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Scattered data approximation problems on the rotation group SO(3) naturally
arise in various fields like crystallography, chemistry and biology. In order to
answer different questions related to polynomial approximation procedures for
such problems, Marcinkiewicz-Zygmund inequalities on the rotation group are a
very powerful tool. These inequalities provide norm equivalences between poly-
nomials on SO(3) and their sample values at scattered sites. Recently shown
equivalences depend on a density parameter of the sampling set and the proven
inequalities hold true for polynomials on SO(3) whose degree does not exceed an
upper bound which is determined by this density parameter. In this paper, we
show that we can enlarge this upper bound for the polynomial degree significantly
if we are satisfied by such norm equivalences that hold with a given probability
only. Moreover, we show that there are fixed sampling sets for which we get prob-
abilistic Marcinkiewicz-Zygmund inequalities that hold for polynomials on SO(3)
of all degrees.

Keywords Marcinkiewicz-Zygmund inequalities, rotation group, scattered data, Wigner-D
functions, random polynomials

1 Introduction

Scattered data approximation problems on the rotation group SO(3) are of great importance
in many applications in science and engineering. Such problems naturally arise, for example,
in crystallographic texture analysis, biochemistry and geometry processing (Butzlaff et al.
(1992); Gutzmer (1996); Cramer (2004); Bunge (1982); Kunze et al. (1993); v.d. Boogaart
et al. (2007); Funkhouser et al. (2003)). The monograph by Chirikjian and Kyatkin (2001)
provides a great collection of problems, where also matrix groups different from SO(3) are
involved. Usually the setting is as follows. Given a data set D := {(Gj , yj) ∈ SO(3) × C :
j = 0, . . . ,M − 1}, we suppose the yj ’s to be point evaluations of an unknown function
f : SO(3) → C. Now one tries to recover f from the given data D. There are various
methods to handle such scattered data approximation problems on the rotation group. A
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prominent approach uses so-called positive definite basis functions to interpolate the given
data D (Erb and Filbir; Filbir and Schmid (2008); Gutzmer (1996)). Recently, fast algorithms
for the calculation of Fourier transforms on the rotation group have become available (Kostelec
and Rockmore (2008); Potts et al. (submitted)). This powerful tool at hand, approximation
procedures using finite expansions into Wigner-D functions, subsequently called polynomials
on SO(3), to approximate the given data D have attracted more and more attention (Gräf
and Kunis; Schmid (2008)). In this respect, so-called Marcinkiewicz-Zygmund inequalities
for polynomials on SO(3) are an essential tool to answer different problems that come along
with the polynomial approximation on SO(3). Recently, by Schmid (2008) such inequalities
have been proven. There it is shown that

cp‖f‖p ≤ ‖f‖w,p ≤ Cp‖f‖p (1.1)

holds true for all polynomials f on SO(3) up to a degree N , where the constants cp, Cp > 0
depend on a density parameter of the underlying sampling set. Here, ‖·‖p is the usual Lp-norm,
‖ · ‖w,p denotes a weighted `p-norm and f is the vector of samples of f at the sampling points
Gj . We see that (1.1) gives bounds for the norm of the corresponding sampling operator and
its inverse. Hence, the inequalities are of importance in connection with stable reconstruction
of polynomials on SO(3) from their scattered samples and the design of quadrature formulas.
See Mhaskar et al. (2001); Keiner et al. (2007); Filbir and Themistoclakis (2008) for such
applications of spherical Marcinkiewicz-Zygmund inequalities.

In this paper, we show that, in the important case p = 2, we can relax the condition on
the polynomial degree N significantly if we are satisfied by such norm equivalences that hold
with a given probability only. More precisely, we assume that the coefficients in the finite
expansions into Wigner-D functions are taken randomly from the uniform distribution on a
ball of appropriate dimension. Then we can show that inequalities of the form (1.1) hold
true with a prescribed probability for polynomials up to a relatively high degree. Moreover,
we can prove that there are sampling sets in SO(3) such that we can guarantee (1.1) with a
given probability for all polynomial degrees N ≥ 0. To this end, we follow closely the ideas of
Böttcher et al. where probabilistic spherical Marcinkiewicz-Zygmund inequalities have been
derived, and we carry over their argumentation to the rotation group SO(3).

