
On the computation of spherical designs by a
new optimization approach based on fast

spherical Fourier transforms
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Spherical t-designs are point sets XM := {x1, . . . ,xM} ⊂ S2 which provide
quadrature rules with equal weights for the sphere which are exact for poly-
nomials up to degree t. In this paper we consider the problem of finding nu-
merical spherical t-designs on the sphere S2 for high polynomial degree t ∈ N.
That is, we compute numerically local minimizers of a certain quadrature error
At(XM ). The quadrature error At was also used for a variational characterization
of spherical t-designs by Sloan and Womersley in [25]. For the minimization prob-
lem we regard several nonlinear optimization methods on manifolds, like Newton
and conjugate gradient methods. We show that by means of the nonequispaced
fast spherical Fourier transforms we perform gradient and Hessian evaluations in
O(t2 log t+M log2(1/ε)) arithmetic operations, where ε > 0 is a prescribed accu-
racy. Using these methods we present numerical spherical t-designs for t ≤ 1000,
even in the case M ≈ 1

2 t
2.

Math Subject Classifications. 65T40, 65K10 53B21 49M15, 33C55,

Keywords and Phrases. spherical designs, variational characterization, opti-
mization methods on Riemannian manifolds, spherical harmonics, iterative meth-
ods, nonequispaced Fourier methods on the sphere.

1 Introduction

Distributing points on the unit sphere S2 in the Euclidean space R3 in some optimal sense is
a challenging problem, cf. [24]. In this paper, we consider the concept of spherical t-designs,
which was introduced by Delsarte, Goethals and Seidel [6] in 1977. There a spherical t-design
on S2 is defined as a finite set XM = {x1, . . . ,xM} ⊂ S2 satisfying

∫
S2

p(x)dµS2(x) =
4π

M

M∑
i=1

p(xi), for all p ∈ Πt(S2), (1.1)
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where µS2 is the surface measure on S2 and Πt(S2) is the space of all spherical polynomials
with degree at most t. Such point sets provide equal weights quadrature formulae on the
sphere S2, which have many applications. In the Hilbert space Πt(S2) with standard inner
product the worst case quadrature error for the point set XM is defined by

Et(XM ) := sup
p∈Πt(S2)
‖p‖2≤1

∣∣∣∣∣
∫
S2

p(x)dµS2(x)− 4π

M

M∑
i=1

p(xi)

∣∣∣∣∣ .
For the general setting of quadrature errors in reproducing kernel Hilbert spaces we refer to
[23]. Of course, a spherical t-design XM is a global minimum of the worst case quadrature
error with Et(XM ) = 0, cf. (1.1). In [25] the authors presents a variational characterization
of spherical t-designs which involves a squared quadrature error

At(x1,x2, . . . ,xM ) :=
1

M2

t∑
n=1

n∑
k=−n

∣∣∣∣∣
M∑
i=1

Y k
n (xi)

∣∣∣∣∣
2

=

(
1

4π
Et(XM )

)2

,

where Y k
n are the spherical harmonics of degree n and order k. In this paper we are in-

terested in finding numerical spherical t-designs, i.e., we compute point sets XM , such that
At(x1,x2, . . . ,xM ) ≤ ε2, where ε is a given accuracy, say ε = 1e− 10. We present optimiza-
tion algorithms on Riemannian manifolds for attacking this highly nonlinear and nonconvex
minimization problem. The proposed methods make use of fast spherical Fourier transforms,
which where already successfully applied in [17, 12] for solving high dimensional linear equa-
tion systems on the sphere.

It is commonly conjectured that spherical t-designs with M ≈ 1
2 t

2 points exists, but there
is no proof. Recently, a weaker conjecture was proved in [2], where the authors show the
existence of spherical t-designs with M > ct2 points for some unknown constant c > 0.
Moreover, in [3] it was verified that for t = 1, . . . , 100, spherical t-designs with (t+ 1)2 points
exist, using the characterization of fundamental spherical t-designs and interval arithmetic.
For further recent developments in the research of spherical t-designs and related topics we
refer to the very nice survey article [1]. We emphasize that the construction of spherical
t-designs is a serious challenge even for small polynomial degrees t. The function At has
many local minima and it is hard to decide if a local minimum is a global one. Moreover,
even if one computes a point set in a neighborhood of a global one it is hard to decide if its
function value is zero or not, due to numerical errors. From this point of view we are satisfied
with numerical spherical t-designs which have integration error Et in the range of machine
precision, since such quadrature points are suitable for numerical quadrature on the sphere.

The outline of this paper is as follows. In Section 2 we present the necessary tools. That
is we give a brief introduction to Riemannian geometry on the sphere S2 and the M times
product manifold S2× · · ·×S2 in order to describe optimization methods on these manifolds.
Afterwards, we define the nonequispaced spherical Fourier transforms and comment on the
fast realization. In Section 3 we combine the optimization method with the nonequispaced
spherical Fourier transform and show that each iteration step is realized very efficiently with
the help of fast spherical Fourier transforms. Finally, we compare the proposed optimization
methods and present numerical results in Section 4, where we compute numerically spherical
t-designs for t = 10, 100, 200, 500, 1000.
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2 Prerequisites

The purpose of this section is to define the necessary notations for calculations on Riemannian
manifolds in order to describe the optimization algorithms presented in Section 2.3. We are
especially interested in the geometry of the sphere S2 and its M times products S2M :=
S2 × · · · × S2. So the general Riemannian manifold M with Riemannian metric gM holds as
substitute for these manifolds. By the famous embedding theorem of Nash every Riemannian
manifold (M, gM) can be seen as a sub-manifold of some d-dimensional Euclidean space Rd.
Hence, we use the more extrinsic, but also more intuitive approach to Riemannian geometry.
In the following we introduce the general concepts using the example of the sphere. In Section
2.2 we briefly summarize the notations for the product manifold S2M . Finally we present in
Section 2.4 the basics of the nonequispaced fast spherical Fourier transform.

2.1 Riemannian geometry on the sphere S2

As a sub-manifold the sphere is embedded in the three-dimensional Euclidean space R3 by

S2 :=
{
x := (x, y, z)> ∈ R3 : x2 + y2 + z2 = 1

}
.

From this embedding we obtain a natural understanding of the tangent space TxS2 at a point
x ∈ S2. It is simply given by the orthogonal complement of the linear subspace span{x}, i.e.,

TxS2 := {v ∈ R3 : 〈v,x〉 = 0},

where 〈x,y〉 := x>y is the standard inner product and the induced norm is given by ‖x‖2 :=√
〈x,x〉, x ∈ R3.
Then the sphere possesses a natural Riemannian metric from the given embedding, which

is induced by the Riemannian metric of the ambient space R3, cf. Figure 2.1. Thus, the
Riemannian metric gS2 : TxS2 × TxS2 → R is given on the sphere for all x ∈ S2 by

gS2(v,w) := 〈v,w〉, v,w ∈ TxS2.

In this metric the geodesic distance between two points x,y ∈ S2 calculates from

dS2(x,y) := arccos (〈x,y〉) .

