is given explicitly by

NS :=

{(
arccos

(
1− k2

3S2

)
,
π
(
n+ 1

2

)
2k

)
: k = 1, . . . , S − 1; n = 0, . . . , 4k − 1

}
,

ES :=


arccos

(
2(2S − k)

3S

)
,
π
(
n+ δ0,(k+S) mod 2

2

)
2S

 : k = S, . . . , 3S; n = 0, . . . , 4S − 1

 ,

SS :=

{(
arccos

(
−
(

1− k2

3S2

))
,
π
(
n+ 1

2

)
2k

)
: k = 1, . . . , S − 1; n = 0, . . . , 4k − 1

}
,

XH
S := NS ∪ ES ∪ SS .

A drawback is that HEALPix grids lack an exact integration scheme with easily computable
weights. Test results for the proposed algorithms applied to the HEALPix grids are shown
in Table 4.3. It is remarkable that the residual achieved by the BCLS package keeps under
1e-8 for the HEALPix grid of size S = 20 and the polynomial degrees N = 61, 62, 63. The
residual deteriorate from 1e-14 for degree N = 61 to 1e-5 for degree N = 62, 63 using the
other methods.

By means of our implementation we are able to compute quadrature weights for HEALPix
grids up to degree of exactness N = 1024 and higher, since these algorithms do not store the

8



whole Fourier matrix Y into memory. Some test results are shown in Table 4.4. These tests
were run on an Intel Xeon with 3GHz and 16GB and a 64-bit Linux.

Furthermore Figure 4.1 shows, that by using M ≈ 4
3(N+1)2 nodes, we are able to integrate

polynomials up to degree N with relative error around 1e-12, where we used the CGNR
method and set the accuracy to ε =1e-12.

0
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Figure 4.1: It seems there is a linear relation between the dimension dN = (N + 1)2 of
the polynomial space ΠN and the maximal degree of exactness N with accuracy∥∥Aw −

√
4πe0

∥∥
2
/
∥∥√4πe0

∥∥
2
< 1e-12 for HEALPix grids of size M = 12S2.

iterations
algorithm N residual outer inner time

reiterated CGNR 61 5.515829e-15 1 48.0 21s
adapted IIPM 61 4.020338e-15 3 134.3 200s

BCLS 61 3.192499e-10 5∗ 11.8 23s
reiterated CGNR 62 1.290948e-06 1 119.0 49s

adapted IIPM 62 2.168341e-06 1 88.0 33s
BCLS 62 1.618963e-10 5∗ 99.2 154s

reiterated CGNR 63 1.290948e-06 1 125.0 50s
adapted IIPM 63 2.168341e-06 1 88.0 33s

BCLS 63 1.165060e-09 5∗ 99.8 137s

Table 4.3: Results for the HEALPix grid of size M = 4800, i.e., S = 20, and requested poly-
nomial degree of exactness N .

Example 4.4. The Reuter grid XE
S is a so-called equidistribution grid of size S ∈ N for which

in the limit S → ∞ the average value of a continuous function over the M sampling nodes
approaches the integral of this function over the sphere S2, see [3, Chapter 7]. We took the
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M N residual total iterations time
367500 512 3.242945e-13 2883 9h
410700 512 1.918440e-14 173 35min
1687500 1024 1.088695e-14 93 97min

Table 4.4: Results for HEALPix grids of size M and requested polynomial degree of exactness
N using the reiterated CGNR method.

ensemble [3, Example 7.1.9] with nodes given by

XE
S := {x0,0 = (0, 0), xS,0 = (π, 0)} ∪

S−1⋃
j=1

{
xj,k =

(
jπ

S
,

(
k − 1

2

)(
2π
Sj

))
: k = 1, . . . , Sj

}
,

Sj :=

 1 , if j = 0 or j = S,⌊
2π/arccos

((
cos

π

S
− cos2 jπ

S

)
/ sin2 jπ

S

)⌋
, if 0 < j < S.

An upper bound for the number of nodes is M ≤ 2 + 4
πS

2. Table 4.5 shows us similar results
for the Reuter grid as for the HEALPix grids. It seems that for size S = 61 the maximal degree
of exactness is 60. Additionally, we observe the same behavior for the spiral nodes given in
[16]. We also have to choose M ≈ 4

3(N + 1)2 nodes in oder to have degree N of numerical
exactness.

iterations
algorithm N residual outer inner time

reiterated CGNR 60 2.277367e-15 1 32.0 13s
adapted IIPM 60 1.302229e-14 3 80.0 85s

BCLS 60 3.860017e-09 5∗ 4.4 10s
reiterated CGNR 61 3.247092e-06 1 37.0 18s

adapted IIPM 61 9.272831e-06 1 66.0 27s
BCLS 61 3.247492e-06 5∗ 10.6 19s

reiterated CGNR 62 1.562653e-05 1 78.0 34s
adapted IIPM 62 5.206605e-05 1 114.0 58s

BCLS 62 1.562656e-05 5∗ 19.6 31s

Table 4.5: Results for the Reuter grid of sizeM = 4768, i.e., S = 61, and requested polynomial
degree of exactness N .