The outline of the paper is as follows. In the next section, we review some basic material
and necessary notation on the rotation group SO(3) to keep the paper self-contained. We
also give a brief introduction about concepts on sampling on SO(3) and present some known
results. These results are going to be the main ingredients in order to derive our results in
the subsequent section. There we prove probabilistic Marcinkiewicz-Zygmund inequalities on
SO(3) and show the existence of universal sampling sets on the rotation group. Finally, we
present some numerical examples that confirm our significant relaxations on the conditions
for the polynomial degree.

2 Preliminaries

2.1 Analysis on SO(3)

Let SO(3) := {G ∈ R3×3 : GTG = I, det G = 1} denote the non-Abelian compact group
of proper rotations in the Euclidean space R3 and let µ be the normalized Haar measure on
SO(3), i.e. we have

∫
SO(3) dµ(G) = 1. Using the well-known parameterization of SO(3) via
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Euler angles Gelfand et al. (1963), the Haar integral of a measurable function f on SO(3)
reads as ∫

SO(3)
f(G)dµ(G) =

1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f (ϕ1, θ, ϕ2) sin θ dϕ1 dθ dϕ2. (2.1)

The Hilbert space L2(SO(3)) of all square integrable functions is determined by the scalar
product with induced norm

〈f, g〉 :=
∫
SO(3)

f(G)g(G)dµ(G), ‖f‖22 :=
∫
SO(3)

|f(G)|2 dµ(G).

In order to get an orthogonal basis system for the L2(SO(3)) we will make use of some
fundamental results from the representation theory of this non-Abelian compact group.
Let {Y l

k : l ∈ N0, k = −l, . . . , l} denote the canonical orthonormal basis of spherical harmonics
on the space of all square integrable functions on the unit sphere S2 ⊂ R3 and let Hl :=
span{Y l

k : k = −l, . . . , l}. For given l ∈ N0 we assign each element G ∈ SO(3) the linear
transformation Dl(G) : Hl → Hl defined by

Dl(G)f(ξ) := f(G−1ξ), f ∈ Hl, ξ ∈ S2.

Each Dl, l ∈ N0, can be written as a (2l+1)× (2l+1)- matrix with matrix coefficients defined
by the following system of linear equations

Y l
k(G−1ξ) =

l∑
k′=−l

Dl
k,k′(G)Y l

k′(ξ), k = −l, . . . , l, ξ ∈ S2.

The functions Dl
k,k′ are often called Wigner-D functions of degree l and orders k and k′. It

is well-known that the Dl, l ∈ N0, form a complete set of unitary irreducible representations
of the rotation group. Thus the dual object SO(3)̂ can be identified with N0 and due to the
Peter-Weyl Theorem the matrix coefficients Dl

k,k′ form an orthogonal basis of the L2(SO(3)).
Hence, every f ∈ L2(SO(3)) can be expanded in a SO(3) Fourier series

f =
∑
l∈N0

l∑
k,k′=−l

√
2l + 1 f̂ lk,k′D

l
k,k′

with SO(3) Fourier coefficients f̂ lk,k′ =
√

2l + 1〈f,Dl
k,k′〉 =

√
2l + 1

∫
SO(3) f(G)Dl

k,k′(G)dµ(G).
Furthermore, for f ∈ L2(SO(3)), Parseval’s equality reads as

‖f‖22 =
∑
l∈N0

l∑
k,k′=−l

∣∣∣f̂ lk,k′∣∣∣2. (2.2)

A remarkable and useful property of the Wigner-D functions is the addition theorem

l∑
k,k′=−l

Dl
k,k′ (G)Dl

k,k′ (H) = U2l

(
cos

d (G,H)
2

)
, (2.3)

where Ul(cosω) = sin((l+1)ω)/ sin(ω) denotes the l-th Chebyshev polynomial of second kind.
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We call functions with finite Fourier expansion polynomials on SO(3). Hence, we define
the space of polynomials on SO(3) with degree at most N by

ΠN := span
{
Dl
k,k′ : l = 0, . . . , N ; k, k′ = −l, . . . , l

}
.

The spaces ΠN , indeed, admit a polynomial behavior, i.e. for f ∈ ΠN1 and g ∈ ΠN2 we have,
cf. (Schmid, 2009, Eq. (3.54)),

f · g ∈ ΠN1+N2 . (2.4)

We have dN := dim(ΠN ) = 1
6(2N + 1)(2N + 2)(2N + 3) for the dimension of the space ΠN .

For the SO(3) Fourier coefficients of polynomials f ∈ ΠN we introduce the index set

JN := {(l, k, k′) : l = 0, . . . , N ; k, k′ = −l, . . . , l}.