In the following all functions or vector fields are arbitrarily often differentiable. Since, we
consider the sphere S2 as an embedding in the space R3 it is most natural to consider functions
f on the sphere as restrictions of functions f̃ on R3. The same counts for vector fields
X : S2 → T(·)S2, where X̃ : R3 → R3 is an extension of X to the ambient space R3.
From this point of view we easily define the common differential operators on the sphere as
restriction of differential operators on R3. Therefor we introduce for all x ∈ S2 the orthogonal
projection operator PTxS2 : R3 → TxS2 by

PTxS2(v) := v − 〈v,x〉x, v ∈ R3.

The spherical gradient ∇S2f of the function f reads as

∇S2f(x) := PTxS2

(
∇f̃(x)

)
, x ∈ S2,
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Figure 2.1: The sphere S2 embedded in R3 and a tangent space TxS2.

where ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z )> is the usual nabla operator in R3. Another important notion is given

by the Levi-Civita connection ∇Y X which defines a directional derivative of a vector field
X along another vector field Y on manifolds. Using the usual derivative DỸ X̃ of the vector

field X̃ with respect to the vector field Ỹ it is expressed by, cf. [4, Sect. 10.1.],

(∇Y X) (x) := PTxS2

((
DỸ X̃

)
(x)
)
, x ∈ S2.

The Levi-Civita connection is used for defining a concept of parallel transport on manifolds.
To this end let s : [0, T ] → S2, T > 0, be a smooth curve on the sphere. We say that the
tangent vector v0 := X(s(0)) ∈ Ts(0)S2 is parallel transported along s by X if(

∇ṡ(t)X
)

(s(t)) = 0 ∈ Ts(t)S2, t ∈ [0, T ].

Here ṡ denotes the time derivative of s, which can be seen as a velocity field on the sphere
S2. An outstanding role play curves g, which transport their velocity vectors parallel onto
itself, i.e.,

∇ġ ġ = 0.

Curves with this property are called geodesics and are the ‘straight lines’ on the sphere. Given
a starting point g(0) := x ∈ S2 and a direction ġ(0) := v ∈ Tg(0)S2, then the corresponding
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Figure 2.2: A geodesic g and the parallel transported vector P g(1)(w) of w ∈ TxS2.

geodesic g(t) is explicitely parameterized by the exponential map expx : TxS2 → S2, cf. [28,
p. 19], due to

g(t) := expx(tv) := cos(‖v‖2t)x + sin(‖v‖2t)v/‖v‖2︸ ︷︷ ︸
=:ṽ

, t ≥ 0.

For an illustration see Figure 2.2. Hence, the geodesic g can also be interpreted as the path
of a rotation of the point x about the rotation axis x× v with rotation angle t. Furthermore
the parallel transport of a vector w ∈ TxS2 along the geodesic g, see Figure 2.2, is realized
by

Pg(t)(w) := 〈w, ṽ〉ġ(t)/‖v‖2 + 〈w,x× ṽ〉g(t)× ġ(t)/‖v‖2,
= 〈w, ṽ〉 (cos(‖v‖2t) ṽ − sin(‖v‖2t)x) + w − 〈w, ṽ〉ṽ, t ≥ 0.

For implementing a second order optimization method on the sphere one also needs a notion
for the Hessian HS2 of a function f on manifolds, cf. [28]. It is given by the bilinear form

HS2f(x)(Y ,X) = gS2(∇Y∇S2f(x),X(x))

on the tangent spaces TxS2, x ∈ S2. For a coordinate representation let E1,E2 be vector
fields, which form an orthonormal frame in a small neighborhood U ⊂ S2 of x, i.e., for every
y ∈ U the vectors E1(y), E2(y) form an orthonormal basis of the tangent space TyS2. Then
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the components of the Hessian with respect to the vector fields E1,E2 are given for all x ∈ S2
by

(HS2f)i,j(x) := (Hf̃)i,j(x)−
(
∇∇Ei

Ej f̃
)

(x), i, j = 1, 2, (2.1)

where Hf̃(x) is the usual Hessian restricted to the subspaces spanned by Ei(x), i = 1, 2, and
∇vf̃ is the directional derivative towards v in R3 of the extension f̃ respectively. For the sake
of completeness we define the Laplace-Beltrami operator on the sphere

∆S2f := tr(HS2f) (2.2)

via the trace of the Hessian.
For a local parameterization of S2 we use as usual spherical coordinates (θ, ϕ) ∈ [0, π] ×

[0, 2π) with x := x(θ, ϕ) := (sin θ cosϕ, sin θ sinϕ, cos θ)>. Then the vectors

xθ :=
∂

∂θ
x(θ, ϕ), xϕ :=

∂

∂ϕ
x(θ, ϕ)

form an orthogonal basis of the tangent space TxS2 for x ∈ S2\{±(0, 0, 1)>}. In the literature
on Riemannian geometry the quantities which define differential operators on manifolds are
expressed in terms of this canonical basis. However, we prefer to use an orthonormal basis of
the tangent space TxS2. For that reason we introduce the unit vectors

eθ := xθ, eϕ :=
1

sin θ
xϕ.

We remark, due to the singularities at the poles ez := (0, 0, 1)> and −ez there is no basis in
spherical coordinates of the corresponding tangent spaces. By the frame {eθ, eϕ} the spherical
nabla operator reads as

∇S2 :=

(
∂

∂θ
,

1

sin θ

∂

∂ϕ

)>
:= eθ

∂

∂θ
+ eϕ

1

sin θ

∂

∂ϕ
, (2.3)

and the Hessian is parameterized by

HS2 =

(
∂2

∂θ2
1

sin θ
∂2

∂θ∂ϕ −
cot θ
sin θ

∂
∂ϕ

1
sin θ

∂2

∂ϕ∂θ −
cot θ
sin θ

∂
∂ϕ

1
sin2 θ

∂2

∂ϕ2 + cot θ ∂
∂θ

)
. (2.4)

Furthermore the Laplace-Beltrami operator given by (2.2) implies

∆S2 =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
.

2.2 Riemannian geometry on S2 × · · · × S2

For computing spherical t-designs we aim to optimize over the product manifold

S2M := S2 × · · · × S2︸ ︷︷ ︸
M times

of M spheres S2. We briefly summarize the necessary notations for the geometric objects on
this manifold. The tangent space at the point ~x := (x1, . . . ,xM ) ∈ S2M is simply defined by

T~xS2M := Tx1S2 × · · · × TxMS2
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with its canonical Riemannian metric

gS2
M

(v,w) :=
M∑
i=1

gS2(vi,wi), v := (v1, . . . ,vM ),w := (w1, . . . ,wM ) ∈ T~xS2M .

Since the tangent subspaces TxiS2, TxjS2 are orthogonal for i 6= j the distance is given by
the Pythagorean sum

dS2
M

(~x, ~y) :=

(
M∑
i=1

d2
S2(xi,yi)

) 1
2

, ~x, ~y ∈ S2M .

