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We develop the uniform sparse Fast Fourier Transform (usFFT), an efficient, non-
intrusive, adaptive algorithm for the solution of elliptic partial differential equations with
random coefficients. The algorithm is an adaption of the sparse Fast Fourier Transform
(sFFT), a dimension-incremental algorithm, which tries to detect the most important
frequencies in a given search domain and therefore adaptively generates a suitable Fourier
basis corresponding to the approximately largest Fourier coefficients of the function. The
usFFT does this w.r.t. the stochastic domain of the PDE simultaneously for multiple
fixed spatial nodes, e.g., nodes of a finite element mesh. The key idea of joining the
detected frequency sets in each dimension increment results in a Fourier approximation
space, which fits uniformly for all these spatial nodes. This strategy allows for a faster
and more efficient computation, than just using other algorithms, e.g., the sFFT for each
spatial node separately. We test the usFFT for different examples using periodic, affine
and lognormal random coefficients in the PDE problems.
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1. Introduction

Parametric operator equations have gained significant attention in recent years. In particular,
partial differential equations with random coefficients play an important role in the study
of uncertainty quantification, e.g., [7, 18, 19]. Therefore, the numerical solution of these
equations and how to compute them in an efficient and reliable way has become more and
more important.
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In this work, we consider the parametric, elliptic problem of finding u : Dx×Dy → R such
that for every y ∈ Dy there holds

−∇ · (a(x,y)∇u(x,y)) = f(x) x ∈ Dx, y ∈ Dy,

u(x,y) = 0 x ∈ ∂Dx, y ∈ Dy,
(1.1)

describing the diffusion characteristics of inhomogeneous materials and therefore being called
diffusion equations with the random diffusion coefficients a. Here, x = (xj)

dx
j=1 ∈ Dx is the

spatial variable in a bounded Lipschitz domain Dx ⊂ Rdx , typically with spatial dimension

dx = 1, 2 or 3, and y = (yj)
dy
j=1 ∈ Dy is a high-dimensional random variable with Dy ⊂ Rdy .

For the remainder of this paper, we use d instead of dy to simplify notations. The differential
operator ∇ is always used w.r.t. the spatial variable x and the one-dimensional random
variables yj are assumed to be i.i.d. with a prescribed distribution.

A common way to define the random coefficient a is via

a(x,y) = a0(x) +

d∑
j=1

Θj(y)ψj(x), (1.2)

where a0 and ψj are assumed to be uniformly bounded on Dx. This model is commonly used
with the stochastic domain Dy = [α, β]d, typically with [α, β] = [−1, 1] or [−1

2 ,
1
2 ]. The Θj(y)

can also be interpreted as random variables itself and are usually chosen to have expectation
value E[Θj(y)] = 0, such that E[a(x, ·)] = a0(x) holds and the terms of the sum model the
stochastic fluctuations.
Often, the model (1.2) is in an affine fashion, using Θj(y) = yj for all j = 1, ..., d. This

so-called affine model is considered in many works on parametric differential equations with
random coefficients, e.g., [10, 26, 35, 39, 14, 27, 2, 13, 4, 16, 32]. The so-called periodic model
using Θj(y) =

1√
6
sin(2πyj) has been recently studied in [19, 18]. For yj uniformly distributed

on [−1
2 ,

1
2 ] each, these Θj are then distributed according to the arcsine distribution on [−1, 1].

It turned out that this model is also worth to be considered in addition to the affine model.
Further, this model yields some advantages for our new approach due to its periodicity w.r.t.
the random variables, as we will see later.
The second type of the random coefficient a, that is also used in many recent works, e.g.,

[17, 8, 3, 1, 5, 31], is the so-called lognormal form

a(x,y) = a0(x) + exp(b(x,y)), b(x,y) = b0(x) +

d∑
j=1

yj ψj(x).

Here, the random variables yj are typically normally distributed, i.e., yj ∼ N (0, 1), and hence
Dy = Rd. The numerical analysis as well as the computation of approximations for this model
is more difficult, but also arises more often from real applications. A more detailed overview
on parametric and stochastic PDEs can be found, e.g., in [9, Sec. 1].
In this paper, we design a numerical method for solving the aforementioned problems. To

be more precise, we will compute approximations of the solutions u(x,y) using trigonomet-
ric polynomials. A Fourier approach on ordinary differential equations, i.e., dx = 1, with
high-dimensional random coefficients has already been presented in [6]. There, a dimension-
incremental method, the so-called sparse Fast Fourier Transform (sFFT), cf. [34], was used
to detect the most important frequencies k and corresponding approximations of the Fourier
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coefficients ck(u) of the solution u(x,y). These values can be used to compute an approxi-
mation of the solution u or other quantities of interest as, e.g., the expectation value E[u].
Further, the frequencies and Fourier coefficients can be used to gain detailed information
about the influence of the random variables yj on the solution u and their interaction with
each other.

In this work, we present a non-intrusive approach based on the main idea of the algorithm
developed in [6]. The main difference is, that we do not include the spatial variable x in the
Fourier approach and therefore only apply the sFFT w.r.t. the random variable y. Therefore,
the sFFT only needs samples of the function values of u for fixed y, which can be computed by
using any suitable, already available differential equation solver. In consequence, we are not
restricted to particular spatial domains Dx or spatial dimensions dx. To be more precise, we
consider a finite set TG ⊂ Dx with finite cardinality |TG| = G < ∞, as spatial discretization
and aim for approximations of the functions

uxg(y) := u(xg,y)

for each xg ∈ TG. Also note, that we might need to apply a suitable periodization w.r.t. y
first if the function uxg is not already periodic.

Unfortunately, we would need to apply such a pointwise approximation algorithm, like in
our case sFFT, then G times separately, resulting in an unnecessary huge increase in the
number of samples used and therefore, since each sample implies a call of the underlying,
probably expensive differential equation solver, also in computation time of the algorithm.
Hence, we develop a modification of the sFFT to overcome this problem and compute the
approximations of the functions uxg within one call of the new algorithm. In particular,
our so-called uniform sparse Fast Fourier Transform (usFFT) combines some candidate sets
between each dimension-incremental step, which allows to use the same sampling nodes y
for each point xg ∈ TG in the next step. This strategy manages to keep the number of used
samples in a reasonable size and hence decreases the computation time drastically compared
to G applications of the sFFT algorithm itself. We summarize this in the following Theorem:

Theorem 1.1. Let the sparsity parameter s ∈ N, a frequency candidate set Γ ⊂ Zd, |Γ| <∞,
the amount G ∈ N and a failure probability δ ∈ (0, 1) be given. Moreover, we define NΓ :=
maxj=1,...,d{maxk∈Γ kj −minl∈Γ lj}. Then, there exists a randomized sampling strategy based
on the random rank-1 lattice approach in [28] generating a set S of sampling locations with
cardinality

|S| ∈ O
(
d s max(s,NΓ) log

2 d sGNΓ

δ
+max(sG,NΓ) log

d sG

δ

)
(1.3)

such that the following holds.

Consider G arbitrary multivariate trigonometric polynomials p(g)(y) :=
∑

k∈Ig p̂
(g)
k e2πik·y,

g = 1, . . . , G, where we assume Ig ⊂ Γ, |Ig| ≤ s and mink∈Ig |p̂
(g)
k | > 0 for each g = 1, . . . , G.

We generate a random set S via this sampling strategy. Then, with probability at least 1− δ
it holds that

• all frequencies k ∈ Ig as well as

• all Fourier coefficients p̂
(g)
k , k ∈ Ig,
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of all multivariate trigonometric polynomials p(g), g = 1, . . . , G, can be reconstructed from
their values at the sampling locations in S.
The simultaneous identification of all the frequencies and the computation of all the Fourier

coefficients can be realized by a combination of Algorithm 1 and a modification of the approach
presented in [28] in the role of Algorithm A. The suggested method has a computational
complexity of

O
(
d2 s2G2NΓ log3

d sGNΓ

δ

)
with probability at least 1− δ as well as O

(
d2 s3G2NΓ log3 d sGNΓ

δ

)
in the worst case.

Remark 1.2. Note, that (1.3) in Theorem 1.1 does not state anything about the sampling
complexity of Algorithm 1, but the amount of sampling locations |S|. We need samples of
all trigonometric polynomials p(g)(y), g = 1, . . . , G, at these sampling nodes y ∈ S, so the
necessary amount of samples in the classical sense is G times larger. However, we aim
for an Algorithm, where the G samples p(g)(y) for a fixed y ∈ S for all g = 1, . . . , G are
obtained by just a single call of some (probably expensive) black box sampling method. In all
of our numerical examples in Section 4, the computation time for this sampling procedure
tremendously outweighs the pure computation time of the remaining steps of Algorithm 1,
which we referred to as computational complexity in Theorem 1.1. Hence, we stress on the
fact, that the computational complexity is not the main focus of this complexity result, but the
amount of sampling nodes.

The proof of the Theorem is given in Appendix B. While Theorem 1.1 is stated for trigono-
metric polynomials p(g) only, the algorithm can be used on the above mentioned periodic or
periodized functions uxg(y) to compute the support and values of the approximately largest
Fourier coefficients of the functions with some thresholding technique, realized by the param-
eters slocal and θ in Algorithm 1, as well, which is also the key idea when applying the sFFT
for function approximation in [34, 21, 28]. More generally spoken, we could even consider G
different periodic functionals Fg(y) and approximate them with the same approach we are
about to present here. Moreover, Theorem 1.1 does not assume the frequency sets Ig to share
any frequencies k, i.e., these sets could even be pairwise disjoint in the worst case scenario.
Obviously, this will not be the case in our examples later on as the functions uxg(y) and
uxg̃(y) are probably very similar for xg and xg̃ close to each other due to the smoothness of
the solution u(x,y). Hence, the given complexities, especially the quadratic dependency on
G of the computational complexity, are very pessimistic and should really be seen as a worst
case estimate.

The crucial advantage of the presented approach is the efficient and adaptive choice of
the frequency set performed by the underlying sFFT. Most of the approaches in the afore-
mentioned works are based on certain (tensorized) basis functions [10, 8, 2, 4, 3, 1, 5, 18],
Quasi-Monte Carlo methods [26, 35, 17, 8, 14, 27, 13, 16, 19, 32, 31] or collocation methods
[8, 39] and often assume the particular involved basis functions or kernels needed to be known
in advance. Especially when working with certain weights, e.g., to describe some index sets,
non-optimal choices may result in insufficient index sets and therefore bad approximations. In
other words, reasonably estimating these weights is a particular challenge, which might neces-
sitate considerable additional effort. Also note, that our method aims for the approximation
of the solution u(x,y) directly instead of, e.g., just a high-dimensional quadrature. As an
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example and for additional information, we refer to [24] as a short and general introduction
to Quasi-Monte Carlo methods, which is one of the most common approaches.