2.2 Sampling data

Besides the parameterization via Euler angles, the parameterization of the rotation group via
the projective space is of some importance to us. This parameterization yields a translation
invariant metric on SO(3) which enables us to quantify different sampling sets on the rotation
group.

Let Kπ be the closed ball in R3 of radius π centered at the origin and identify antipodal
points on its surface. This is the three dimensional projective space. An element G ∈ SO(3)
is identified with a point in the projective space Kπ by G→ ω · r where r, satisfying Gr = r
and ‖r‖ = 1, is the rotation axis and ω, which can be chosen in [0, π], is the rotation angle of
G. A function that only depends on the rotation angle ω = ω(G) is called conjugate invariant
or central. For a central function f on SO(3) the Haar integral (2.1) simplifies to∫

SO(3)
f(G)dµ(G) =

2
π

∫ π

0
f(ω) sin2

(ω
2

)
dω. (2.5)

Furthermore, it is easy to see that

d(G,H) := ω(H−1G)

defines a translation invariant metric on SO(3).
We can use the metric d to quantify a sampling set

X := {Gj ∈ SO(3) : j = 0, . . . ,M − 1} .

To do so we define two parameters. The first one is given by the separation distance

qX := min
0≤j<k≤M−1

d(Gj ,Gk),

which measures in some respect the “nonuniformity” of X ⊂ SO(3). We call a sampling set
X q-separated for some q ∈ (0, π] if qX ≥ q. From (Filbir and Schmid, 2008, Lemma 5.1) we
know that every q-separated sampling set X has cardinality

M ≤ 109π
2q3

. (2.6)
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For further considerations we decompose a q-separated sampling set X into shells

RX ,q,m := {G ∈ X : mq ≤ d(G, I) < (m+ 1)q} , m ∈ N0,

where the cardinality can be estimated by (Gräf and Kunis, Lemma 3.1)

|RX ,q,m| ≤ 48m2 + 48m+ 28. (2.7)

Note that RX ,q,m = ∅ whenever mq > π. On the other hand, the mesh norm

δX := 2 max
H∈SO(3)

min
j=0,...,M−1

d(Gj ,H)

describes the “density” of X ⊂ SO(3). We call a sampling set X δ-dense for some δ ∈ (0, π]
if δX ≤ δ.

In order to compensate for clusters in the sampling set X , it is reasonable to weight
the sampling nodes Gj ∈ X . To this end, we introduce for a given sampling set X =
{Gj ∈ SO(3) : j = 0, . . . ,M − 1} an associated partition

R := {Ωj ⊂ SO(3) : j = 0, . . . ,M − 1}

of SO(3), i.e. R is a collection of M closed regions Ωj ⊂ SO(3), having no common interior
points and covering the whole rotation group, i.e

⋃M−1
j=0 Ωj = SO(3). Moreover, we require

that Gj is an interior point of Ωj for all j = 0, . . . ,M − 1. With respect to the partition R
we define the corresponding weights by

w := (w0, . . . , wM−1)T ∈ RM , wj :=
∫

Ωj

dµ(G) = µ(Ωj).

Finally, the partition norm R of the partition R is given by

R := max
j=0,...,M−1

diam Ωj := max
j=0,...,M−1

max
G,H∈Ωj

d(G,H).

Remark 2.1
Given a set X = {Gj ∈ SO(3) : j = 0, . . . ,M − 1} of sampling points on SO(3), there are
many possibilities to construct an associated partition R. In many situations, the so-called
Voronoi partition RV , which is determined by

ΩV
j :=

{
H ∈ SO(3) : d(Gj ,H) = min

k=0,...,M−1
d(Gk,H)

}
, j = 0, . . . ,M − 1,

is a reasonable choice. Using the Voronoi partition RV corresponding to a given sampling set
X we obtain

1
2
δX ≤ RV ≤ δX ,

where RV denotes the partition norm of RV . This relation, in turn, makes it possible by
using the Voronoi partition to express all of the following results that depend on the partition
norm of the underlying partition in terms of the mesh norm δX of the given sampling set
X ⊂ SO(3).
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In the next step, we would like to get a uniform upper bound on the weights wj by means
of the partition norm R. For this, let Br(G) := {H ∈ SO(3) : d(G,H) ≤ r} be the ball of
radius r ≥ 0 with center G ∈ SO(3). Then we can find for every j = 0, . . . ,M − 1 an element
Hj ∈ Ωj such that Ωj ⊂ BR(Hj). With (2.5) we get for arbitrary j = 0, . . . ,M − 1

wj ≤ µ (BR(Hj)) = µ (BR(I)) =
2
π

∫ R

0
sin2

(
t

2

)
dt ≤ 1

2π

∫ R

0
t2dt =

R3

6π
. (2.8)

We define the discrete spaces `pw(SO(3)) , 1 ≤ p ≤ ∞, corresponding to the sampling set X
with associated partition R in the usual manner with norm

‖f‖w,p :=



M−1∑
j=0

wj |f(Gj)|p
1/p

1 ≤ p <∞,

sup
j=0,...,M−1

|f(Gj)| p =∞.