In the same manner we obtain for every ~x ∈ S2M the exponential map exp : S2M → S2M by

exp~x(v) :=
(
expx1

(v1), . . . , expxM
(vM )

)
∈ S2M , v ∈ T~xS2M .

We denote by ∇iS2f(~x) ∈ TxiS2, i = 1, . . . ,M the spherical gradient of f with respect to xi,
then the gradient of f is expressed by

∇S2
M
f(~x) :=

(
∇1

S2f(~x), . . . ,∇MS2f(~x)
)
∈ T~xS2M . (2.5)

Similarly, we denote by Hi
S2f the spherical Hessian with respect to the coordinate xi and

obtain by (2.3), (2.4) and (2.1) the formula

HS2
M
f(~x) :=


H1

S2f(~x) ∇1
S2∇2

S2

>
f(~x) . . . ∇1

S2∇MS2

>
f(~x)

∇2
S2∇1

S2

>
f(~x) H2

S2f(~x) . . . ∇2
S2∇MS2

>
f(~x)

...
...

. . .
...

∇MS2∇1
S2

>
f(~x) ∇MS2∇2

S2

>
f(~x) . . . HM

S2f(~x)

 . (2.6)

In Section 3 we do all the computations in the basis of the tangent spaces TxiS2 given by
{eθ(xi), eϕ(xi)}, i = 1, . . . ,M . Hence, xi = ±ez is not a feasible point. Furthermore we
express the tangent vectors vi ∈ TxiS2, i = 1, . . . ,M by the representation

vi := vθieθ(xi) + vϕieϕ(xi)

and write for simplicity
vi := (vθi , vϕi)

> ∈ R2. (2.7)

2.3 Optimization methods on Riemannian manifolds

In this section we describe the Newton method and the method of conjugate gradients for
nonlinear problems on Riemannian manifolds. For a nice survey article with applications of
optimization on manifolds see [7]. We shortly recapitulate these standard methods in the
Euclidean space.

Let f : Rd → R be the objective function and x∗ ∈ Rd a minimum point, i.e., ∇f(x∗) = 0
with positive definite Hessian Hf in a neighborhood of x∗. Then Newton’s method is defined
for an initial guess x0 close to x∗ by the following iteration

xk+1 := xk −Hf(xk)
−1∇f(xk), k = 0, 1, . . . ,
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and its well-know that for smooth functions it converges quadratically in a neighborhood of
x∗, i.e.,

‖x∗ − xk+1‖2 ≤ c‖x∗ − xk‖22.

Some drawback in large dimensions is the difficulty to invert or even calculate the Hessian.
Hence efficient first order optimization methods are preferred for high dimensional objective
functions. Here, we consider conjugate gradient (CG) algorithms for nonlinear optimization.
For a nice survey in the Euclidean case see [13]. The general scheme of a nonlinear CG method
uses the recurrence

xk+1 := xk + αkdk, k = 0, 1, . . . ,

where αk is a positive step size and dk are the search directions given by the rule

dk+1 := −gk+1 + βkdk, d0 := −g0, gk := ∇f(xk).

Various CG methods are known, which differ only in the choices for βk, e.g., the one for exact
conjugacy proposed by Daniel in [5]

βk :=
〈gk+1,Hf(xk+1)dk〉
〈dk,Hf(xk+1)dk〉

.

The step size αk is determined by the search of the nearest local minimum to xk along the
line xk + tdk, t > 0, hence it has to satisfy

∇f(xk + αkdk)dk = 0.

The above algorithms generalize in a natural way to Riemannian manifolds (M, gM). For
that reason we remark that all the geometric objects defined in the last section for the cases
of the sphere S2 and its products S2M are defined in a rigorous manner for general Riemannian
manifolds (M, gM), cf. [26, 7]. Hence, we just replace the subscripts S2 and S2M by M for
the general description of the algorithms.

In Riemannian geometry the addition of a tangent vector to the base point x is replaced
by the exponential map expx : TxM → M. Moreover the translation of tangent vectors
is replaced by the notion of parallel transport P g(t)(v) along geodesics g. By doing so the
Newton method reads as, cf. [28, Sec. 7.5],

xk+1 := expxk

(
−HMf(xk)

−1∇Mf(xk)
)
, k = 0, 1, . . . ,

where f :M→ R is the objective function and x0 ∈ M is close to a minimum x∗ ∈ M. As
in the Euclidean case it was shown in [26] that this scheme is also quadratically convergent

dM(x∗,xk+1) ≤ cd2
M(x∗,xk).

The CG method on Riemannian manifolds is given by

xk+1 := expxk
(αkdk) , k = 0, 1, . . . ,

with

dk+1 := −gk+1 + βkP g(αk)(dk), d0 := −g0, gk := ∇Mf(xk),
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where g is the geodesic from g(0) = xk to g(αk) = xk+1 in direction dk. Furthermore the
scalar βk is obtained by

βk :=
〈gk+1,HMf(xk+1)P g(αk)(dk)〉

〈Pg(αk)(dk),HMf(xk+1)Pg(αk)(dk)〉

and the step size αk is determined by

∇Mf(g(αk))P g(αk)(dk) = 0. (2.8)

For an illustration of one iteration step of the CG method on the sphere S2 see Figure 2.3.

Figure 2.3: An iteration step of the nonlinear CG method on the sphere S2.

2.4 Fast spherical Fourier transforms

It is well known that the eigenfunctions of the spherical Laplace-Beltrami operator ∆S2 are
the spherical harmonics Y k

n of degree n and order k, cf. [22],

Y k
n (x) = Y k

n (θ, ϕ) :=

√
2n+ 1

4π
P |k|n (cos θ)eikϕ, x = x(θ, ϕ) ∈ S2,
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where the associated Legendre functions P kn : [−1, 1] → R and the Legendre polynomials
Pn : [−1, 1]→ R are given by

P kn (x) :=

(
(n− k)!

(n+ k)!

)1/2 (
1− x2

)k/2 dk

dxk
P kn (x), n ∈ N0, k = 0, . . . , n,

Pn(x) :=
1

2nn!

dn

dxn
(
x2 − 1

)n
, n ∈ N0.

In spherical coordinates the surface element reads as dµS2(x) = sin θdθdϕ and the spherical
harmonics obey the orthogonality relation∫

S2

Y k
n (x)Y l

m(x)dµS2(x) =

∫ 2π

0

∫ π

0
Y k
n (θ, φ)Y l

m(θ, φ) sin θdθdϕ = δk,lδn,m.

Moreover, the spherical harmonics form an orthonormal basis of the space of all square inte-
grable functions L2(S2) := {f : S2 → C :

∫
S2 |f(x)|2dµS2(x) <∞}. Hence, every f ∈ L2(S2)

has an unique expansion in spherical harmonics

f =

∞∑
n=0

n∑
k=−n

f̂knY
k
n .

We say that f is a spherical polynomial of degree at most N if f̂kn = 0, n > N , and we denote
by ΠN (S2) the space of all spherical polynomials of degree at most N . We remark that the
dimension of ΠN (S2) is dN := (N + 1)2.