The usFFT is highly adaptive, since it only needs a candidate set Γ and selects the impor-
tant frequencies k in this search domain on its own. Also, the cardinality |Γ| of this candidate
set is not as problematic as for other approaches, since the number of used samples and the
computation time suffer only mildly from larger candidate sets. As mentioned above, we may
also extract additional information about the influence and the interactions of the random
variables yj from the output of the usFFT. For instance, we detect a maximum of only 4
simultaneously active dimensions in the detected frequencies in our numerical examples, i.e.,
the detected frequency vectors k have at most 4 non-zero components with d = 10 or even
d = 20.

Another main advantage of our algorithm is the non-intrusive and parallelizable behavior.
As already mentioned, the usFFT uses existing numerical solvers of the considered differential
equation. We can use suitable, reliable and efficient solvers with no need to re-implement
them. Further, the different samples needed in each sampling step can be computed on
multiple instances. This parallelization allows to reduce the computation time even further
and makes a higher number of used samples less time consuming.

The remainder of the paper is organized as follows:

In Section 2 we set up some notation and assumptions and briefly explain the key idea of
the sFFT algorithm. Section 3 is devoted to the explanation of the usFFT as well as some
periodizations required for the affine and lognormal cases. Finally, in Section 4 we test the
new algorithm on different examples using periodic, affine, and lognormal random coefficients
and investigate the computed approximations under different aspects.

The MATLAB® source code of the algorithm as well as demos for our numerical examples
can be downloaded from https://mytuc.org/fyfw.

2. Prerequisites

We consider the PDE problem (1.1). Note, that we always assume f to be independent of the
random variable y and zero boundary conditions just for simplicity and to preserve clarity.
Our algorithm (up to some minor changes) may also be applied for right-hand sides f(x,y)
as well as non-zero Dirichlet boundary conditions u(x,y) = h(x,y) for all x ∈ ∂Dx.

2.1. Problem setting

The weak formulation of our problem reads: Given f ∈ H−1(Dx), for every y ∈ Dy, find
u(·,y) ∈ H1

0 (Dx), such that∫
Dx

a(x,y)∇u(x,y) · ∇v(x) dx =

∫
Dx

f(x)v(x) dx ∀v ∈ H1
0 (Dx).

As usual, H1
0 (Dx) denotes the subspace of the L2-Sobolev space H1(Dx) with vanishing

trace on ∂Dx and H−1(Dx) denotes the dual space of H1
0 (Dx). We say, that the diffusion

coefficient a : Dx × Dy → R fulfills the uniform ellipticity assumption, if there exist two
constants amin ∈ R and amax ∈ R, such that

0 < amin ≤ a(x,y) ≤ amax <∞ ∀x ∈ Dx, ∀y ∈ Dy. (2.1)
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Then, the Lax-Milgram Lemma ensures, that the problem (1.1) possesses a unique solution
u(·,y) ∈ H1

0 (Dx) for every fixed y ∈ Dy, satisfying the a priori estimate

sup
y∈Dy

∥u(·,y)∥H1
0 (Dx) ≤

1

amin
∥f∥H−1(Dx).

Some further basic information and results on approximation and smoothness of the solution
u of high-dimensional parametric PDEs can be found in [9, Sec. 1 and 2]. Additionally, we
also refer to the general results on best n-term approximations given in [9, Sec. 3.1], since our
Fourier approach fits in this particular framework as well.
In order to compute an approximation of the solution uxg

:= u(xg, ·) at a given point
xg ∈ Dx using the dimension-incremental method explained below, we need samples of uxg

for a lot of sampling nodes y. We aim for a non-intrusive approach and therefore use a finite
element method to solve the problem (1.1) for a given y ∈ Dy. A similar approach is used
e.g. in [32, 31], where the finite element method is used to solve the PDE for any yu with
u ⊂ N and (yu)j = yj for j ∈ u and 0 otherwise. The corresponding approximations of the
so-called u-truncated solution are then used for their particular method aswell. In our case,
we just evaluate the finite element solution ǔ(·,y) at the given point xg ∈ Dx. In particular,
instead of the finite element method, any differential equation solver would fit, that is capable
of computing the value u(xg,y) for given xg and y. Hence, we also refer to this sampling
method as black box sampling later on.
Note, that we will use the finite element solution ǔ also as an approximation of the true

solution u, when we test the accuracy of our computed approximation uusFFT in Section 4. In
detail, we have

err(u, uusFFT) ≤ err(u, ǔ) + err(ǔ, uusFFT),

where err(·, ·) is a suitable metric, symbolizing the error. So while we only investigate the sec-
ond term err(ǔ, uusFFT) in our numerical tests later, the first term includes other error sources
as the modeling, e.g., by a dimension truncation of infinite-dimensional random coefficient a,
or the error coming from the finite element approximation itself. For a particular example
of this, we refer to the detailed error analysis for the periodic model mentioned in Section 1,
that is given in [18, Sec. 4].

2.2. The dimension-incremental method for s-sparse periodic functions

The following dimension-incremental method was presented in [34]. The aim of this algorithm
is to determine the non-zero Fourier coefficients p̂k ∈ C, k ∈ I, of a multivariate trigonometric
polynomial

p(y) =
∑
k∈I

p̂k exp(2πik · y)

with unknown frequency set I ⊂ Zd, |I| <∞, based on samples of the polynomial p. Obviously,
p is a periodic signal and its domain is the d-dimensional torus Td, T ≃ [0, 1).

The goal is not only to calculate the nonzero Fourier coefficients p̂k but also, and more
important, to detect the frequencies k out of a possibly huge search domain Γ ⊂ Zd belonging
to the nonzero Fourier coefficients. In particular, we define the set

supp p̂ := {k ∈ Γ: p̂k ̸= 0}
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and call the cardinality | supp p̂| the sparsity of p.
First, we introduce some further notation. We consider a given search domain Γ ⊂ Zd, |Γ| <

∞, that should be large enough to contain the unknown frequency set I ⊂ Γ. We denote the
projection of a frequency k := (k1, ..., kd) ∈ Zd to the components i := (i1, ..., im) ∈ {ι ∈
{1, ..., d}m : ιt ̸= ιt′ for t ̸= t′} by Pi(k) := (ki1 , ..., kim) ∈ Zm. Correspondingly, we define the
projection of a frequency set I ⊂ Zd to the components i by Pi(I) := {(ki1 , ..., kim) : k ∈ I}.
Using these notations, the general approach is the following:

Sketch of dimension-incremental reconstruction

1. Compute the first components of the unknown frequency set from sampling values, i.e.,
determine a set I(1) ⊂ P1(Γ), such that P1(supp p̂) ⊂ I(1) holds.

2. For dimension increment step t = 2, ..., d, i.e., for each additional dimension:

a) Compute the t-th components of the unknown frequency set from sampling values,
i.e., determine a set I(t) ⊂ Pt(Γ), such that Pt(supp p̂) ⊂ I(t) holds.

b) Construct a suitable sampling set X (1,...,t) ⊂ Td, |X (1,...,t)| ≪ |Γ|, which allows to
detect those frequencies from the set (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) belonging to
non-zero Fourier coefficients p̂k.

c) Sample the trigonometric polynomial p along the nodes of the sampling set X (1,...,t).

d) Compute the Fourier coefficients ˜̂p(1,...,t),k, k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ).

e) Determine the non-zero Fourier coefficients from ˜̂p(1,...,t),k, k ∈ (I(1,...,t−1) × I(t)) ∩
P(1,...,t)(Γ) and obtain the set I(1,...,t) of detected frequencies. The I(1,...,t) index set
should be equal to the projection P(1,...,t)(supp p̂).

3. Use the set I(1,...,d) and the computed Fourier coefficients ˜̂p(1,...,d),k, k ∈ I(1,...,d) as an
approximation for the support supp p̂ and the Fourier coefficients p̂k, k ∈ supp p̂.

Note, that this method can also be used for the numerical determination of the approxi-
mately largest Fourier coefficients

ck(f) :=

∫
Td

f(y)e−2πik·ydy, k ∈ I,

of suffciently smooth periodic signals f using a suitable thresholding technique, cf. [34, 21, 28].
The proposed approach includes the construction of suitable sampling sets in step 2b. To

this end, one assumes that an upper bound s ≥ | supp p̂| is known and one constructs the
sampling sets X (1,...,t) such that the Fourier coefficients ˜̂p(1,...,t),k computed in step 2d are
randomly projected ones. Due to that projection one may observe cancellations with the
effect that one misses active frequencies. For that reason, one repeats the computation of the
projected Fourier coefficients for a number r of random projections and then one takes the
union.
Of course, there exist different methods for the computation of the projected Fourier coeffi-

cients. The algorithm works with any sampling method, which computes Fourier coefficients
on a given frequency set. Preferable sampling sets combine the four properties:

• relatively low number of sampling nodes (sampling complexity),
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• stability,
• efficient construction methods for the sampling set,
• fast Fourier transform like algorithms in order to compute the projected Fourier coeffi-
cients.

Especially due to the last point, we will call the dimension-incremental method the sparse
Fast Fourier Transform (sFFT) from now on. A quick sketch of the sampling techniques used
in [34, 21, 28] as well as the sample complexity and computational complexity of the sFFT
using these methods are given in Appendix A.

3. The uniform sparse FFT

Up to now, the sFFT algorithm is a suitable tool in order to compute an approximation of
the solution

uxg(y) := u(xg,y) =
∑
k∈Zd

ck(uxg)e
2πik·y ≈

∑
k∈Ixg

csFFTk (uxg)e
2πik·y

for a single xg. When considering a whole set of points xg ∈ TG, |TG| = G, we have to call
the existing method G times. But multiple, independent calls of the sFFT result in different,
adaptively determined sampling sets X (1,...,t) in step 2b. Hence, we cannot guarantee that the
solutions of the differential equation from one run of the algorithm can be utilized in another
one. So we really need G full calls of the sFFT including all sampling computations and
therefore end up with unnecessary many samples, even when using the sample efficient rank-
1 lattice (R1L) approaches. Remember, that sampling means solving the differential equation
with a call of the underlying differential equation solver, that might be very expensive in
computation time. Therefore, we now modify the dimension-incremental method, such that
we can work on the set TG and one call of the algorithm computes approximations of the
most important Fourier coefficients ck(uxg), k ∈ Ixg , for each g = 1, ..., G, including a clever
choice of the sampling nodes y.