To use the compact matrix-vector notation we introduce the non-equispaced SO(3) Fourier
matrix

D :=
(
Dl
k,k′(Gj)

)
j=0,...,M−1;(l,k,k′)∈JN

∈ CM×dN

for the sampling set X and polynomial degree N , as well as the sampling vector

f := (f(G0), . . . , f(GM−1))T ∈ CM

of a given polynomial f ∈ ΠN . Furthermore, we identify the polynomial f with its SO(3)
Fourier coefficients vector

f̂ := (f̂ lk,k′)(l,k,k′)∈JN ∈ CdN .

A major role in our further considerations is played by the weighted SO(3) Fourier matrix

A := W
1
2 DŴ

1
2 ∈ CM×dN , (2.9)

where
Ŵ := diag(ŵ) ∈ RdN×dN , ŵ := (2l + 1)(l,k,k′)∈JN ∈ RdN

is a scale matrix and
W = diag(w) ∈ RM×M

contains the weights wj of the associated partition R on the diagonal.
With help of the weighted SO(3) Fourier matrix A we can express the weighted `2w-norm

of a polynomial f ∈ ΠN by its SO(3) Fourier coefficients vector f̂ using

‖Af̂‖22 =
M−1∑
j=0

∣∣∣∣∣∣√wj
N∑
l=0

l∑
k,k′=−l

√
2l + 1 f̂ lk,k′D

l
k,k′(Gj)

∣∣∣∣∣∣
2

=
M−1∑
j=0

wj |f(Gj)|2 = ‖f‖2w,2. (2.10)

Hence, due to Parseval’s equality (2.2) we can formulate the problem of norm equivalences
between ‖f‖2 and ‖f‖w,2 in terms of SO(3) Fourier coefficients f̂ , i.e. ‖f̂‖2 and ‖Af̂‖2.
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2.3 Preliminary results

We conclude this section by collecting some necessary results, which are going to be main
ingredients in order to show our results in the next section. First, we have the following
deterministic L2-Marcinkiewicz-Zygmund inequality.

Theorem 2.2
Let X = {Gj ∈ SO(3) : j = 0, . . . ,M − 1} be a set of sampling points on SO(3) with
associated partition R = {Ωj ⊂ SO(3) : j = 0, . . . ,M − 1} and let ε ∈ (0, 1). If NR < ε

924 ,
then we have for every polynomial f ∈ ΠN

(1− ε) ‖f‖22 ≤ ‖f‖
2
w,2 ≤ (1 + ε) ‖f‖22 . (2.11)

Proof. Let f ∈ ΠN be given. From |f2(G)| = |f(G)|2 for all rotations G ∈ SO(3) we infer
that (2.11) is equivalent to

(1− ε)
∥∥f2

∥∥
1
≤
∥∥f2

∥∥
w,1
≤ (1 + ε)

∥∥f2
∥∥

1
.

Since f2 ∈ Π2N , cf. (2.4), and 2NR < ε
462 the assertion follows from (Schmid, 2008, Theorem

4.4).

Under a much weaker condition on the polynomial degree N we still get the following upper
bound, which is essential to relax the condition in the probabilistic Marcinkiewicz-Zygmund
inequality.

Lemma 2.3
Let X = {Gj ∈ SO(3) : j = 0, . . . ,M − 1} be a set of sampling points on SO(3) with
associated partition R = {Ωj ⊂ SO(3) : j = 0, . . . ,M − 1}. If NR ≤ 1, then we have for
every polynomial f ∈ ΠN

‖f‖w,1 ≤ (1 + 1345NR) ‖f‖1 . (2.12)

Proof. For N = 0 the assertion is trivially fulfilled. So we may assume N ≥ 1. We follow
exactly the proof of (Schmid, 2008, Lemma 4.3) to show that if NR ≤ 1, we have for every
H ∈ SO(3)