The evaluation of a spherical polynomial

f =
N∑
n=0

n∑
k=−n

f̂knY
k
n ∈ ΠN (S2)

on a sampling set XM = {x1, . . . ,xM} ⊂ S2 can be expressed by a matrix-vector multiplica-
tion

f = Y N f̂ ,

where Y N is the nonequispaced spherical Fourier matrix

Y N := (Y n
k (xi))i=1,...,M ; n=0,...,N,|k|≤n ∈ CM×dN ,

f is the vector of the sampling values

f = (f(x1), . . . , f(xM ))> ∈ CM

and f̂ is the vector of spherical Fourier coefficients

f̂ := (f̂kn)n=0,...,N,|k|≤n ∈ CdN .

Recently, fast approximate algorithms for the matrix times vector multiplication with the

nonequispaced spherical Fourier matrix Y N and its adjoint Y N
>

have been proposed in
[20, 19]. The arithmetic complexity for the so called fast spherical Fourier transform and its
adjoint isO(N2 log2N+M log2(1/ε)), where ε > 0 is a prescribed accuracy of the approximate
algorithms. An implementation of these algorithms can be found in the Internet [16]. In the
next section we use these fast algorithms for the evaluation of gradients and Hessians of
spherical polynomials, as well.
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3 Fast realization of the optimization methods

In the following we show, that we can realize each iteration step of the nonlinear CG method
on the sphere S2 and the product manifold S2M with the nonequispaced spherical Fourier
transform. More precisely we propose in Theorem 3.2 an efficient scheme for the computation
of the spherical gradient and the Hessian of a spherical polynomial. Using this method we are
able to compute in an efficient way numerical spherical t-designs for high polynomial degrees
t ∈ N.

3.1 Fast methods for evaluating the spherical gradient and the Hessian on S2

In the following we state that the components fθ, fϕ of the spherical gradient

∇S2f := fθeθ + fϕeϕ (3.1)

and the components fθ,θ, fϕ,ϕ, fϕ,θ = fθ,ϕ of the Hessian

HS2f :=

(
fθ,θ fθ,ϕ
fϕ,θ fϕ,ϕ

)
, (3.2)

of a spherical polynomial f are spherical polynomials up to factors of sin θ and cos θ. This
allows us to utilize the nonequispaced fast spherical Fourier transforms for evaluating the
gradient and the Hessian of a spherical polynomial on many points simultaneously.

Lemma 3.1. Let f ∈ ΠN (S2) be a spherical polynomial with spherical Fourier coefficient
vector f̂ := (f̂kn) ∈ CdN . Then the components of the spherical gradient ∇S2f , cf. (3.1), are
expressed for x := x(θ, ϕ) ∈ S2 \ {±ez} by

fθ(x(θ, ϕ)) :=
1

sin θ

N+1∑
n=0

n∑
k=−n

(f̂θ)
k
n Y

k
n (θ, ϕ), fϕ(x(θ, ϕ)) :=

1

sin θ

N∑
n=0

n∑
k=−n

(f̂ϕ)kn Y
k
n (θ, ϕ),

with spherical Fourier coefficients

(f̂θ)
k
n := (n− 1)

√
n2 − k2

(2n− 1)(2n+ 1)
f̂kn−1 − (n+ 2)

√
(n+ 1)2 − k2

(2n+ 3)(2n+ 1)
f̂kn+1, (3.3)

where f̂kN+2 = f̂kN+1 = f̂k−1 = 0, and spherical Fourier coefficients

(f̂ϕ)kn := ikf̂kn . (3.4)

Proof. The above assertion results from the representation (2.3) of the spherical gradient ∇S2

in spherical coordinates and the following relations for the partial derivatives of the spherical
harmonics Y k

n , cf. [29, pp. 146],

∂

∂ϕ
Y k
n (θ, ϕ) =ikY k

n (θ, ϕ),

sin θ
∂

∂θ
Y k
n (θ, ϕ) =n

√
(n+ 1)2 − k2

(2n+ 1)(2n+ 3)
Y k
n+1(θ, ϕ)− (n+ 1)

√
n2 − k2

(2n+ 1)(2n− 1)
Y k
n−1(θ, ϕ),

(3.5)
where for |k| > n− 1 we have Y k

n−1 ≡ 0.
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Using Lemma 3.1 we define the ‘bidiagonal’-like matrix DN
θ ∈ CdN+1×dN as the matrix

satisfying, cf. (3.3),

(DN
θ f̂)kn = (f̂θ)

k
n, n = 0, . . . , N + 1, k = −n, . . . , n, (3.6)

and the diagonal matrix DN
ϕ ∈ CdN×dN with, cf. (3.4),

(DN
ϕ f̂)kn = (f̂ϕ)kn, n = 0, . . . , N, k = −n, . . . , n. (3.7)

Furthermore, we introduce for the sampling points xi := x(θi, ϕi), i = 1, . . . ,M , the diago-
nal matrices S := diag(sin(θ1), . . . , sin(θM )), C := diag(cos(θ1), . . . , cos(θM )) ∈ CM×M and
arrive at the following theorem.

Theorem 3.2. For a given sampling set XM := {x(θ1, ϕ1), . . . ,x(θM , ϕM )} ⊂ S2 \ {±ez}
with xi := x(θi, ϕi) and a spherical polynomial f ∈ ΠN (S2) with corresponding spherical
Fourier coefficient vector f̂ ∈ CdN we obtain the spherical gradient, cf. (3.1),

∇S2f(xi) = fθieθ(xi) + fϕieϕ(xi)

by the evaluation
f θ := (fθi)i=1,...,M = S−1Y N+1DN

θ f̂ ,

fϕ := (fϕi)i=1,...,M = S−1Y NDN
ϕ f̂ ,

and similarly we obtain for the components of the Hessian, cf. (3.2),

HS2f(xi) =

(
fθi,θi fθi,ϕi

fϕi,θi fϕi,ϕi

)
,

the representations

f θ,θ = (fθi,θi)i=1,...,M = S−2(Y N+2DN+1
θ DN

θ −CY N+1DN
θ )f̂ ,

fϕ,ϕ = (fϕi,ϕi)i=1,...,M = S−2(Y NDN
ϕD

N
ϕ + CY N+1DN

θ )f̂ ,

fϕ,θ = (fϕi,θi)i=1,...,M = S−2(Y N+1DN+1
ϕ DN

θ −CY NDN
ϕ )f̂

with fϕi,θi = fθi,ϕi
, i = 1, . . . ,M . Furthermore all evaluations of the sampling vectors f θ, fϕ,

f θ,θ, fϕ,ϕ, fϕ,θ ∈ CM are performed by means of the nonequispaced fast spherical Fourier

transform in O(N2 log2N +M log2(1/ε)) arithmetic operations.