3.1. Expanding the sFFT

The full method is stated in Algorithm 1. We force the dimension-incremental method to
select a set I ⊂ Γ ⊂ Zd containing the frequencies of the s approximately largest Fourier
coefficients ck(uxg) for each xg ∈ TG. To this end, we compute the set of detected frequencies

I
(1,...,t)
xg for each xg in each dimension-increment t, but afterwards we form the union of these

sets
⋃G

g=1 I
(1,...,t)
xg , which will be the set of detected frequencies I(1,...,t), that is given to the

next dimension-incremental step t+ 1.

Now, we start each iteration with a larger frequency candidate set (I(1,...,t−1) × I(t)) ∩
P(1,...,t)(Γ), which is suitable for all xg ∈ TG. This way, the first t components of the elements

of the sampling set X (1,...,t) are the same for each xg and the random part, which causes
the specific random projection of the Fourier coefficients, can be chosen equally for each xg

without disturbing the algorithm. Therefore, we can now take advantage of the fact, that
our underlying differential equation solver can evaluate the solutions u(x,y) for a given y for
multiple values of x in the domain Dx. Accordingly, we only need to solve the differential
equation once for each sampling node y and still get all the sampling values uxg(y) for all xg
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in our finite set TG. Note, that this also holds for the one-dimensional detections in steps 1
and 2a. Also, we might need to interpolate or approximate, if some of the values uxg(y),

xg ∈ TG and fixed y ∈ X (1,...,t), are not directly given by the differential equation solver.
Obviously, the larger candidate sets (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ), resulting from the union

of the sets I
(1,...,t−1)
xg , g = 1, . . . , G, and the union of the sets I

(t)
xg , g = 1, . . . , G, will also result

in larger sampling sets. The overall increase of sampling locations considered is still very
reasonable, cf. Theorem 1.1. The computational complexity suffers a bit harder from these
modifications, but is not as important as the amount of sampling locations, cf. Remark 1.2.
We could also think of further thresholding methods to cut the number of frequencies back
to the sparsity parameter s at the end of each dimension-incremental step or at least at the
end of the whole algorithm. In this work, we will not do this, but take a look at the total
number of frequencies in the output of the algorithm in relation to the sparsity parameter s,
cf. Remark 4.1.

Overall, the proposed method is now capable of computing approximations

uusFFTxg
(y) :=

∑
k∈I

cusFFTk (uxg)e
2πik·y

for all nodes xg, g = 1, ..., G. Please note, that step 2 does not provide (cusFFTk (uxg))k∈I but

only approximations of (cusFFTk (uxg))k∈J̃d,1,g , where J̃d,1,g ⊊ I(1,...,d) = I holds in general. In

order to compute all the Fourier coefficients cusFFTk (uxg), k ∈ I and g = 1, . . . , G, we propose
an additional approximation in step 3. For this approximation, the user can apply a suitable
approach of his choice. The used method should just compute an approximation of the
projection to the already determined space of trigonometric polynomials span{exp(2πik ·
◦) : k ∈ I}, cf., e.g., [23, 20, 22] for different possible sampling approaches.

We will call this modified version of the sFFT the uniform sFFT or short usFFT from
now on, where uniform is meant w.r.t. the discrete set of points TG. The main difference to
the sFFT algorithms from [34, 21, 28] are the loops over g and the corresponding unions of
the frequency sets. Possible choices for Algorithm A and the approximation approach used
in step 3 of Algorithm 1 are a random rank-1 lattice approach and a multiple rank-1 lattice
approach, respectively, which actually leads to Theorem 1.1, cf. Appendix A and Appendix
B.

3.2. Periodization

The usFFT allows us to reconstruct a frequency set I and approximations cusFFTk (uxg) of the
corresponding Fourier coefficients ck(uxg) for each xg ∈ TG. Unfortunately, this approach
requires the function u(x,y) to be 1-periodic w.r.t. y in each stochastic dimension d.

Since the right-hand side f(x) does not depend on y in our considerations, the random
coefficient a is the only given function involving the random variable y in the problem (1.1). In
periodic models, we use the random coefficient (1.2) with 1-periodic functions Θj(y). Hence,
the random coefficient a(x,y) is 1-periodic and thus the solution u(x,y) is also 1-periodic
w.r.t. each component of y. Therefore, we can apply the usFFT directly for this model
without any further considerations.

In order to apply the usFFT when using the affine and lognormal models, we need to apply
a suitable periodization first, since the random coefficient a and therefore the solution u are
not periodic in general. Note, that we assume the random variable to be uniformly distributed
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Algorithm 1 The usFFT on a set TG
Input: Γ ⊂ Zd search space in frequency domain, candidate set for I

u(·, ·) PDE solution u as black box (function handle)
TG discrete set containing the points xg, g = 1, ..., G
s, slocal ∈ N sparsity parameters, s ≤ slocal
Algorithm A efficient algorithm A that guarantees the identification of the fre-

quency support of each slocal-sparse trigonometric polynomial with high
probability, cf. Section 2.2, and computes the Fourier coefficients

θ ∈ R+ absolute threshold
r ∈ N number of detection iterations

(Step 1 & 2a) [Single frequency component identification]
for t := 1, . . . , d do

Set Kt := max(Pt(Γ))−min(Pt(Γ)) + 1.
Set I(t) := ∅.
for i := 1, . . . , r do

Choose y′j ∈ T, j ∈ {1, . . . , d} \ {t} uniformly at random.

Set y(ℓ) :=
(
y
(ℓ)
1 , . . . , y

(ℓ)
d

)⊤
, y

(ℓ)
j :=

{
ℓ/Kt, j = t,

y′j , j ̸= t,
for all ℓ = 0, . . . ,Kt − 1.

for g := 1, . . . , G do
Compute ˜̂ut,kt,g := 1

Kt

∑Kt−1
ℓ=0 u

(
xg,y

(ℓ)
)
e−2πiℓkt/Kt , kt ∈ Pt(Γ), via FFT.

Set I(t) := I(t) ∪ {kt ∈ Pt(Γ) : ˜̂ut,kt,g is among the largest slocal (in absolute value)

elements of {˜̂ut,j,g}j∈Pt(Γ) and |˜̂ut,kt,g| ≥ θ}.
end for g

end for i
end for t

(Step 2) [Coupling frequency components identification]
for t := 2, . . . , d do

If t < d, set r̃ := r and s̃ := slocal, otherwise r̃ := 1 and s̃ := s.
Set I(1,...,t) := ∅.
Generate a sampling set X ⊂ Tt for Jt := (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) that allows for
the application of Algorithm A.
for i := 1, . . . , r̃ do
Choose components y′t+1, . . . , y

′
d ∈ T of sampling nodes uniformly at random.

(Step 2b)
Set Xt,i := {y := (ỹ, y′t+1, . . . , y

′
d) : ỹ ∈ X} ⊂ Td.

(Step 2c)
Sample u along the nodes of the sampling set Xt,i for every xg.
for g := 1, . . . , G do

(Step 2d)
Apply Algorithm A to obtain the support J̃t,i,g ⊂ Jt, |J̃t,i,g| ≤ s̃, of frequencies belonging
to the at most s̃ largest Fourier coefficients, each larger than θ in absolute value, using
the sampling values u(xg,yj), yj ∈ Xt,i.

(Step 2e)
Set I(1,...,t) := I(1,...,t) ∪ J̃t,i,g.

end for g
end for i

end for t

10



Algorithm 1 continued.

(Step 3) [Computation of Fourier coefficients]
Generate a suitable sampling set Y ⊂ Td.
Sample u along the nodes of the sampling set Y for every xg.
for g := 1, . . . , G do

Compute the corresponding Fourier coefficients
(
˜̂u(1,...,d),k,g

)
k∈I(1,...,d)

by the means of the samples (u(xg,y))y∈Y and a suitable algorithm.
end for g
Set Ĩ := I(1,...,d)

Output: Ĩ ⊂ Γ ⊂ Zd set of detected frequencies
˜̂ug ∈ C|̃I| corresponding Fourier coefficients for all xg, where each |˜̂u(1,...,d),k,g| ≥ θ

for at least one xg

in the affine case, i.e., y ∼ U([α, β]d), and standard normally distributed in the lognormal
case, i.e., y ∼ N (0, 1)d and recall T ≃ [0, 1).

3.2.1. Affine case

We consider the in ỹ 1-periodic function

ũ : Dx × Td −→ R
ũ(x, ỹ) := u(x, φ(ỹ)),

with φ being some suitable transformation function, i.e.,

φ : Td −→ Dy = [α, β]d.

With this approach, the usFFT is able to compute approximations of the functions
ũxg

:= ũ(xg, ·) for each xg ∈ TG. We want φ to act component-wise on the random variable,

i.e., φ(ỹ) := (φj(ỹj))
d
j=1. Further, we assume, that these mappings φj fulfill the assumptions

(A1) Each φj is continuous, i.e., φj ∈ C(T) for each j = 1, ..., d.

(A2) It holds φj(0) = φj(1) = α and φj(
1
2) = β for each j = 1, ..., d.

(A3) Each φj is symmetric, i.e., φj(
1
2 − ỹ) = φj(

1
2 + ỹ) for ỹ ∈ [0, 12 ] and for each j = 1, ..., d.

(A4) Each φj is strictly monotonously increasing in [0, 12 ] for each j = 1, ..., d.

With these restrictions we ensure, that φ is bijective w.r.t. the interval [0, 12 ]
d. Hence, we

define the inverse mapping φ−1(y) : [α, β]d → [0, 12 ]
d.

With this inverse mapping, we are now able to compute approximations of the functions
uxg(y) via

uusFFTxg
(y) := ũusFFTxg

(φ−1(y)) =
∑
k∈I

cusFFTk (ũxg) e
2πik·φ−1(y), (3.1)

with the finite index set I and the approximated Fourier coefficients cusFFTk (ũxg) from the
usFFT applied to the functions ũxg , g ∈ TG.