M−1∑
j=0

∫
Ωj

∣∣vN (H−1G)− vN (H−1Gj)
∣∣dµ(G) ≤ 1345NR, (2.13)

where vN is the reproducing kernel defined in (Schmid, 2008, (3.1)). Let K := b πRc. Following
the proof of (Schmid, 2008, Lemma 4.3) line by line under the condition NR ≤ 1 we end up
with the estimate

M−1∑
j=0

∫
Ωj

∣∣vN (H−1G)− vN (H−1Gj)
∣∣ dµ(G)

≤ 1449.1
N

K
+

2
π

2∑
k=1

∫ (k+1)π
K

(k−1)π
K

∫ (k+1)π
K

(k−1)π
K

∣∣∣∣ d
dt
vN (t)

∣∣∣∣ sin2

(
θ

2

)
dtdθ.
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Using (Schmid, 2008, Lemma 3.3), we get the estimate

2
π

2∑
k=1

∫ (k+1)π
K

(k−1)π
K

∫ (k+1)π
K

(k−1)π
K

∣∣∣∣ d
dt
vN (t)

∣∣∣∣ sin2

(
θ

2

)
dtdθ

≤ 2
π

(∫ 2π/K

0

∣∣∣∣ d
dt
vN (t)

∣∣∣∣dt∫ 2π/K

0

(
θ

2

)2

dθ +
∫ 3π/K

π/K

∣∣∣∣ d
dt
vN (t)

∣∣∣∣ dt ∫ 3π/K

π/K

(
θ

2

)2

dθ

)

≤ 1
2π

(
2π
K
‖v′N‖∞

∫ 2π/K

0
θ2dθ +

2π
K
‖v′N‖∞

∫ 3π/K

π/K
θ2dθ

)

=
1

2π

(
2π
K
‖v′N‖∞

(
8π3

3K3
+

26π3

3K3

))
≤ 34π3

3K4
· 2n‖vN‖∞ ≤

1360π3

3
· N

4

K4
.

Since N 6= 0 together with NR ≤ 1 implies R ≤ 1, we get

N

K
≤ N

π
R − 1

=
NR

π −R
≤ NR

π − 1
≤ 1
π − 1

.

So we arrive at

M−1∑
j=0

∫
Ωj

∣∣vN (H−1G)− vN (H−1Gj)
∣∣dµ(G) ≤ 1449.1

N

K
+

1360π3

3
· N

4

K4

≤

(
1449.1 +

1360π3

3

(
1

π − 1

)3
)
N

K
≤ 2880.2

N

K
≤ 2880.2

π − 1
NR ≤ 1345NR,

which shows (2.13). Finally, using the reproduction property of the kernel vN (see Schmid
(2008, Lemma 3.3 (ii))) and (2.13) we get

∣∣∣‖f‖w,1 − ‖f‖1∣∣∣ ≤
 sup

H∈SO(3)

M−1∑
j=0

∫
Ωj

|vN (H−1G)− vN (H−1Gj)|dµ(x)

 · ‖f‖1
≤ 1345NR ‖f‖1,

and that completes the proof of the lemma.

For further considerations in the next section we introduce some more notations. Let P(E)
denote the probability of an event E. Furthermore, we equip Cn with the `2-norm ‖x‖22 =∑n

j=1 |xj |2 and we define the complex unit sphere Bn := {x ∈ Cn : ‖x‖2 = 1} . With these no-
tations, we can state the following crucial lemma, which was already established in (Böttcher
et al., Corollary 2.2) and is based on the paper of Böttcher and Grudsky (2003). Therein and
in the remainder of this paper we denote by ‖B‖F :=

√
tr(B∗B) the Frobenius norm of a

matrix B ∈ Cm×n.
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Lemma 2.4
Let A ∈ Cm×n and ‖A‖2F = n. If x is taken at random from the uniform distribution on Bn,
then for every ε ∈ (0, 1) we have

P
(

(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22
)
≥ 1−

2‖AA∗‖2F
n2ε2

. (2.14)

Let us briefly display what the use of Lemma 2.4 is. For this, let us assume for the moment
that we are given a matrix A ∈ Cm×n with ‖A‖2 ≤ γ and ‖A‖2F = n. Then we have

‖AA∗‖2F ≤ ‖A‖2F ‖A∗‖22 = n‖A‖22 ≤ nγ2

and so estimate (2.14) becomes

P
(

(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22
)
≥ 1− 2γ2

nε2
(2.15)

for each ε ∈ (0, 1). Choosing ε = 1/ 3
√
n, we arrive at

P
((

1− 1
3
√
n

)
‖x‖22 ≤ ‖Ax‖22 ≤

(
1 +

1
3
√
n

)
‖x‖22

)
≥ 1− 2γ2

3
√
n
. (2.16)