Proof. The formulae for the components f θ, fϕ follow immediately from Lemma 3.1 and the

definitions (3.6), (3.7) of the matrices DN
θ , DN

ϕ , S and C. Furthermore, the representation
of the Hessian cf. (2.4),

sin2 θHS2 =

(
sin θ

∂

∂θ
,
∂

∂ϕ

)>(
sin θ

∂

∂θ
,
∂

∂ϕ

)
+ cos θ

(
− sin θ ∂

∂θ − ∂
∂ϕ

− ∂
∂ϕ sin θ ∂

∂θ

)
.

yields together with (3.5) the remaining formulae. The complexity assertion follows from the
observation that the matrix-vector multiplication of the matrices DN

θ , DN
ϕ , S and C need

O(N2 +M) and of the matrix Y N needs O(N2 log2N +M log2(1/ε)) arithmetic operations,
respectively.
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Remark 3.3. We note that the problem of finding the global maximum of a real-valued
spherical polynomial f ∈ ΠN (S2) on the sphere S2 appears in a variety of applications. Usually
one starts with one initial guess x0 ∈ S2 of an optimum x∗ ∈ S2 and uses an optimization
algorithm like Newton’s method. Unfortunately, x0 should be near to x∗. With the proposed
methods in Theorem 3.2 we are able to optimize simultaneously over many initial guesses with
almost the same arithmetic complexity. Using a sufficiently dense and uniform distributed
sampling set XM := {x1, . . . ,xM} of such starting points increases notably the chance of
finding a global maximum. Numerical results will presented elsewhere.

3.2 Fast optimization for spherical t-designs

The concept of spherical t-designs was introduced by Delsarte, Goethals and Seidel [6] in
1977. There a spherical t-design on S2 is defined as a finite set XM = {x1, . . . ,xM} ⊂ S2
satisfying ∫

S2

f(x)dµS2(x) =
4π

M

M∑
i=1

f(xi), for all f ∈ Πt(S2).

In the following we exploit the equivalent characterization used by Sloan and Womersley in
[25],

At(~x) := At(x1, . . . ,xM ) :=
1

M2

t∑
n=1

n∑
k=−n

∣∣∣∣∣
M∑
i=1

Y k
n (xi)

∣∣∣∣∣
2

= 0. (3.8)

This function At can be seen as the squared integration error for the set XM to be a spherical
t-design. Since At ≥ 0, the problem of finding a t-design XM reduces to finding a minimum
of At. We aim to apply the Newton and CG methods on Riemannian manifolds proposed in
Section 2.3 to the function At : S2M → R. For that reason we present fast algorithms for the
evaluation of At, the gradient ∇S2

M
At and the matrix-vector multiplication with the Hessian

HS2
M
At.

The following Theorem provides us with a first taste for the use of fast nonequispaced
spherical Fourier transforms.

Theorem 3.4. For a given point ~x := (x1, . . . ,xM ) ∈ S2M the evaluation of At(~x), t ∈ N,
takes O(t2 log2 t+M log2(1/ε)) arithmetic operations, where ε is a prescribed accuracy.

Proof. By definition (3.8) we have to compute

At(~x) =
1

M2
(r>r − |r00|2)

with the residual vector

r :=
(
rkn

)
n=0,...,t; |k|≤n

, rkn :=

(
M∑
i=1

Y k
n (xi)

)
.

We compute the conjugate vector r in O(t2 log2 t + M log2(1/ε)) arithmetic operations by a
fast multiplication with the adjoint nonequispaced spherical Fourier matrix due to

r = Y t>e,

where we use the vector e := (1, . . . , 1)> ∈ CM , cf. Section 2.4. Since the vector r has (t+1)2

components we compute its squared norm in O(t2) arithmetic operations.

The next main Theorem 3.7, is derived from the following Lemmas 3.5 and 3.6.
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Lemma 3.5. For f : S2 → C the spherical gradient and the Hessian of |f |2 read as

∇S2 |f(x)|2 = 2Re
[
f(x)∇S2f(x)

]
, (3.9)

HS2 |f(x)|2 = 2Re
[
f(x)HS2f(x) +∇S2f(x)∇>S2f(x)

]
. (3.10)

Proof. Let x := x(θ, ϕ) be given in spherical coordinates, then we have by the product rule
the relations

∂

∂θ
|f(x)|2 =

∂

∂θ

(
f(x)f(x)

)
= f(x)

∂

∂θ
f(x) + f(x)

∂

∂θ
f(x)

= 2Re

[
f(x)

∂

∂θ
f(x)

]
, (3.11)

∂2

∂θ∂ϕ
|f(x)|2 =

∂

∂θ

(
f(x)

∂

∂ϕ
f(x) + f(x)

∂

∂ϕ
f(x)

)
= 2Re

[
f(x)

∂2

∂θ∂ϕ
f(x) +

∂

∂θ
f(x) · ∂

∂ϕ
f(x)

]
, (3.12)

and obtain similarly

∂

∂ϕ
|f(x)|2 = 2Re

[
f(x)

∂

∂ϕ
f(x)

]
, (3.13)

∂2

∂θ2
|f(x)|2 = 2Re

[
f(x)

∂2

∂θ2
f(x) +

∂

∂θ
f(x) · ∂

∂θ
f(x)

]
, (3.14)

∂2

∂ϕ2
|f(x)|2 = 2Re

[
f(x)

∂2

∂ϕ2
f(x) +

∂

∂ϕ
f(x) · ∂

∂ϕ
f(x)

]
. (3.15)

We get with the representation (2.3) of the spherical gradient and the relation (3.11) and
(3.12) the assertion (3.9). Using (2.4) and (3.13) – (3.15) we infer

HS2 |f(x)|2 = 2Re

[
f(x)HS2f(x) +

(
∂
∂θf(x) · ∂∂θf(x) ∂

∂θf(x) · 1
sin θ

∂
∂ϕf(x)

1
sin θ

∂
∂ϕf(x) · ∂∂θf(x) 1

sin θ
∂
∂ϕf(x) · 1

sin θ
∂
∂ϕf(x)

)]
and arrive finally at (3.10).

Lemma 3.6. For the point ~x := (x1, . . . ,xM ) ∈ S2M the gradient ∇S2
M

is expressed by

∇S2
M
At(~x) =

2

M2
Re

[(
∇>S2p(x1), . . . ,∇>S2p(xM )

)>]
, (3.16)

and the Hessian HS2
M

of At : S2M → R is represented by

HS2
M
At(~x) =

2

M2
Re


HS2p(x1) 0

. . .

0 HS2p(xM )


+

t∑
n=1

n∑
k=−n

∇S2Y k
n (x1)
...

∇S2Y k
n (xM )

(∇>S2Y k
n (x1), . . . ,∇>S2Y k

n (xM )
) ,

(3.17)

14



where the spherical polynomial

p(y) :=

t∑
n=1

n∑
k=−n

p̂knY
k
n (y) ∈ Πt(S2)

is defined by its spherical Fourier coefficients

p̂kn :=
M∑
i=1

Y k
n (xi), n = 1, . . . , t, k = −n, . . . , n. (3.18)

Proof. Form equation (2.5) we know that the gradient of At is

∇S2
M
At(~x) =

(
∇1

S2At(~x), . . . ,∇MS2At(x)
)
. (3.19)

With (3.8) and the linearity of ∇lS2 we infer

∇lS2At(~x) =
1

M2

t∑
n=1

n∑
k=−n

∇lS2

∣∣∣∣∣
M∑
i=1

Y k
n (xi)

∣∣∣∣∣
2

.