11



In this work, we always consider the tent transformation, cf. [29, 38, 11], for each φj , i.e.,

φj : T −→ [α, β], φj(ỹ) = β − |(β − α) (1− 2ỹ)| , (3.2a)

φ−1
j : [α, β] −→

[
0,

1

2

]
, φ−1

j (y) =
y − α

2(β − α)
. (3.2b)

Although this transformation mapping fulfills the assumptions (A1) - (A4), it might not be
the most favorable choice in specific applications due to its lack of smoothness. Smoother
periodizations, e.g., [6, Sec. 2.2.2], might yield better approximation results in specific situ-
ations due to the faster decay of the Fourier coefficients of ũ. On the other hand, the linear
structure of the tent transformation on the interval [0, 12 ] allows some simplifications later on.

3.2.2. Lognormal case

As in the affine case, we need a suitable, periodic transformation mapping φ : Td → Dy = Rd

to receive a periodization ũ(x, ỹ). Again, we choose the same functions in each stochastic
dimension, so the same φj for all j = 1, ..., d, but this time φj will consist of two separate
steps. First, we consider the transformation

τ1 :

(
−1

2
,
1

2

)
−→ R, τ1(y̆) :=

√
2 erf−1(2y̆),

τ−1
1 : R −→

(
−1

2
,
1

2

)
, τ−1

1 (y) =
1

2
erf

(
y√
2

)
,

with the error function

erf(y) :=
1√
π

∫ y

−y
e−t2 dt, x ∈ R.

For further information on this transformation, see [30]. This mapping τ1 seems like the ideal
choice when talking about random variables y ∼ N (0, 1), since the error function erf(y) is
closely related to its cumulative distribution function Φ. In detail, it holds

Φ(y) =
1

2

(
1 + erf

(
y√
2

))
.

The so-called inversion method in stochastic simulation describes, that the cumulative distri-
bution function Φ and its inverse Φ−1 map random variables, distributed according to Φ, to
uniformly distributed random variables on [0, 1] and the other way around, cf. [12, Sec. II.2].
Thus, our transformation τ1 maps uniformly distributed random variables y̆ ∼ U(−1

2 ,
1
2) to

normally distributed random variables y ∼ N (0, 1) and is therefore a great generalization
when moving forward from uniformly distributed random variables.
The second part is a suitable periodization τ2 : T → (−1

2 ,
1
2). We choose a similar approach

as in the affine case and use a shifted tent transformation

τ2,∆ : T −→
[
−1

2
,
1

2

]
, τ2,∆(ỹ) =


−1

2 − 2(ỹ −∆) 0 ≤ ỹ < ∆

−1
2 + 2(ỹ −∆) ∆ ≤ ỹ < 1

2 +∆

+3
2 − 2(ỹ −∆) 1

2 +∆ ≤ ỹ < 1

τ−1
2,∆ :

[
−1

2
,
1

2

]
−→

[
∆,

1

2
+ ∆

]
, τ−1

2,∆(y̆) =
y̆

2
+ ∆+

1

4

12
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Figure 3.1: The plots of the transformation and periodization mappings τ1 and τ2,∆ and the
combined mapping φj,∆ with shift ∆ = 0.1.

with shift ∆ > 0. We need this shift, since we cannot apply the transformation τ1 if we have
τ2,∆(ỹ) = ±1

2 due to the poles there. Shifting with a suitable ∆ ensures, that the deterministic
part of the sampling set X does not contain components equal to ∆ or 1

2 +∆. The randomly
chosen values from the interval [0, 1] for the other components will not be equal to ∆ or 1

2 +∆
almost surely too. Hence, the sampling set X in Algorithm 1 does not contain any nodes with
any component equal to ∆ or 1

2 +∆ almost surely.
Now we define the transformation mappings φj,∆ for each j = 1, ..., d for the lognormal

case as

φj,∆ : T \
{
∆,

1

2
+ ∆

}
−→ R, φj,∆(ỹ) = (τ1 ◦ τ2,∆)(ỹ), (3.3a)

φ−1
j,∆ : R −→

(
∆,

1

2
+ ∆

)
, φ−1

j,∆(y) = (τ−1
2,∆ ◦ τ−1

1 )(y). (3.3b)

The mapping φj,∆ as well as its two parts τ1 and τ2,∆ are visualized in Figure 3.1. These
mappings fulfill slightly modified versions of the assumptions (A1) - (A4) taking into account
the shift ∆. Now we can use the transformation φ∆ := (φj,∆)

d
j=1 to receive the in ỹ periodic

signals ũ(xg, ỹ) = u(xg, φ∆(ỹ)), xg ∈ TG, that can be approximated using our usFFT, cf.
Algorithm 1. Plugging the inverse mapping φ−1

∆ into the evaluation formula, which is similar
to (3.1), we are now able to compute approximations of the solution functions uxg(y) in the
lognormal case as well. Again, the periodization φ∆ is not smooth and therefore might yield
non-optimal approximation results. In particular, the periodization mappings φj,∆ possess
two poles instead of two kinks, which is a way worse smoothness behavior than in the affine
case.
We now ask for the optimal choice of the parameter ∆, such that the deterministic com-

ponents of the sampling nodes ỹ of the R1Ls in the usFFT are as far as possible from ∆ and
∆ + 1/2 to reduce problems at the poles of the transformation mapping φ∆. Let

ỹi,j :=
i

M
zj mod 1, i = 0, ...,M − 1 and j = 1, ..., d (3.4)

denote the j-th component of the i-th R1L node of the d-dimensional R1L of size M . Then,
we are looking for ∆, such that the minimum of the two distances

min
i=0,...,M−1
j=1,...,d

|ỹi,j −∆| and min
i=0,...,M−1
j=1,...,d

∣∣∣∣ỹi,j − (
∆+

1

2

)∣∣∣∣
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Table 4.1: Parameter settings η for the numerical tests of Algorithm 1.

η I II III IV V VI VII VIII IX X XI XII XIII

N 32 32 64 32 64 32 64 128 32 64 128 128 256

s, slocal 100 250 500 1000 2000 4000

θ 1 · 10−12

r 5

is maximal.

Lemma 3.1. Let Λ(z,M) be a d-dimensional R1L with prime lattice size M ∈ N, M > 2,
generating vector z ∈ Zd, zj0 ̸≡ 0 (mod M) for at least one j0 ∈ {1, . . . , d}, and the lattice
nodes ỹi,j as defined in (3.4). Then, we have

∆opt := argmax
0<∆< 1

2M

min

 min
i=0,...,M−1
j=1,...,d

|ỹi,j −∆| , min
i=0,...,M−1
j=1,...,d

∣∣∣∣ỹi,j − (
∆+

1

2

)∣∣∣∣

 =

1

4M
.

The proof of Lemma 3.1 is given in Appendix C.

4. Numerics

We will now test the usFFT on different, two-dimensional numerical examples. In particular,
we consider the parametric PDE (1.1) with zero boundary condition and different random
coefficients a(x,y) and right-hand sides f(x).

Since our algorithm yields an approximation uusFFTxg
(y) for each xg ∈ TG separately, we also

compute the approximation error

errηp(xg) :=

 1

ntest

ntest∑
j=1

∣∣∣ǔ(xg,y
(j)

)
− uusFFT

(
xg,y

(j)
)∣∣∣p

 1
p

(4.1)

and

errη∞(xg) := max
j=1,...,ntest

∣∣∣ǔ(xg,y
(j)

)
− uusFFT

(
xg,y

(j)
)∣∣∣ (4.2)

for each xg ∈ TG separately, using ntest = 105 different, randomly drawn test variables y(j)

from the underlying probability distribution. Here, ǔ(·,y(j)) are the finite element solutions of
the PDE for fixed parameters y(j) and uusFFT(xg, ·) are our approximations from the usFFT.
The parameter η denotes the used sFFT parameters as given in Table 4.1.

Here, N is the extension of the full grid [−N,N ]d, that is used as the search space Γ ⊂ Zd.
Note, that we also choose slocal = s. If we miss an important frequency component at one
point xg, it is very likely, that it is contained in the detected index set of a neighboring mesh
point. Therefore, the union over all points xg should be enough to avoid losing frequencies
and we do not need a larger slocal. The choices for the threshold θ and the number of detection
iterations r are common values and the same as in [28]. In particular, we choose the number
of detection iterations r as well as the probabilities γA and γB as in the case G = 1, since we
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expect a huge overlap of the detected index sets and hence a small failure probability even
for these parameter choices instead of the theoretical choices given in the proof of Theorem
1.1.
Further, we always use the random R1L approach in the role of Algorithm A to recover

the projected Fourier coefficients in the dimension-incremental method, cf. Section 2.2 and
[28]. We also tested the algorithm using the single and multiple R1L approaches mentioned
in Section 2.2, but these did not achieve significantly smaller approximation errors and are
using larger numbers of samples and therefore result in longer runtimes of the algorithm.
Hence, it seems reasonable to stick with the random R1L approach here. We choose the
target maximum edge length of the finite element mesh hmax = 0.075 in the FE solver. All
examples consider the spatial domain Dx = [0, 1]2, resulting in a finite element mesh TG ⊂ Dx

with G = 737 inner and 104 boundary nodes.
Further, we will also analyze the importance of and the interactions between our detected

Fourier coefficients. To this end, we use the classical ANOVA decomposition of 1-periodic
functions as given in [33] or [39, 25]. Note, that for instance in [33] the ANOVA decomposition
is used already in the proposed methods to receive an adaptive selection of the most important
approximation terms, which we realized in our method by simply comparing the size of the
projected Fourier coefficients, cf. Sections 2.2 and 3.1.
In particular, we consider the variance of our approximation

σ2(ũusFFTxg
) := ∥ũusFFTxg

∥2L2(Td) − |cusFFT0 (ũxg)|2 =
∑

k∈I\{0}

|cusFFTk (ũxg)|2.