In other words we can observe that the values ‖Ax‖2 are concentrated tightly close to ‖x‖2
with a probability that converges to 1 as n goes to infinity, although deterministically we
cannot say more than ‖Ax‖2 ≤ γ‖x‖2. In the next section we will see that the weighted
SO(3) Fourier matrix A ∈ CM×dN , cf. (2.9), enjoys the properties that ‖A‖2 has controllable
upper bounds and that ‖A‖2F = dN . Thus, for these matrices we get estimates like (2.15)
and (2.16), which are very useful in connection with probabilistic Marcinkiewicz-Zygmund
inequalities (cf. (2.10)).

3 Probabilistic Marcinkiewicz-Zygmund inequalities

In the following we always let the polynomial f ∈ ΠN be given by

f :=
∑

(l,k,k′)∈JN

√
2l + 1f̂ lk,k′D

l
k,k′ ,

where the SO(3) Fourier coefficients vector f̂ ∈ CdN is taken randomly from the uniform
distribution over BdN . To indicate that the underlying probability distribution depends on the
polynomial degree N we write PN (E) for the probability of an event E of random polynomials
f ∈ ΠN considered above.

Now we are ready to show the following probabilistic L2-Marcinkiewicz-Zygmund inequality
under a relatively mild condition on the polynomial degree.

Theorem 3.1
Let X be a set of sampling points on SO(3) with associated partition R. If NR ≤ 1/2, then
for every ε ∈ (0, 1) we have

PN
(

(1− ε) ‖f‖22 ≤ ‖f‖
2
w,2 ≤ (1 + ε) ‖f‖22

)
≥ 1− 2(1 + 2690NR)

dNε2
.
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Proof. Similarly as in the proof of Theorem 2.2 we infer from Lemma 2.3 that for every
f ∈ ΠN we have

‖f‖2w,2 = ‖f2‖w,1 ≤ (1 + 1345 · 2NR) ‖f2‖1 = (1 + 2690NR) ‖f‖22.

Now we consider the weighted SO(3) Fourier matrix A ∈ CM×dN , cf. (2.9). Then, by using
Parseval’s equality (2.2) and the equality (2.10) we can estimate its spectral norm by

‖A‖2 = sup
0 6=f̂∈CdN

‖Af̂‖2
‖f̂‖2

= sup
06=f∈ΠN

‖f‖w,2
‖f‖2

≤
√

1 + 2690NR. (3.1)

Moreover, from the addition theorem (2.3) and the property
∑M−1

j=0 wj = 1 of the weights wj
we deduce for the Frobenius norm of A

‖A‖2F = tr(A∗A) = tr(Ŵ
1
2 D∗WDŴ

1
2 ) =

∑
(l,k,k′)∈JN

M−1∑
j=0

wj(2l + 1)
∣∣∣Dl

k,k′(Gj)
∣∣∣2

=
M−1∑
j=0

wj

N∑
l=0

l∑
k,k′=−l

(2l + 1)
∣∣∣Dl

k,k′(Gj)
∣∣∣2 =

M−1∑
j=0

wj

N∑
l=0

(2l + 1)U2l(0)

=
M−1∑
j=0

wj

N∑
l=0

(2l + 1)2 =
M−1∑
j=0

wjdN = dN .

So by (3.1) we can conclude

‖AA∗‖F ≤ ‖A‖F‖A∗‖2 = ‖A‖F‖A‖2 ≤
√
dN (1 + 2690NR).

Using Parseval’s equality (2.2), equation (2.10) once again and applying Lemma 2.4 we finally
get the assertion

PN
(

(1− ε) ‖f‖22 ≤ ‖f‖
2
w,2 ≤ (1 + ε) ‖f‖22

)
≥ 1−

2‖AA∗‖2F
d2
Nε

2
≥ 1− 2(1 + 2690NR)

dNε2
.

This result can be reformulated as a condition on the partition norm R to obtain quite tight
probabilistic Marcinkiewicz-Zygmund inequalities for polynomials of high degree.

Corollary 3.2
If for given ε, η ∈ (0, 1) the partition norm R of an associated partition R of a sampling set
X ⊂ SO(3) satisfies

R ≤ ε
5
3 η

1
3 /1667, (3.2)

then
PN
(

(1− ε) ‖f‖22 ≤ ‖f‖
2
w,2 ≤ (1 + ε) ‖f‖22

)
≥ 1− η (3.3)

holds for every N ≤ 1/(2R).