Hence, using (3.9) from Lemma 3.5 we obtain for n = 1, . . . , t, k = −n, . . . , n, the relation

∇lS2

∣∣∣∣∣
M∑
i=1

Y k
n (xi)

∣∣∣∣∣
2

= 2Re

[(
M∑
i=1

Y k
n (xi)

)
∇S2Y k

n (xl)

]
(3.20)

and the first assertion (3.16) follows by definition of p and (3.19). For building up the Hessian
HS2

M
At we need the expressions for Hl

S2At and ∇lS2∇mS2
>At, l,m = 1, . . . ,M , l 6= m, cf. (2.6).

From (3.20) we arrive at

∇lS2∇mS2
>
∣∣∣∣∣
M∑
i=1

Y k
n (xi)

∣∣∣∣∣
2

= 2Re

[
∇lS2

(
M∑
i=1

Y k
n (xi)

)
∇S2

>Y k
n (xm)

]
= 2Re

[
∇S2Y k

n (xl)∇S2
>Y k

n (xm)
]
,

which yields by definition (3.8) of At the equation

∇lS2∇mS2
>At(~x) =

2

M2
Re

[
t∑

n=1

n∑
k=−n

∇S2Y k
n (xl)∇S2

>Y k
n (xm)

]
.

From (3.10) of Lemma 3.5 we obtain

Hl
S2

∣∣∣∣∣
M∑
i=1

Y k
n (xi)

∣∣∣∣∣
2

= 2Re

[(
M∑
i=1

Y k
n (xi)

)
HS2Y k

n (xl) +∇S2Y k
n (xl)∇S2

>Y k
n (xl)

]
and after summing up we conclude by definition of p again

Hl
S2At(~x) =

2

M2
Re

[
HS2p(xl) +

t∑
n=1

n∑
k=−n

∇S2Y k
n (xl)∇S2

>Y k
n (xl)

]
.

Thus, the Hessian of At(~x) reads as stated in (3.17).
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Theorem 3.7. For a given point ~x := (x(θ1, ϕ1), . . . ,xM (θM , ϕM )) ∈ S2M and a polynomial
degree t ∈ N the calculation of the gradient ∇S2

M
At(x) and multiplication of the Hessian

HS2
M
At(~x) with a tangent vector v := (v>1 , . . . ,v

>
M )> ∈ R2M , cf. (2.7), takes O(t2 log2 t +

M log2(1/ε)) arithmetic operations, where ε is a prescribed accuracy.

Proof. In order to compute the components of the spherical gradient ∇S2
M
At(x1, . . . ,xM ) we

evaluate the spherical Fourier coefficients p̂kn, cf. (3.18), n = 1, . . . , t, k = −n, . . . , n, by a
realization of the adjoint matrix-vector multiplication with the matrix Y t in O(t2 log2 t +
M log2(1/ε)) arithmetic operations. Due to the representation, cf. Lemma 3.6

∇S2
M
At(~x) =

2

M2
Re

[(
∇>S2p(x1), . . . ,∇>S2p(xM )

)>]
we evaluate by Theorem 3.2 the components of the spherical gradient ∇S2p on the points
xi, i = 1, . . . ,M , where we set p00 := 0. This is also performed in O(t2 log2 t + M log2(1/ε))
arithmetic operations.

For the matrix-vector multiplication of the Hessian HS2
M
At(~x) with the vector v ∈ R2M

we proceed as follows. At first we evaluate the Hessian HS2p at the points xi, i = 1, . . . ,M ,
as in the case of the gradient by means of Theorem 3.2. After that we simply multiply the
obtained 2× 2 matrices HS2p(xi) with the corresponding components vi, i = 1, . . . ,M of the
vector v. This yields the multiplication of the vector v with the first summand of the Hessian
HS2

M
At(~x), cf. (3.17). For the second summand we define the spherical Fourier coefficients

v̂kn :=
M∑
i=1

∇>S2Y k
n (xi)vi =

(
∇>S2Y k

n (x1), . . . ,∇>S2Y k
n (xM )

)
v, n = 1, . . . , t, k = −n, . . . , n,

which is performed by the adjoint transform for evaluating M points of the spherical gradient
of a spherical polynomial of degree t, cf. Theorem 3.2. After this intermediate step we define
the spherical polynomial

V :=

t∑
n=1

k∑
n=−k

v̂knY
k
n

and compute the spherical gradients ∇S2V at the points xi, i = 1, . . . ,M . Thus, the i-th
component of the vector

t∑
n=1

n∑
k=−n

∇S2Y k
n (x1)
...

∇S2Y k
n (xM )

(∇>S2Y k
n (x1), . . . ,∇>S2Y k

n (xM )
)
v,

is computed by a nonequispaced spherical Fourier transform, cf. Theorem 3.2,

∇S2V (xi) =

t∑
n=1

n∑
k=−n

v̂kn∇S2Y k
n (xi).

All in all the multiplication HS2
M
At(~x)v is done in O(t2 log2 t + M log2(1/ε)) arithmetic op-

erations.
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Remark 3.8. In the numerical Section 4 we also consider the approximate Hessian

H̃S2
M
At(~x) :=

2

M2
Re

 t∑
n=1

n∑
k=−n

∇S2Y k
n (x1)
...

∇S2Y k
n (xM )

(∇>S2Y k
n (x1), . . . ,∇>S2Y k

n (xM )
) , (3.21)

where we dropped the diagonal part in equation (3.17). This approximation is motivated as
follows. We consider the function At(~x) as residual of the vector-valued function At : S2M →
C(t+1)2−1 with components (At)

k
n :=

∑M
i=1 Y

k
n (xi), n = 1, . . . , t, k = −n, . . . , n, and denote

by

J(~x) :=
(
∇>S2Y

k
n (x1) . . . ∇>S2Y

k
n (xM )

)
n=1,...,t; k=−n,...,n

its Jacobian. Then we have the following expressions

H̃S2
M
At(~x) =

2

M2
Re
[
J(~x)

>
J(~x)

]
,

∇S2
M
At(~x) =

2

M2
Re
[
J(~x)

>
At

]
.

Hence, the Newton step with the approximate Hessian H̃S2
M
At solves a normal equation as

known from the Gauss-Newton algorithm.

Note that the evaluation of this approximation is more stable than for the Hessian HS2
M
At,

see Figure 4.1. We further remark that from this simplification one also gains an improvement
in speed, since less nonequispaced spherical Fourier transforms are necessary, cf. Theorem
3.7.