Now we can study different subsets J ⊂ I and estimate the variance of the approximation
using only these subsets. The fraction of variance, that is explained using this subset J, is
then called global sensitivity index (GSI), see [36, 37],

ϱ(J, ũusFFTxg
) :=

σ2(ũusFFTxg ,J
)

σ2(ũusFFTxg
)
=

∑
k∈J\{0}|cusFFTk (ũxg)|2∑
k∈I\{0}|cusFFTk (ũxg)|2

∈ [0, 1], (4.3)

where we define ũusFFTxg ,J
(y) :=

∑
k∈J c

usFFT
k (ũxg) e

2πik·φ−1(y). In our examples, we will mainly
consider the subsets Jℓ of all frequencies k with exactly ℓ non-zero components, i.e.,

Jℓ := {k ∈ I : ∥k∥0 := |{i ∈ {1, ..., d} : ki ̸= 0}| = ℓ} , (4.4)

but of course several other choices of Jℓ might be interesting as well for different applications.
Finally, one can also think about evaluating various quantities of interest of the approxima-

tion. Here, we will consider the expectation value E(uusFFTxg
) as one example of such quantities.

We use a Monte-Carlo approximation of the expectation value

ǔxg
:=

1

nMC

nMC∑
j=1

ǔ
(
xg,y

(j)
)

of the finite element approximation using nMC random samples for comparison.

4.1. Expectation value of the approximation

Computing the expectation value of our approximation uusFFTxg
requires some additional effort,

depending on the particular model and eventually used periodization methods. By definition,
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the expectation value is given by

E(uusFFTxg
) :=

∫
Dy

uusFFTxg
(y) dµ(y) =

∫
Dy

uusFFTxg
(y) p(y) dy,

where p is the probability density function of the random variable y.
For the periodic model, we do not need any periodization. Therefore, the approximation

of the solution reads as

uusFFTxg
(y) =

∑
k∈I

cusFFTk (uxg) e
2πik·y

with I the frequency set and cusFFTk (uxg) the corresponding approximated Fourier coefficients
computed by the usFFT. The random variable y is assumed to be uniformly distributed in
Dy = [−1

2 ,
1
2 ]

d in this case. Hence, we have

E(uusFFTxg
) =

∫
Dy

uusFFTxg
(y) p(y) dy

=

∫
[− 1

2
, 1
2
]d
1−d

∑
k∈I

cusFFTk (uxg) e
2πik·y dy

=
∑
k∈I

cusFFTk (uxg)

∫
[− 1

2
, 1
2
]d
e2πik·y dy

=
∑
k∈I

cusFFTk (uxg) δk = cusFFT0 (uxg).

In the affine case, we use the tent transformation (3.2), such that our approximation reads
as

uusFFTxg
(y) =

∑
k∈I

cusFFTk (ũxg) e
πik·y−α1

β−α

with 1 = (1, 1, ..., 1) ∈ Rd. Again, the random variable y is assumed to be uniformly dis-
tributed, but for this computation we work with the more general domain Dy = [α, β]d.
Therefore, we have

E(uusFFTxg
) =

∫
Dy

uusFFTxg
(y) p(y) dy

=

∫
[α,β]d

(β − α)−d
∑
k∈I

cusFFTk (ũxg) e
πik·y−α1

β−α dy

=
∑
k∈I

cusFFTk (ũxg)(β − α)−d

∫
[α,β]d

e
πik·y−α1

β−α dy

=
∑
k∈I

cusFFTk (ũxg)Dk (4.5)

with

Dk :=
d∏

j=1

Dkj and Dkj :=


2i
πkj

kj ≡ 1 mod 2

1 kj = 0

0 else.
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Note, that the parameters α and β vanish completely. Thus, the formula is independent of
the particular domain Dy = [α, β]d.

Finally, the lognormal model involves the more complicated transformation mappings φj,∆

given in (3.3). Thus, the approximation reads as

uusFFTxg
(y) =

∑
k∈I

cusFFTk (ũxg) e
2πik·φ−1

∆ (y).

Here, the random variable y is standard normally distributed, i.e., y ∼ N (0, I) with I the
identity matrix of dimension d. Hence, the expectation value can be written as

E(uusFFTxg
) =

∫
Dy

uusFFTxg
(y) p(y) dy

=

∫
Rd

(2π)−
d
2 e−

1
2
∥y∥2

∑
k∈I

cusFFTk (ũxg) e
2πik·φ−1

∆ (y) dy

=
∑
k∈I

cusFFTk (ũxg)(2π)
− d

2

∫
Rd

e−
1
2
∥y∥2 e2πik·φ

−1
∆ (y) dy

=
∑
k∈I

cusFFTk (ũxg)Dk,∆

with

Dk,∆ :=

d∏
j=1

Dkj ,∆ and Dkj ,∆ :=


2i
πkj

e2πikj∆ kj ≡ 1 mod 2

1 kj = 0

0 else.

Note, that the factors Dkj ,∆ are exactly the same as the Dkj in the affine case up to the

correction term e2πikj∆ due to the shift with ∆.

4.2. Periodic example

We consider the example from [18, Sec. 6] using the domain Dx = (0, 1)2 with right-hand side
f(x) = x2 and the random coefficient

a(x,y) := 1 +
1√
6

d∑
j=1

sin(2πyj)ψj(x), x ∈ Dx, y ∈ Dy,

with the random variables y ∼ U
(
[−1

2 ,
1
2 ]

d
)
and

ψj(x) := cj−µ sin(jπx1) sin(jπx2), x ∈ Dx, j ≥ 1,

where c > 0 is a constant and µ > 1 is the decay rate. Accordingly, we get

amin = 1− c√
6
ζ(µ) and amax = 1 +

c√
6
ζ(µ),

such that for c <
√
6

ζ(µ) the uniform ellipticity assumption (2.1) is fulfilled.
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Figure 4.1: The MC approximation ǔxg and the approximation errors errη1(xg) and errη2(xg)
for the periodic example with µ = 1.2, c = 0.4, d = 10, η = VII, i.e., s = 1000,
N = 64.
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Figure 4.2: Largest error errη2 w.r.t. the nodes xg for all parameter settings η displayed in
Table 4.1 for the periodic example.

We test the usFFT with the stochastic dimension d = 10 on the two parameter choices
µ = 1.2, c = 0.4 and µ = 3.6, c = 1.5 from [18]. The first choice seems to model a
more difficult PDE, since the decay of the functions ψj w.r.t. j is very slow and we have
amin = 0.08690 and amax = 1.91310. This range of a is wider and amin is closer to zero than
for the quickly decaying second parameter choice with amin = 0.31660 and amax = 1.68340.

Figure 4.1 illustrates the total approximation error errηp(xg) for p = 1 and p = 2 as well
as the Monte-Carlo approximation of the expectation value ǔxg using nMC = 106 samples for
comparison. A more detailed insight on the decay of the error is given in Figure 4.2. There,
the largest approximation error errη2 w.r.t. the nodes xg is given with the number of samples
used in the corresponding usFFT. Note, that this number scales directly with the sparsity
parameter s, while the extension parameter N has nearly no impact. Hence, the data points
in Figure 4.2 are ordered from left to right from s = 100 to s = 4000. Finally, Figure 4.3
shows the cardinality of the sets Jℓ, i.e., the number of frequencies detected with exactly ℓ
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Figure 4.3: Cardinality (left, blue, solid) of the index sets Jℓ and the corresponding largest
(right, orange, striped), smallest (right, yellow, solid), mean (dashed line) and
median (dotted line) of the global sensitivity indices ϱ(Jℓ, u

usFFT
xg

) w.r.t. xg for the

periodic example with µ = 1.2, c = 0.4, d = 10, η = XI, i.e., s = 2000, N = 128.

non-zero components as given in (4.4), as well as the corresponding global sensitivity indices
ϱ(Jℓ, u

usFFT
xg

) given in (4.3). Note, that these values also depend on the considered point xg.
Therefore, the bars show the smallest and largest GSI among all nodes xg ∈ TG as well as
their median and mean value.

Discussion

The absolute error errηp in Figure 4.1 is very small compared to the function values of ǔxg .
Thus, our approximation uusFFTxg

is already a very good approximation for these relatively
small sparsity parameters s and extension parameters N .

The periodic setting results in very quickly decaying Fourier coefficients. Obviously, the
same holds for their projections computed in the dimension-incremental steps. In particular,
most of the one-dimensional projections in step 1 & 2a of Algorithm 1, e.g., all projections
with component kt with |kt| > 4, at the start of each iteration are so small, that they are
neglected immediately. Hence, the one-dimensional index sets I(t) are independent of N
(for large enough N) and so the choice of N has only a marginal impact. Note, that we
also tested our algorithm with smaller thresholds θ, but the additionally detected and not
neglected frequencies did not change the approximation significantly in the end.

We indicate some kind of linear behavior in the double logarithmic Figure 4.2. Additional
tests showed, that even for smaller sparsity parameters 1 ≤ s < 100 the corresponding
samples-error-pair fits into this model, i.e., there seems to be no pre-asymptotic behavior
of our algorithm. In [18] the theoretical decay rates are often smaller than the error decay
observed in numerical experiments. We also observe a relatively fast decay compared to these
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theoretical rates. On the other hand, the decay of the approximation error errη2 for the faster
decaying random coefficient a with µ = 3.6 is not that much better than the decay of the
more complicated example with µ = 1.2. It seems like our algorithm is capable of handling
the more difficult problem very well, but also does not yield that much further advantages
when being applied to easier problems, i.e., with larger µ, larger amin and a smaller range of
the interval [amin, amax]. Note, that most of the samples needed are required for the detection
of the frequency set I and only a small fraction is really used for the final computation of
the corresponding Fourier coefficients, cf. Section 4.5 and Remark 4.2. We also computed the
approximation error errη∞ for different η for both parameter choices of µ and c. Obviously,
these errors have to be larger than the shown errors errη2, but the actual magnitude of errη∞
is only about 10 or 15 times as large as the errors errη2. Hence, the pointwise approximation
error seems to stay in a reasonable size for any randomly drawn y.
As we saw in Section 4.1, the expectation value of our approximation E(uusFFTxg

) is simply

its zeroth Fourier coefficient cusFFT0 (uxg). Since this coefficient is included and computed for
each sparsity parameter s anyway, it seems like our different parameter choices would not
influence the precision of its approximation at first sight. But for larger sparsity parameters
s, we compute more Fourier coefficients in our algorithm, where possible aliasing effects should
spread evenly among all of these coefficients, i.e., the particular so-called aliasing error on
cusFFT0 (uxg), cf. [21, 28], gets smaller and the approximation improves. Unfortunately, this
is not visible in our numerical tests, since the comparison value ǔxg behaves too poorly. In
detail, we would have to investigate very small sparsity parameters s < 25 to observe the
described effects. For all of our parameter choices η, the Monte-Carlo approximation ǔxg

with nMC = 5 · 106 samples is not accurate enough to give insight on the particular behavior
of our approximation of the expectation value.