Proof. For 924NR < ε the deterministic Marcinkiewicz-Zygmund inequality (2.11) holds and
hence the probabilistic inequality (3.3) is true. So, we have to show (3.3) for ε/(924R) ≤ N ≤
1/(2R). From Theorem 3.1 we know that (3.3) is satisfied if NR ≤ 1/2 and

2(1 + 2690NR)
dNε2

≤ η.
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But the last inequality follows by the estimate dN ≥ 4/3N3 from

N3 − 3(1 + 2690NR)
2ηε2

≥ 0. (3.4)

With condition (3.2) the inequality (3.4) is satisfied if we insert ε/(924R) for N . Since the
left hand side in (3.4) is monotonically increasing in N for N ≥ ε/(924R), it follows that (3.4)
holds for every N ≥ ε/(924R). Thus, to guarantee (3.3) we need nothing but the remaining
inequality NR ≤ 1/2.

Remark 3.3
Decreasing the partition norm R in o(ε2) as ε → 0 we can obtain an increase for both the
probability in order ε and the polynomial degree N in order 1/ε2. In contrast the determin-
istic Marcinkiewicz-Zygmund inequalities, cf. Theorem 2.2, provide just an increase of the
polynomial degree N in order 1/ε.

In order to obtain probabilistic Marcinkiewicz-Zygmund inequalities of other quality we take
for the estimate of ‖AA∗‖2F further properties of sampling sets X ⊂ SO(3) with associated
partitions R into account. To this end, we follow the approach of (Böttcher et al., Theorem
4.2).

Lemma 3.4
Let for q ∈ (0, π] a q-separated sampling set X = {Gj ∈ SO(3) : j = 0, . . . ,M − 1} with
associated partition R = {Ωj ⊂ SO(3) : j = 0, . . . ,M − 1} be given. Then the matrix A ∈
CM×dN defined in (2.9) satisfies

‖AA∗‖2F ≤
MR6

36π2

(
d2
N + 124π3(N + 1)4q−3

)
. (3.5)

Proof. Due to the estimate (2.8) for the weights wj we have

‖AA∗‖2F =
M−1∑
i,j=0

|(AA∗)i,j |2 =
M−1∑
i,j=0

wiwj

∣∣∣(DŴD∗)i,j
∣∣∣2 ≤ R6

36π2

∥∥∥DŴD∗
∥∥∥2

F
.

Now, we show (3.5) by estimating the Frobenius norm of DŴD∗. By virtue of the addition
theorem (2.3) and the relation of the Chebyshev polynomials

U2l(cos(t/2)) =
sin((2l + 1)t/2)

sin(t/2)
=

l∑
k=−l

eikt, l ∈ N0,

to the Dirichlet kernel we obtain

∥∥∥DŴD∗
∥∥∥2

F
=

M−1∑
i,j=0

∣∣∣(DŴD∗)i,j
∣∣∣2 =

M−1∑
i,j=0

∣∣∣∣∣
N∑
l=0

(2l + 1)U2l

(
cos
(

d(Gi,Gj)
2

))∣∣∣∣∣
2

=
M−1∑
i,j=0

∣∣∣∣∣
N∑
l=0

(2l + 1)
l∑

k=−l
eikd(Gi,Gj)

∣∣∣∣∣
2

=
M−1∑
i,j=0

∣∣∣∣∣∣
N∑

k=−N

N∑
l=|k|

(2l + 1)eikd(Gi,Gj)

∣∣∣∣∣∣
2

.
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Defining for t ∈ [0, π] the univariate trigonometric polynomial

K(t) :=
N∑

k=−N

N∑
l=|k|

(2l + 1)eikt =
N∑

k=−N
((N + 1)2 − k2)eikt

we have for t ∈ (0, π] the estimate

|K(t)| =

∣∣∣∣∣ 1
1− eit

N+1∑
k=−N

(1− 2k)eikt

∣∣∣∣∣ ≤ 1
2 sin(t/2)

N+1∑
k=−N

|1− 2k| ≤ π(N + 1)2t−1.

Using the bound (2.7) for the cardinality of the shells RX ,q,m we rearrange the sum and get

∥∥∥DŴD∗
∥∥∥2

F
=

M−1∑
i=0

|K(0)|2 +
M−1∑
j=0
j 6=i

|K(d(Gi,Gj))|2


≤Md2

N +
M−1∑
i=0

bπq−1c∑
m=1

|RX ,q,m| max
G∈RX ,q,m

|K(d(I,G))|2

≤Md2
N +M

bπq−1c∑
m=1

(48m2 + 48m+ 28)
π2(N + 1)4

(mq)2

≤Md2
N + 124π3M(N + 1)4q−3,

which finishes the proof.