It is well known that Newton’s method is very sensitive to initial distributions, which
might cause some stability problems. Hence, we also consider a stabilized version, like a
variant of the Levenberg-Marquardt algorithm, see Algorithm 2. There we replace the Hessian
HS2

M
At(xl) by the matrix HS2

M
At(xl) + ‖gl‖2I. In addition we determine in each iteration

step l the step length αl. To this end, we solve (2.8) by a one dimensional Newton method
and obtain Algorithm 1. In order to avoid the inversion of the Hessian HS2

M
At(xl) and

HS2
M
At(xl) + ‖gl‖2I, respectively, we consider also the nonlinear CG method for computing

spherical t-designs. This method is described in Algorithm 3, where we use the line search
Algorithm 1, as well. From Theorem 3.7 we conclude that every iteration step of the CG
method, cf. Algorithm 3, requires only O(t2 log2 t+M log2(1/ε)) arithmetic operations.

4 Numerical results

In this section, we present some numerical examples which show the suitability of the proposed
optimization algorithms for computing numerically spherical t-designs. At first we compare
the Algorithms 2 and 3 in Example 4.1. Besides the performance of the algorithms we stress
the issue of stability. The numerical results indicate that evaluating the Hessian HS2

M
At as

suggested in Lemma 3.6 and Lemma 3.1 is relatively unstable. The second Example 4.2 is
based on the fast evaluation of the matrix times vector multiplication with the more stable
evaluation of the matrix H̃S2

M
At. There we show the performance of the nonlinear CG method

for high polynomial degrees t.
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Algorithm 1 LinesearchAt : Line search for At on S2M
Input: starting point ~x := (x1, . . . ,xM ) ∈ S2M , descent direction d ∈ T~xS2M , accuracy
ε > 0, limit of iterations Lmax ∈ N

initialize l := 0, g0 := ∇S2
M
At(~x) ∈ T~xS2M , α0 := − 〈g0,d〉

〈d,HS2
M
At(~x)d〉

while l < Lmax do
~xl+1 := exp~x(αld) ∈ S2M
if At(~xl+1) > At(~x) then
αl+1 := αl/2 (back-tracking)

else
dl+1 := P exp~x(αld)(d) ∈ T~xl+1

S2M
gl+1 := ∇S2

M
At(~xl+1) ∈ T~xl+1

S2M
if ε >

|〈gl+1,dl+1〉|
‖dl+1‖2‖gl+1‖2 then

break
end if
αl+1 := αl −

〈gl+1,dl+1〉
〈HS2

M
At(~xl+1)dl+1,dl+1〉

end if
l := l + 1

end while

Output: step length αl−1

In the following examples, we consider two different initial distributions for the proposed
methods. The first one is a realization of a random uniform distribution on the sphere S2,
whereas the second one is a relatively uniform distribution given by the Fibonacci spiral on
the sphere with M points given by x(θn, ϕn), n := 1, . . . ,M, with

θn := arccos

(
2n− (M + 1)

M

)
, ϕn := π(2n− (M + 1))φ−1,

where φ = 1+
√
5

2 is the golden ratio, cf. [27]. We rotate these spiral points by a random
rotation in order to avoid points on the poles. Other good candidates for relatively uniform
distributed points are for example proposed in [24, 8, 10], which behave similarly as initial
distribution for computing spherical t-designs.

The Algorithms 1, 2 and 3 are implemented in Matlab R2010a. We used the FFTW 3.2.2
[9] and the NFFT 3.1.3 [16] libraries written in C. The mex-interface of the nfft-library [18]
to Matlab was used for performing the nonequispaced fast spherical Fourier transforms. The
methods where tested on an Intel Core i7 CPU 920 processor with 12 GB memory and a
standard 64 Bit Linux. Throughout our experiments we applied the NFFT routines with
precomputed Kaiser–Bessel functions, an oversampling factor of two, and a cutoff parameter
m = 9. For the NFSFT routines we used the threshold κ = 1000 for the stabilization. In the
Algorithms 1 – 3 we set the accuracy to ε = 1e − 13. We denote the Algorithm 2 using the
matrix HS2

M
At(~xl) and HS2

M
At(~xl) + ‖gl‖2I by ’Newton’ and ’Levenberg-Marquardt’, respec-

tively. The ’Gauss-Newton’ algorithm with the approximate Hessian H̃S2
M

behaves similar,
thus we omit the numerical results for this method. The occurring matrices are computed
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Algorithm 2 Newton-like methods on S2M for computing spherical t-designs

Input: initial distribution ~x := (x1, . . . ,xM ) ∈ S2M , accuracy ε > 0, limit of iterations
Lmax ∈ N

initialize l := 0, ~x0 := ~x, g0 := ∇S2
M
At(~x0) ∈ T~x0

S2M
while ε < ‖gl‖2 and l < Lmax do

dl :=


−
[
HS2

M
At(~xl)

]−1
gl ∈ T~xl

S2M (Newton)

−
[
HS2

M
At(~xl) + ‖gl‖2I

]−1
gl ∈ T~xl

S2M (Levenberg-Marquardt)

−
[
H̃S2

M
At(~xl)

]−1
gl ∈ T~xl

S2M (Gauss-Newton)

if 〈dl, gl〉 ≥ 0 then
dl := −gl (enforce descent direction)

end if
compute step length αl := LinesearchAt(~xl,dl), cf. Algorithm 1
~xl+1 := exp~xl

(αldl) ∈ S2M
gl+1 := ∇S2

M
At(~xl) ∈ T~xl

S2M
l := l + 1

end while

Output: numerical spherical t-design ~xl ∈ S2M

Algorithm 3 Method of conjugate gradients on S2M for computing spherical t-designs

Input: initial distribution ~x := (x1, . . . ,xM ) ∈ S2M , accuracy ε > 0, limit of iterations
Lmax ∈ N, restart interval r ∈ N

initialize l := 0, ~x0 := ~x, g0 := ∇S2
M
At(~x0) ∈ T~x0

S2M , d0 := −g0

while ε < ‖gl‖2 and l < Lmax do
compute step length αl := LinesearchAt(~xl,dl), cf. Algorithm 1
~xl+1 := exp~xl

(αldl) ∈ S2M
if l + 1 ≡ 0 mod r then

dl+1 := −gl+1

else
d̃l := P exp~xl

(αldl)(dl) ∈ T~xl+1
S2M

gl+1 := ∇S2
M
At(~xl) ∈ T~xl

S2M

βl := max
{

0,
〈gl+1,HS2

M
At(~xl+1)d̃l〉

〈HS2
M
At(~xl+1)d̃l,d̃l〉

}
dl+1 := −gl+1 + βld̃l

end if
l := l + 1

end while

Output: numerical spherical t-design ~xl ∈ S2M
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by the fast spherical Fourier transforms, see Lemma 3.6, in O(Mt2 log2 t + M2 log2(1/ε))
arithmetic operations and the corresponding linear systems are solved by Matlab’s standard
solver. Further we denote by ’CG with HS2

M
At’ the Algorithm 3 using the matrix HS2

M
At

and by ’CG with H̃S2
M
At’ the Algorithm 3 using the matrix H̃S2

M
At in Algorithm 3 and in

Algorithm 1. The maximum number of iterations Lmax for the line search, Algorithm 1, is 20
with an exception for the conjugate gradient method with the approximated Hessian H̃S2

M
At

of (3.21) where only one iteration is performed.