Figure 4.3 shows, that there are no frequencies detected with all or nearly all components
being active. Further, even though only 68 of the 4819 frequencies detected (excluding c0)
have exactly one non-zero component, i.e., are supported on the axis cross, they contain more
than 99% of the variance of our approximation. So the higher-dimensional frequencies with
two, three or four non-zero components seem to be nearly neglectable for the approximation.

4.3. Affine example

For the affine case, we consider an example from [15, Sec. 11] with domain Dx = (0, 1)2,
right-hand side f(x) ≡ 1 and the random coefficient

a(x,y) := 1 +
d∑

j=1

yjψj(x), x ∈ Dx, y ∈ Dy,

with the random variables y ∼ U([−1, 1]d) and

ψj(x) := cj−µ cos(2πm1(j)x1) cos(2πm2(j)x2), x ∈ Dx, j ≥ 1,

where again c > 0 is a constant and µ > 1 the decay rate. Further, m1(j) and m2(j) are
defined as

m1(j) := j − k(j)(k(j) + 1)

2
and m2(j) := k(j)−m1(j)
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Table 4.2: The values of m1(j),m2(j) and k(j).

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .

m1(j) 0 1 0 1 2 0 1 2 3 0 1 2 3 4 . . .

m2(j) 1 0 2 1 0 3 2 1 0 4 3 2 1 0 . . .

k(j) 1 2 3 4 . . .

0 0.5 1
0

0.5

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(a) ǔxg
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Figure 4.4: The MC approximation ǔxg and the pointwise errors |ǔxg − E(uusFFTxg
)| for η = I

and II for the affine example.

with k(j) := ⌊−1/2 +
√
1/4 + 2j⌋. Table 4.2 shows the numbers m1(j),m2(j) and k(j) for a

few j ≥ 1.

As before, we get that amin = 1− c ζ(µ) and amax = 1 + c ζ(µ), such that for c < 1
ζ(µ) the

uniform ellipticity assumption (2.1) is fulfilled. Here, we use the parameter choices from [15]
with µ = 2 for a relatively slow decay and c = 0.9

ζ(2) ≈ 0.547 to end up with amin = 0.1 and
amax = 1.9, which is very similar to the first parameter choice in the periodic case. We choose
the stochastic dimension d = 20 as in [15].

Figure 4.4 illustrates the Monte-Carlo approximation of the expectation value ǔxg with
nMC = 106 samples used as well as the pointwise error |ǔxg − E(uusFFTxg

)| for two different

parameter choices η with E(uusFFTxg
) as given in (4.5). Figure 4.5 again shows the largest error

errη2 w.r.t. the nodes xg for different parameter settings η. This time, we can observe a small
increase in the number of used samples for larger extensions N , which was not visible in the
periodic example. Hence, the parameter settings η = I to XI have monotonously increasing
sampling sizes, i.e., the data points in Figure 4.5 are ordered from left to right w.r.t. increasing
η this time. Figure 4.6 again illustrates the cardinality of the sets Jℓ as well as their GSI.

Discussion

We note, that even for small sparsity parameters s the approximation E(uusFFTxg
) seems to be

quite accurate in Figure 4.4. Unfortunately, for all other parameter choices η except I and II,
the magnitude of the errors does not decrease any further than 1.5 · 10−5, which is probably
caused by the poor performance of the Monte-Carlo approximation ǔxg .

The magnitudes of the errors errη2 in Figure 4.5 are already very low for small sparsity
parameters s compared to the expected function values shown in Figure 4.4a. We note, that
there is an obvious improvement for each sparsity parameter s, when we progress fromN = 32,
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Figure 4.5: Largest error errη2 w.r.t. the nodes xg for the parameter settings η = I to XI
displayed in Table 4.1 for the affine example.
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Figure 4.6: Cardinality (left, blue, solid) of the index sets Jℓ and the corresponding largest
(right, orange, striped), smallest (right, yellow, solid), mean (dashed line) and
median (dotted line) of the global sensitivity indices ϱ(Jℓ, u

usFFT
xg

) w.r.t. xg for the

affine example with η = IX, i.e., s = 2000, N = 32.

the first data point in each cluster, to N = 64, the second data point. In the periodic case,
the important frequencies are very well localized around zero, such that the choice of N had
almost no impact. This time, we really lose some accuracy if we choose the smaller extension
N = 32. For the sparsity parameter s = 2000 we also see this effect when progressing from
N = 64 to N = 128. The overall decay of the error is a lot slower compared to the periodic

22



example. This is probably mainly caused by the non-smooth tent transformation used, cf.
Section 3.2.1. Again, some numerical tests determining the error errη∞ revealed a similar
behavior as in the periodic setting and showed that these errors again are not larger than at
most 20 times the error errη2.

Since the Fourier coefficients do not decay as fast as in the smooth periodic case, we
detected a significantly larger number of one- and two-dimensional couplings in Figure 4.6.
Again, the frequencies with only one non-zero entry explain the largest part of the variance of
the function, but this time the minimum percentage is lower than in the periodic example with
only about 94.5%. Accordingly, the importance of the two- and three-dimensional pairings did
slightly grow. The large number of important coefficients with only one, two or three non-zero
entries also results in nearly no detected significant frequencies with more than three non-zero
entries. For example, the 54 frequencies in J4 will vanish when working with larger extensions
N , since other frequencies with less entries are preferred in that case. So even though we are
working with the moderate stochastic dimension d = 20, we do not detect any frequencies,
where the half or even only a quarter of these dimensions are active simultaneously.

4.4. Lognormal example

We consider a two-dimensional problem based on the example in [8] on the domainDx = [0, 1]2

with right-hand side f(x) = sin(1.3πx1+3.4πx2) cos(4.3πx1−3.1πx2). The lognormal random
coefficient is given by

a(x,y) := exp(b(x,y)) and b(x,y) :=
d∑

j=1

1

j
yjψj(x)

with the functions

ψj(x) := sin(2πjx1) cos(2π(d+ 1− j)x2).

In [8], the stochastic dimension d = 4 has been used. Here, we will work with d = 10 to receive
a more complicated and higher-dimensional problem setting. We use a standard normally
distributed random variable y ∼ N (0, I) with I the identity matrix of dimension d as before.
Hence, we have, that for each x there holds 0 < a(x,y) <∞ for any y. However, there do not
exist the constants 0 < amin ≤ amax <∞ in this example, since b(x,y) can become arbitrarily
small or large. Therefore, the problem is neither uniformly elliptic nor uniformly bounded.
This complicates the analysis of this problem tremendously. We can still stick with it for our
numerical tests, since we only need the solvability of the differential equation for fixed values
of y. Further, we have b(x,y) ∈ [−3, 3] and therefore exp(b(x,y)) ∈ [e−3, e3] ≈ [0.05, 20.09]
with a probability of more than 99% for each x ∈ Dx, i.e., tremendously small or large values
of a(x,y) are very unlikely to appear.

Figure 4.7a once again illustrates the Monte-Carlo approximation of the expectation value
ǔxg with nMC = 106 samples used. The decay of the largest error errη2 w.r.t. the nodes xg is
shown in Figure 4.8, where the data points are ordered from left to right w.r.t. increasing η
as in Figure 4.5. Finally, Figure 4.9 shows the cardinality of the sets Jℓ as well as their GSI
for this example.
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0 0.5 1
0

0.5

1

0

2

4

6

8

10

12

14

10
-7

(b) η = IV (s = 500, N = 32)

0 0.5 1
0

0.5

1

0

1

2

3

4

5

6

7

8

10
-7

(c) η = VI (s = 1000, N = 32)

Figure 4.7: The MC approximation ǔxg and the pointwise errors |ǔxg −E(uusFFTxg
)| for η = IV

and VI for the lognormal example.
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Figure 4.8: Largest error errη2 w.r.t. the nodes xg for the parameter settings η = I to XI
displayed in Table 4.1 for the lognormal example.

Discussion

We note, that the pointwise solution in Figure 4.7a has a more interesting structure than
for the other examples above, mainly caused by the lognormal random coefficient and the
non-constant right-hand side f(x). Nevertheless, the approximations E(uusFFTxg

) achieve small
errors, which are shown in Figure 4.7. This time, a further increase of the sparsity parameter
s and the extension N still increase the accuracy of our approximations, so the stagnation
due to the limitations of the Monte-Carlo approximation ǔxg , that we saw in the previous
examples, does not occur yet.

The pointwise errors errη2(xg) behave slightly worse but still very good, as we see in Figure
4.8. Again, the increase of the extension N shows visible improvements of the approximation
error errη2. The decay rate is lower than before, matching our expectations since the lognormal
example is far more difficult than the affine or periodic examples. Note, that once again the
slope considers all data points shown, while specific decays for fixed extensions N might be
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(right, orange, striped), smallest (right, yellow, solid), mean (dashed line) and
median (dotted line) of the global sensitivity indices ϱ(Jℓ, u

usFFT
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) w.r.t. xg for the

lognormal example with s = 2000, N = 32.

slower or faster. Further, the size of the error errη∞ is again about 10 times the size of errη2,
revealing also a good pointwise approximation w.r.t. the random variable y in this scenario.

We notice a similar distribution of the detected frequencies k to the index sets Jℓ ∩ I as
before, cf. Figure 4.9. The key difference is the size of the GSI for each of these index sets.
The range of the GSI for J1 increased significantly, the minimal portion of variance is now
only about 30%. Obviously, the GSI for the other index sets Jℓ grew accordingly. This is
probably caused by the more difficult structure of the lognormal diffusion coefficient a and the
corresponding more difficult structure of the solution which is reflected in larger differences
in the optimal frequency sets Ixg , g = 1, . . . , G, cf. Remark 4.1. Nevertheless, we again
detect nearly no significant frequencies k with 4 or more active dimensions as in the previous
examples.