Now we are ready to prove the existence of universal sampling sets X ⊂ SO(3) with associated
partitions R as in the case of the sphere Sd (Böttcher et al.). That is, the Marcinkiewicz-
Zygmund inequalities are satisfied with high probability and for all polynomial degrees, if the
sampling set X is sufficiently dense and relatively uniform distributed.
Theorem 3.5
Let for q ∈ (0, π] a q-separated sampling set X = {Gj ∈ SO(3) : j = 0, . . . ,M − 1} with
associated partition R = {Ωj ⊂ SO(3) : j = 0, . . . ,M − 1} be given and let ε ∈ (0, 1), η ∈
(0, 1), L ∈ (1,∞) be fixed. Then, there exists a number %0 = %0(ε, η, L) > 0 such that

PN
(

(1− ε) ‖f‖22 ≤ ‖f‖
2
w,2 ≤ (1 + ε) ‖f‖22

)
≥ 1− η (3.6)

holds for every polynomial degree N ≥ 0, if the uniformity condition R
q ≤ L and the density

condition R ≤ %0 are satisfied.

Proof. We apply (2.10) together with Lemma 2.4 and obtain with Lemma 3.4 the estimate
for the probability

PN

(
1− ε ≤ ‖Af̂‖22

‖f̂‖22
≤ 1 + ε

)
≥ 1−

2‖AA∗‖2F
d2
Nε

2

≥ 1− MR6

18π2ε2
− 62πM(N + 1)4R6

9ε2d2
Nq

3

≥ 1− MR6

18π2ε2
− 31πMR6

8ε2N2q3
.
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The first term of the right hand side can be bounded using inequality (2.6) for some
R ≤ %1 := %1(ε, η, L) by

MR6

18π2ε2
=

Mq3

18π2ε2

R3

q3
R3 ≤ 109L3

36πε2
R3 ≤ η

2
.

If NR ≤ ε
924 , the assertion is trivially fulfilled due to the deterministic Marcinkiewicz-

Zygmund inequality (2.11). Now if NR > ε
924 , then again by inequality (2.6) we obtain

the estimate
31πMR6

8q3N2ε2
≤ 3379π2R6(924R)2

16q6ε4
≤ 2 · 109L6

ε4
R2

This can be bounded for some R ≤ %2 := %2(ε, η, L) by η
2 . So the assertion (3.6) follows for

R ≤ %0 := min(%1, %2).

Remark 3.6
The consideration of probabilistic Marcinkiewicz-Zygmund inequalities for polynomials on
SO(3) with Fourier coefficients vectors taken from the complex sphere BdN is not as re-
strictive as it looks like. We can obtain the same probabilistic results actually for random
Fourier coefficients vectors taken from the uniform distribution on the complex ball GdN

r ={
x ∈ CdN : ‖x‖2 ≤ r

}
of radius r > 0 or the Gaussian normal distribution on R2dN ∼= CdN .

Since these are radially symmetric probability distributions, we just use the fact that the
deterministic inequalities (2.11), (2.12) are satisfied for f ∈ ΠN , ‖f‖2 = 1 if and only if these
are true for scaled polynomials λf , λ ∈ C \ {0}.

Finally, we present a simple example to illustrate the significant relaxation on the condition
for the polynomial degree N in the probabilistic setting.

Example 3.7
Let us consider the deterministic Marcinkiewicz-Zygmund inequality (2.11) for ε = 1/2 and
N = 5. If the sampling set X ⊂ SO(3) has associated partition R with R ≤ 1/(2 · 5 · 924) ≈
0.0001, then for f ∈ Π5 it holds

1
2
‖f‖22 ≤ ‖f‖

2
w,2 ≤

3
2
‖f‖22 . (3.7)

But Theorem 3.1 yields for such a sampling set X that this inequality is actually true with
probability at least 0.99999991 for randomly taken f ∈ Π4620.

To get (3.7) deterministically for N ≤ 4620 we need a sampling set X ′ ⊂ SO(3) with parti-
tion R′ such that R′ ≤ 1/(2 · 4620 · 924) ≈ 1.1 · 10−7. This sampling set X ′ has approximately
(R/R′)3 ≈ 109 times more sampling nodes than X , if these sets X and X ′ are required to
have minimal cardinality.
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