Example 4.1. Here we consider the computation of spherical 10-designs. For this problem
size all proposed algorithms are applicable, and we obtain the results of Table 4.1. We
observe a relative high number of iterations for the Newton-like methods, since quadratically
convergence is only achieved in very small neighborhood of a stationary point. For this
examples the Newton method degenerates to a steepest descent algorithm. Furthermore, the
computed spherical t-designs of all methods leads to integration errors

√
At of comparable

magnitude. We remark that Hardin and Sloane found a spherical 10-design with M = 60
points, see [14, 15]. After several attempts with random initial guesses we where also able to
compute various spherical t-designs ~x∗ ∈ S260 with integration error

√
A10(~x∗) < 1.0e− 14.

Furthermore, we want to address the issue of stability for the proposed methods. Therefor
we use the fact that the function At, its gradient ∇S2

M
At and its Hessian HS2

M
At are rotational

invariant. For instance we know

At(Rx1, . . . ,RxM ) = At(x1, . . . ,xM ),

where R ∈ R3×3 is an arbitrary rotation matrix, i.e., detR = 1, R>R = I. For simplicity
we use the abbreviation

R~x := (Rx1, . . . ,RxM ).

Using the rotational invariance property we compare the stability of the CG method with
the Hessian matrix HS2

M
At and its approximation H̃S2

M
At, cf. (3.21), as follows. Let the

initial distribution ~x := (x1, . . . ,xM ) and a rotation matrix R ∈ R3×3 be given. If we denote
with the subscript l ∈ N the l-th iterated in Algorithm 3 we obtain a simple measure for the
stability by the error

S(R, l) := dS2
M

(R~xl, (R~x)l),

since in exact arithmetic this distance is zero. For a random rotation matrix R and the random
initial distribution ~x with M = 60 points of Table 4.1 we obtain the results shown in Figure
4.1. One recognizes that the conjugate gradient method with the approximated Hessian H̃S2

M

is more stable than the same algorithm with the Hessian HS2
M

, whereas the results in Table
4.1 are comparable. Similar results are obtained for the Newton-like methods, if we replace
the Hessian HS2

M
by the approximated Hessian H̃S2

M
.

Example 4.2. From Example 4.1 we conclude that the most efficient and stable algorithm
seams to be the CG method with the approximated Hessian H̃S2

M
At. Hence, it is used for

the following examples. There, we consider the performance of this algorithm with respect
to M , the number of points we spend for achieving a spherical t-design. For comparison we
introduce the oversampling factor

σ(XM , t) :=
2M − 3

(t+ 1)2 − 1
≈ 2M

t2
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M method
√
A10(~xl) ‖∇S2

M
A10(~xl)‖2 iteration l time

Newton 2.8e-4 3.6e-14 458 4min
60 Levenberg-Marquardt 9.4e-4 2.0e-14 56 31s

(random) CG with HS2
M
At 4.9e-4 2.1e-10 2000 107s

CG with H̃S2
M
At 4.5e-4 1.0e-13 1808 5s

Newton 1.6e-3 1.2e-5 2000 18min
60 Levenberg-Marquardt 4.4e-4 1.8e-15 19 10s

(spiral) CG with HS2
M
At 5.5e-5 1.9e-12 2000 100s

CG with H̃S2
M
At 5.5e-5 1.0e-13 1710 5s

Newton 3.9e-3 1.7e-5 2000 18min
62 Levenberg-Marquardt 2.1e-15 1.3e-15 69 40s

(random) CG with HS2
M
At 1.1e-8 9.3e-10 2000 86s

CG with H̃S2
M
At 6.4e-8 3.4e-9 2000 6s

Newton 1.7e-3 1.3e-5 2000 18min
62 Levenberg-Marquardt 2.2e-15 1.3e-15 54 30s

(spiral) CG with HS2
M
At 1.5e-12 8.2e-14 1033 82s

CG with H̃S2
M
At 1.1e-12 9.4e-14 1170 3s

Table 4.1: Numerical results for computing spherical 10-designs from random and spiral initial
distributions ~x with M points. The maximum number of iterations Lmax is set to
2000.
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)

0 20 40 60 80 100
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CG method with HS2MAt

CG method with H̃S2MAt

Figure 4.1: Comparison of the error S(R, l) for CG methods with the Hessian HS2
M
At and its

approximation H̃S2
M
At respectively.

of a spherical t-design XM ⊂ S2. This factor is determined by the ratio of the degrees
of freedom for choosing the M points on the sphere S2 up to rotational symmetry, and
the number of spherical harmonics Y k

n we want to integrate exactly by the average over
the sampling values. Hence it can be seen as a measure for how far the given spherical
t-design is a way from a putatively minimal spherical t-design, with M ≈ t2

2 points, i.e.,
σ(XM , t) ≈ 1. This quantity is similar to the efficiency of arbitrary quadrature rules on the
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sphere introduced by McLaren, cf. [21]. The numerical results indicate that it is much easier
to find numerical spherical t-designs with a little bit more oversampling, say σ(XM ) ≥ 1.05.
We present the results in Table 4.2 and observe that a random distribution seams to be a
better initial distribution than the relatively uniform distributed points from the Fibonacci
spiral for higher polynomial degrees t. In Figure 4.2 the computed 100-designs for a random
and the spiral distribution are illustrated.

t M σ(XM , t)
√
At(~xl) ‖∇S2

M
At(~xl)‖2 iteration l time

49 1300 (random) 1.04 5.2e-12 9.2e-14 2211 3min
49 1300 (spiral) 1.04 1.7e-11 9.3e-14 7469 10min
50 1300 (random) 1.00 1.9e-5 8.8e-14 50212 1h
50 1300 (spiral) 1.00 6.8e-6 9.1e-14 96444 2h

100 5200 (random) 1.02 9.9e-12 9.8e-14 4211 27min
100 5200 (spiral) 1.02 1.6e-10 9.7e-14 57235 7.5h

200 21000 (random) 1.04 4.1e-12 9.9e-14 2597 1h
200 21000 (spiral) 1.04 1.0e-9 9.4e-14 173675 3d

500 130000 (random) 1.04 1.0e-11 9.9e-14 5394 21h

1000 520000 (random) 1.04 3.1e-11 1.8e-13 10600 10d
1000 1002000 (random) 2.00 9.7e-12 9.8e-14 4286 5d
1000 1002000 (spiral) 2.00 3.2e-11 9.0e-14 7500 7.5d

Table 4.2: Computing of spherical t-designs by Algorithm 3.

Figure 4.2: Illustration of the computed spherical 100-designs with 5200 random points and
sprial points respectively.

In summary we are able to compute numerical spherical t-designs for high polynomial
degrees t. The computed spherical t-designs are available from [11].
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Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Boston Inc.,
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[11] M. Gräf. Numerical spherical designs on S2.
http://www.tu-chemnitz.de/~grman/computations/pointsS2.php, 2010.
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