Remark 4.1. As mentioned before, the output of the usFFT contains more than the sparsity
parameter s frequencies since we join the detected index sets in each dimension increment
and use no thresholding technique to reduce the number of found frequencies after that. While
we have no reasonably tight theoretical bounds on the size of the output yet, we can further
investigate the number of output frequencies in our numerical tests. In detail, we express the
detected output sparsity sreal as a multiple of the given sparsity parameter s, i.e., sreal = q · s
with some factor q ∈ R.
In the numerical tests for the first periodic example in Section 4.2, i.e., µ = 1.2 and

c = 0.4, we have q ∈ [2.41, 2.74], where the larger values of q tend to appear for smaller
sparsity parameters s. For the quickly decaying example, i.e., µ = 3.6 and c = 1.5, we have
q ∈ [1.9042, 2.45] and again the larger values of q are attained for small sparsity parameters
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s.
The affine model in Section 4.3 results in q ∈ [2.06, 2.186], where q < 2.1 is only attained

for η = I, II and IV, so parameter settings with small sparsity parameters s and extension
N = 32.
Finally, in the complicated lognormal case in Section 4.4, we observe q ∈ [4.776, 5.15]. While

the values above 5 only appear for η = I and II, we still have significantly larger factors q than
before. However, the magnitude of q is still very small compared to the size |TG| = G = 739
in our examples.
Our observation is consistent with recent results presented in [18] which considers the pe-

riodic model only. The crucial common feature is that the pointwise approximations uxg can
be regarded as elements of a joint reproducing kernel Hilbert space with uniformly good kernel
approximants.
Overall, the factor q in our examples is much smaller than G, which would be the worst

factor possible in the case that all Ixg are disjoint. Hence, as already mentioned in Section
1, the given complexities in Theorem 1.1 are way too pessimistic and the true amount of
sampling locations and computational steps needed is much smaller in all of our numerical
examples.

4.5. Comparison to given frequency sets

The main effort of the usFFT lies in detecting the index set I ⊂ Γ. The computation of
the corresponding Fourier coefficients in the final step of Algorithm 1 needs significantly less
samples than the detection steps before. Hence, the question arises, if an a priori choice of the
index set I should be preferred to reduce the computational cost, cf. Remark 4.2. Therefore,
we now consider the following kinds of index sets:

• axis cross with uniform weight 1: I = {k ∈ Zd : ∥k∥0 = 1, ∥k∥1 ≤ N}

• hyperbolic cross with uniform weight 1
4 : I = {k ∈ Zd :

∏d
j=1max(1, 4|kj |) ≤ N}

• hyperbolic cross with slowly or quickly (q = 1 or 2) decaying weights 1
jq : I = {k ∈ Zd :∏d

j=1max(1, jq|kj |) ≤ N}

• l1-ball with slowly or quickly (q = 1 or 2) decaying weights 1
jq : I = {k ∈ Zd :∑d

j=1 j
q|kj | ≤ N}

The Fourier coefficients ck(uxg) are approximated using the same multiple R1L approach
as in step 3 of our Algorithm 1, i.e., we just skipped steps 1 and 2 by choosing the index set I
instead of detecting it. Figure 4.10 illustrates the largest error errη2 w.r.t. the nodes xg ∈ TG
for the previously considered periodic and affine examples, cf. Sections 4.2 and 4.3, with these
given frequency sets I for various refinements N .

The magnitude of the errors is considerably larger than for comparable parameter settings
of the usFFT, e.g., η = I to III, especially for the periodic example. Further, we also see that
the particular choice of the structure of the index set plays an important role. Obviously, a
cleverly chosen index set reduces the size of the approximation error tremendously, especially
in the periodic settings. But finding a good or even optimal choice of the index set is highly
non-trivial, since it requires sufficient a priori information about the PDE and the structure of
its solution or additional computational effort, e.g., to determine suitable weights for a given
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(a) periodic example with µ = 1.2, c = 0.4
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(b) periodic example with µ = 3.6, c = 1.5
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Figure 4.10: Largest error errη2 w.r.t. the nodes xg for the periodic and affine examples with
given frequency sets.
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index set structure. This can be observed for example when comparing the hyperbolic cross
index sets for the periodic examples. The uniform weights achieve the best results for µ = 1.2,
but cannot keep up at all with the decaying weights for the faster decay rate µ = 3.6. On
the other hand, even if we know, that there is a certain decay in our random coefficient, it is
not clear how to choose suitable decay rates for the weights in order to guarantee reasonable
results – specifically in pre-asymptotic settings, which is the rule rather than the exception
when numerically determining solutions of high-dimensional problems.

The usFFT does not depend on these kind of information, as its choice of the frequency set
is fully adaptive and the only required a priori information is the search space Γ, which can be
chosen sufficiently large without disturbing the results of the algorithm. Further, the detected
frequency set I provides these additional information about the structure of the solution u as
well as the dependence on the random variables y. In other words, the additional amount of
samples needed for the usFFT makes these structural information unnecessary, detects them
on its own and provides a possibility to extract them afterwards from the output.

Remark 4.2. The here and in step 3 of the usFFT used multiple R1L approach for the
efficient computation of Fourier coefficients for a given frequency set I was proposed in [20].
From [20, Cor. 3.7] we get a bound on the number of sampling nodes M used. Since we are
working with c = 2 and δ = 0.5 as in [21, Alg. 3], we arrive at M ≤ ⌈2 ln (2|I|)⌉4(|I| − 1).
Note, that this upper bound is very rough and the actual number of used sampling nodes in
almost all numerical experiments is much lower.

As stated above several times, this number of samples used in step 3 of the usFFT is just
a small fraction of the total number of used samples when applying the usFFT. In particular,
the computation of the actual Fourier coefficients cusFFTk (uxg) for the detected frequency set I
requires roughly 0.4% or 0.3% of the total sampling amount for the two different parameter
choices of the periodic example in Section 4.2, around 0.1% in the affine case in Section 4.3
and about 0.65% for the lognormal model from Section 4.4.

In [8, 39], a data-driven method was proposed, which is capable of computing approxima-
tions for multiple right-hand sides f(x) from a certain function class. Our usFFT approach
can also be generalized in a similar, data-driven way: For a given class of functions f(x) or
even f(x,y), we can use the usFFT in order to compute the frequency set I for one randomly
selected right-hand side f or randomly select multiple right-hand sides f and compute unions
of the corresponding index sets If by means of (a slight modification of) the presented usFFT.
In each case, we end up with a frequency set I, which is probably a good choice for all the
functions f in the given class, since they are hopefully very similar to each other. Hence, we
can use this index set I as a starting point and compute approximations of the corresponding
Fourier coefficients ck(uxg),k ∈ I, as done above. This approximation of uxg is then prob-
ably a lot better, i.e., the detected index set I is a better localization of the largest Fourier
coefficients than some a priori choice.
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sample complexity computational complexity

single R1Ls [34] O(dr3s2N) O(dr3s3 + dr3s2N logO(1)(...))

multiple R1Ls [21] O(dr2sN logO(1)(...)) O(d2r2sN logO(1)(...))

random R1Ls [28] O(drs logO(1)(...)) O(d2rsN logO(1)(...))

Table A.1: Sampling and arithmetic complexities of the sFFT approach (with high probabil-
ity, cf. [21, 28]) when using different sampling strategies based on R1Ls, where
Γ ⊂ [−N,N ]d, s ≥ | supp p̂|, and r is the number of random projections computed
in each dimension-incremental step.

Appendix A Rank-1 lattices in the sFFT

Popular approaches with the properties stated at the end of Section 2.2 are for example based
on so-called rank-1 lattices. A rank-1 lattice (R1L) is a set

Λ(z,M) :=

{
i

M
z mod 1 : i = 0, ...,M − 1

}
with a so-called generating vector z ∈ Zd and lattice size M ∈ N. In [34], single rank-1
lattices (single R1Ls) were used as sampling strategy in the dimension-incremental method
and provided a perfectly stable, reliable and efficient way to reconstruct the projected Fourier
coefficients ˜̂p(1,...,t),k. In [21] and [28], other approaches based on multiple rank-1 lattices
(multiple R1Ls) and random rank-1 lattices (random R1Ls) have been studied. The main
advantage of these approaches is a smaller size and a significantly faster construction of
the involved sampling sets X , but therefore they involve some failure probability, which is
not needed for the perfectly stable single R1L approach. Table A.1 shows the sampling
and arithmetic complexities of the dimension-incremental method when using these different
sampling strategies based on R1Ls. Further notes on these approaches and their behavior
when used in the dimension-incremental method can be found in the referred works.

Appendix B Proof of Theorem 1.1

Proof. Note, that in the following explanations as well as in the corresponding Tables B.1 and
B.2 ’sample complexities’ always refers to the cardinality of the set of sampling locations, since
we assume the black box sampling algorithm to provide the samples for all G trigonometric
polynomials p(g) simultaneously. In addition, we assume slocal ≲ s.

Theorem 1.1 is a slight modification of [28, Thm. 2]. To be more precise, we apply Algo-
rithm 1 using a random R1L approach in the role of Algorithm A and a spatial discretization
Y based on multiple R1Ls, cf. [20], in step 3. Accordingly, we mainly refer to the analysis of
the sample complexity and computational complexity of the sFFT using random R1Ls given
in [28, Sec. 3.2] as well as the therefore necessary theoretical results from [21, Sec. 4].
The crucial difference to [28, Thm. 2] is that we have to take account of the modification that

we demand for reconstructing not only one but even G different trigonometric polynomials
with possibly differing frequency supports Ig, g = 1, . . . , G. In the following, we discuss the
necessary modifications on the bounds and parameter choices discussed, proved and used in
[28, Sec. 3.2.2 and 3.2.3] and [21, Lem. 4.4 and Thm. 4.6], such that the corresponding results
hold.
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The modifications when considering the usFFT can be separated in two different parts,
first the possibly larger sets Jt and I(1,...,d) in steps 2 and 3, respectively, and second the
modified failure probability. Note, that r, γA and γB are the decisive parameters which provide
estimates on the failure probability later on and, thus, both are discussed in the second part
of the proof.

Part 1: Size of the frequency sets Jt and I(1,...,d)

We start with the candidate sets Jt in step 2b of Algorithm 1 and observe, that the cardinality
|Jt| of the set of frequency candidates

Jt = (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) ⊂

 ⋃
i=1,...,r̃
g=1,...,G

J̃t−1,i,g × Pt(Γ)

 ∩ P(1,...,t)(Γ)

in each dimension increment t can be simply bounded by |Jt| ≲ r sGNΓ, which contains an ad-
ditional factor G now. Applying the sampling strategy suggested in [21, Sec. 2.1] together with
[21, Lem. 4.5] directly yields |Xt,i| ≲ max(s,NΓ) log(|Jt|/γA) ≲ max(s,NΓ) log(r sGNΓ/γA)
with γA the failure probability of Algorithm A.