Example 4.5. Now we consider sampling nodes of the track data of the NASA’s MAGSAT
spacecraft logged between December 1 and December 12, 1979 (available from the webpage
http://ftpbrowser.gsfc.nasa.gov/magsat.html). This dataset consists of 2 015 993 sam-
pling nodes in total. Using every 400th node we obtain N = 37 for the maximal degree
of numerical exactness. Even taking every 50th node into account we cannot increase the
maximal degree under the nonnegativity constraint. This can be explained by the missing
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sampling nodes near the poles, cf 4.2. In particular, we know from [15, Theorem 6.21] that
for positive (and so nonnegative) quadrature weights and degree of exactness 2L the mesh
norm of the corresponding sampling set X has to be bounded by

δX ≤ 2 arccos zL, (4.1)

where zL is the greatest zero of the L-th Legendre polynomial PL. The sampling nodes of the
track data fulfill δX ≈ 0.237 > 2 arccos z20 ≈ 0.235. Hence the maximal degree of exactness
is at most N = 39. This illustrates that the bound given by (4.1) is indeed quite sharp and
that our algorithms work pretty well.

(a) Every 400th node is used. (b) Every 50th node is used.

Figure 4.2: Sampling nodes of NASA’s MAGSAT track data.

Example 4.6. Finally we consider a uniform random distribution over the sphere with M =
4800 nodes in Table 4.6 and M = 106 nodes in Table 4.7, respectively. Both tables show that
it is a challenge to compute nonnegative quadrature weights for random nodes with iterative
solvers for a high polynomial degree and a high accuracy. Nevertheless, Table 4.7 shows that
we can indeed compute nonnegative quadrature weights for degree N = 400 and N = 500
with accuracy around 1e-13 on an Intel Xeon 3GHz with 16GB main memory. Moreover, the
estimate (4.1) from Example 4.5 yields the following upper bounds for the maximal degree
of exactness. The mesh norm for the realization with 4800 random nodes is δX1 ≈ 0.181 >
2 arccos z27 ≈ 0.175 and thus, the maximal degree of exactness cannot be greater than N = 53.
For the realization with one million random nodes the maximal degree of exactness is at most
N = 577, since the mesh norm satisfies δX2 ≈ 0.01663 > 2 arccos z289 ≈ 0.01661.

5 Conclusions

We compared three algorithms for computing nonnegative quadrature weights at several dis-
tributions of sampling nodes. It turns out that for well distributed sampling nodes the CGNR
method suffices to compute nonnegative quadrature weights and is practical in a reiterated
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iterations
algorithm N residual outer inner time

reiterated CGNR 41 7.727673e-15 7 275.3 7min
adapted IIPM 41 1.654468e-12 7 496.6 19min

BCLS 41 1.848869e-02 445∗ 44.9 86min
reiterated CGNR 42 1.133570e-14 8 494.0 14min

adapted IIPM 42 7.014779e-04 9 713.6 30min
reiterated CGNR 43 8.915856e-02 9 778.1 30min

adapted IIPM 43 1.604574e-01 7 467.7 15min

Table 4.6: Results for one realization of a random distribution with M = 4800 nodes and
requested polynomial degree of exactness N .

N residual total iterations time
400 6.652828e-14 410 3h
500 4.843589e-13 2814 19h

Table 4.7: Results for one realization of a random distribution with M = 1 000 000 nodes and
requested polynomial degree of exactness N using the reiterated CGNR method.

variant also for random distributions. Furthermore, combined with the nonequispaced fast
spherical Fourier transform [8] we are able to compute nonnegative quadrature weights for
suitable sets of sampling nodes up to polynomial degree N = 1024.
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[5] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke,
and M. Bartelmann. HEALPix: A framework for high-resolution discretization and fast
analysis of data distributed on the sphere. The Astrophysical Journal, 622:759–771, 2005.

[6] W. Habicht and B. L. van der Waerden. Lagerung von Punkten auf der Kugel. Math.
Ann., 123:223 – 234, 1951.

[7] R. H. Hardin and N. J. A. Sloane. Spherical designs, a library of putatively optimal
spherical t-designs. http://www.research.att.com/~njas/sphdesigns, 2002.

[8] J. Keiner, S. Kunis, and D. Potts. NFFT 3.0, C subroutine library.
http://www.tu-chemnitz.de/~potts/nfft, 2006.

[9] J. Keiner, S. Kunis, and D. Potts. Efficient reconstruction of functions on the sphere
from scattered data. J. Fourier Anal. Appl., 13:435 – 458, 2007.

[10] J. Keiner and D. Potts. Fast evaluation of quadrature formulae on the sphere. Math.
Comput., 77:397 – 419, 2008.

[11] S. Kunis and D. Potts. Fast spherical Fourier algorithms. J. Comput. Appl. Math.,
161:75 – 98, 2003.

[12] Q. T. Le Gia and H. N. Mhaskar. Quadrature formulas and localized linear polynomial
operators on the sphere. SIAM J. Numer. Anal. accepted.

[13] H. N. Mhaskar, F. J. Narcowich, and J. D. Ward. Spherical Marcinkiewicz-Zygmund
inequalities and positive quadrature. Math. Comput., 70:1113 – 1130, 2001. Corrigendum
on the positivity of the quadrature weights in 71:453 – 454, 2002.

[14] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations
Research and Financial Engineering. Springer, New York, second edition, 2006.

[15] M. Reimer. Multivariate Polynomial Approximation. Birkhäuser Verlag, Basel, 2003.
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