Further, the cardinality of the finally detected frequency set I(1,...,d) used in step 3 of our
algorithm is bounded from above by sG due to the same argumentation, since r̃ = 1 and
s̃ = s when t = d holds in step 2. Accordingly, we can apply [21, Alg. 1] in order to construct
a spatial discretization Y of I(1,...,d) based on multiple R1Ls which has a cardinality bounded
by |Y| ≲ max(sG,NΓ) log(sG/γB), where γB is the failure probability of the construction of
this spatial discretization, cf. [20, Thm. 4.1].

Sample and computational complexity of the usFFT

Now, we need to discuss the computational complexities of the individual steps of the usFFT.
Obviously, step 1 applies d r G different one-dimensional FFTs of lengths at most NΓ, which
yields a computational complexity in O (d r GNΓ log(NΓ)). In step 2, we apply ((d−2) r+1)G
times [28, Alg. 4], where the sampling set is a union of L ∈ O (log(r sGNΓ/γA)) R1Ls of size
at most in O (max{s,NΓ}) and the input set of frequencies Jt is bounded from above by
O (r sGNΓ) in its cardinality, which yields an arithmetic complexity in

O (d r G(max(s,NΓ) log(sNΓ) + d r sGNΓ) log(r sGNΓ/γA))

⊂ O
(
d2 r2 sG2NΓ log

2(r sNΓG/γA)
)

in the worst case. Moreover, we observe |Jt| ≲ sGNΓ with a certain probability since the
signals p are all trigonometric polynomials and in the case where Algorithm A does not fail in

any case, we have
⋃

i=1,...,r̃ J̃t,i,g ⊂ I
(1,...,t)
g with |I(1,...,t)g | ≤ |I(1,...,d)g | ≤ s. As a consequence, we

save a linear r and the r in the log term compared to the worst case arithmetic complexity,
cf. [28, Sec. 3.2.2] for a similar argumentation. In addition, the same argumentation saves a
factor r in the logarithmic term of the upper bound on the number of sampling locations in
step 2 with the same probability. Later, we specifically choose the parameters r, γA and γB
such that the estimates hold with high probability - for that reason, we call these complexities
with high probability complexities already here.
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sample complexity computational complexity

Step 1 d r NΓ d r GNΓ logNΓ

Step 2 (w.h.p.) d r max(s,NΓ) log
sGNΓ
γA

d2 r sG2NΓ log2 sGNΓ
γA

Step 2 (w.c.) d r max(s,NΓ) log
r sGNΓ

γA
d2 r2 sG2NΓ log2 r sGNΓ

γA

Step 3 max(sG,NΓ) log
sG
γB

G max(sG,NΓ) log
sG
γB

(d+ log(sGNΓ))

Table B.1: Sample complexities and computational complexities with high probability
(w.h.p.) and in the worst case (w.c.) for the different steps of Algorithm 1,
where the efficient identification by [28, Alg. 4] is used in step 2 and the multiple
R1L approach from [21, Alg. 1] in step 3.

For computing the G FFTs of step 3 we apply [21, Alg. 2], which yields a computational
complexity in

O
(
G log(sG/γB)

(
max(sG,NΓ) log(sGNΓ) + sG(d+ log(sG))

))
⊂ O (G max(sG,NΓ) log(sG/γB) (d+ log(sGNΓ))) .

The sample complexities and computational complexities of the usFFT due to these mod-
ifications are given in Table B.1, see [28, Tab. 3.2] for comparison to the sFFT. Here, the
only changes are several appearances of the parameter G, i.e., for G = 1 we observe the
complexities of the sFFT.

Part 2: Parameter choices

We continue with the aforementioned second big part, where we need to discuss suitable
choices of r, γA and γB to obtain our desired failure probability δ.

To this end, we first consider the projection failure probability, i.e., the failure that occurs
if important projected Fourier coefficients are close to zero and, thus, not detectable. The
number r of detection iterations determines, how many of these projections are computed.
The more projections are considered, the less is the probability that a specific projected
Fourier coefficient is small for all of them and hence not detectable. Therefore, the parameter
r directly controls this projection failure probability.

The number r of detection iterations

We consider a single trigonometric polynomial p ̸≡ 0 with minh∈supp p̂ |p̂g| ≥ 3θ and Γ ⊃
supp p̂, |supp p̂| ≤ s. Choosing

r = ⌈2s(log 3 + log d+ log s+ logG− log δ)⌉,

as given in [21, Lem. 7], yields a probability of at most δ
3 d sG that all the projected Fourier

coefficients are less than θ for at least one frequency.

For G different of such trigonometric polynomials p(g), we then apply the union bound.
Therefore, the probability, that all the projected Fourier coefficients are less than θ for at
least one frequency and at least one signal, is bounded by δ

3 d s .
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sample complexity computational complexity

Step 1 d sNΓ log d sG
δ d sGNΓ log2 d sGNΓ

δ

Step 2 (w.h.p.) d s max(s,NΓ) log
2 d sGNΓ

δ d2 s2G2NΓ log3 d sGNΓ
δ

Step 2 (w.c.) d s max(s,NΓ) log
2 d sGNΓ

δ d2 s3G2NΓ log3 d sGNΓ
δ

Step 3 max(sG,NΓ) log
d sG
δ G max(sG,NΓ) log

d sG
δ (d+ log(sGNΓ))

Table B.2: Same as Table B.1 but with the specifically chosen values for r, γA and γB.

The failure probabilities γA and γB

In the remaining lines of Part 2, we investigate the choices of the failure probabilities γA and
γB.

We start with the parameter γA, which is in fact the failure probability of [28, Alg. 4] in the
role of Algorithm A. When choosing γA := δ

3 d sG , we observe, that the probability, that at
least one of the G applications of Algorithm A fails in step 2d (for fixed t and i), is bounded
from above due to the union bound by δ

3 d s again as in [28, Sec. 3.2.3].

Last, we fix the parameter γB := δ
3 d , i.e., the failure probability of step 3 is bounded from

above by γB, cf. [20, Thm. 4.1]. Here, no modification is needed.

Final Step: Parameter insertion and union bounds

The new parameter choices for r, γA and γB lead to the same failure probabilities for the
detection of projected coefficients ( δ

3 d s), Algorithm A for fixed t and i ( δ
3 d s) and step 3 of

Algorithm 1 ( δ
3 d). Therefore, we can now use a union bound over the different steps of our

algorithm similar to [21, Thm. 9]. It shows, that the total failure probability is now really
bounded by terms less than δ.

Finally, the sample complexity and computational complexity stated in Theorem 1.1 now
follow directly using the above discussed choices r = ⌈2 s log(3 d sGδ )⌉, γA := δ

3 d sG , and

γB := δ
3 d . The precise complexities for each step are given in Table B.2.

Remark B.1. The sample complexity of step 2 was the dominating term for the sFFT. Hence,
we could neglect the sample complexity of step 3 there completely. In the usFFT, this sample
complexity now contains a linear factor G, such that it is not neglectable for arbitrarily chosen
G. However, if we can bound G for example by G ≲ d s, the sample complexity of step 3 is
again asymptotically smaller than for step 2. Even more, since G appears only in logarithmic
terms of the sample complexity of step 2, we see, that the overall sample complexity of the
usFFT is the same as for the sFFT in this case, i.e., the number of sampling locations is

bounded in O
(
d s max(s,NΓ) log

2 d sNΓ
δ

)
when assuming G ≲ d s, cf. also [28, Thm. 1.3]

for comparison. This is an important observation, since the amount of sampling locations is
the crucial factor for the overall computational complexity of our algorithm due to the high
computational cost of the underlying sampling algorithm, i.e., the PDE solver, as mentioned
several times before.
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Appendix C Proof of Lemma 3.1

Proof. Since i and zj in formula (3.4) are integers, we know that ỹi,j ∈ { n
M , n = 0, ...,M − 1}

for all i = 0, ...,M − 1 and j = 1, ..., d. In particular, since M is prime and zj0 ̸≡ 0 (mod M),
we have that {ỹi,j0 , i = 0, ...,M − 1} = { n

M , n = 0, ...,M − 1}, so each n
M is really attained at

least once for some i and j. Using this and the fact, that we are only considering 0 = 0
M <

∆ < 1
2

1
M = 1

2M , we have

min
i=0,...,M−1
j=1,...,d

|ỹi,j −∆| = min
n=0,...,M−1

∣∣∣ n
M

−∆
∣∣∣ = ∣∣∣∣ 0M −∆

∣∣∣∣ = ∆.

On the other hand, we have

min
i=0,...,M−1
j=1,...,d

∣∣∣∣ỹi,j − (
∆+

1

2

)∣∣∣∣ = min
n=0,...,M−1

∣∣∣∣ nM −
(
∆+

1

2

)∣∣∣∣ ,
where the minimum is attained for n being the closest integer number to M∆ + M

2 . Since
0 < M∆ < M

2M = 1
2 and M odd, we conclude

min
n=0,...,M−1

∣∣∣∣ nM −
(
∆+

1

2

)∣∣∣∣ = ∣∣∣∣M + 1

2M
−
(
∆+

1

2

)∣∣∣∣ = 1

2M
−∆.

Since the sum of these two minima is constant 1
2M , we have the upper bound

min

 min
i=0,...,M−1
j=1,...,d

|ỹi,j −∆| , min
i=0,...,M−1
j=1,...,d

∣∣∣∣ỹi,j − (
∆+

1

2

)∣∣∣∣
 = min

{
∆,

1

2M
−∆

}
≤ 1

4M
.

Finally, this upper bound is reached if and only if ∆ = 1
4M and hence

∆opt = argmax
0<∆< 1

2M

{
min

{
∆,

1

2M
−∆

}}
=

1

4M
.

Remark C.1. Note, that the argmax in Lemma 3.1 is not unique in general, since there also
exist several values for ∆ ≥ 1

2M attaining this maximum, e.g., ∆ = 3
4M , which can be proven

analogously. In our numerical experiments in Section 4, we will always work with ∆opt =
1

4M ,
which is the smallest optimal ∆ > 0 as we saw in the Theorem above.
Also, if we would neglect the assumption that M is prime, we could run into problems if zj

and M are not coprime for all j = 1, ..., d, since then {ỹi,j , i = 0, ...,M − 1} is only a proper
subset of { n

M , n = 0, ...,M − 1}. But this case is neglectable, since our algorithm only uses
prime lattice sizes M .

References
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