Nonuniform fast Fourier transforms with
nonequispaced spatial and frequency data
and fast sinc transforms
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In this paper we study the nonuniform fast Fourier transform with noneq-
uispaced spatial and frequency data (NNFFT) and the fast sinc transform as
its application. The computation of NNFFT is mainly based on the nonuni-
form fast Fourier transform with nonequispaced spatial nodes and equispaced
frequencies (NFFT). The NNFFT employs two compactly supported, contin-
uous window functions. For fixed nonharmonic bandwidth, it is shown that
the error of the NNFFT with two sinh-type window functions has an expo-
nential decay with respect to the truncation parameters of the used window
functions. As an important application of the NNFFT, we present the fast
sinc transform. The error of the fast sinc transform is estimated, too.
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1 Introduction

The discrete Fourier transform (DFT) can easily be generalized to arbitrary nodes in
the space domain as well as in the frequency domain (see [7, 9], [26, pp. 394-397]). Let
N € 2N with N > 1 and M;, My € 2N be given. By Ip;, we denote the index set

{f%, — %, e % — 1}. We consider an exponential sum f : [f%, %] — C of the
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where fi € C are given coefficients and vy, € [— %, %], k € Iy, are arbitrary nodes

in the frequency domain. The parameter N € N is called nonharmonic bandwidth of
the exponential sum (1.1). Note that each exponential exp(—27i Nvy -) has a frequency
smaller or equal than %

We assume that a linear combination (1.1) of exponentials with bounded frequencies is
given. For arbitrary nodes z; € [— %, %] , J € Ing,, in the space domain, we are interested
in a fast evaluation of the My values

flag)= > fee ?Nwe ey, . (1.2)
kEI]ul

A fast algorithm for the computation of the My values (1.2) is called a nonuniform
fast Fourier transform with nonequispaced spatial and frequency data (NNFFT) which
was introduced by B. Elbel and G. Steidl [9]. In this approach, the rapid evaluation
of NNFFT is mainly based on the use of two compactly supported, continuous window
functions. As in [19] this approach is also referred to as NFFT of type 3.

In this paper we present new error estimates for the NNFFT. Since these estimates
depend exclusively on the so-called window parameters of the NNFF'T, this gives rise to
an appropriate parameter choice. The outline of this paper is as follows. In Section 2,
we introduce the special set Q of continuous, even functions w : R — [0, 1] with the
support [—1, 1]. Choosing w1, we € 2, we consider two window functions

Nyt Not
—), ealt) = wa (=

), teR,
my my

p1(t) = wi(
where N7 = 01N € 2N with some oversampling factor o1 > 1 and where m; € N\ {1}
is a truncation parameter with 2m; < Nj. Analogously, No = o3 (N1 + 2m;) € 2N
is given with some oversampling factor oo > 1 and mg € N\ {1} is another truncation
parameter with 2ms < (1 — U%) Ny. For the fast, approximate computation of the values
(1.2), we formulate in Algorithm 2.2 the NNFFT. In Section 3, we derive new explicit
error estimates of the NNFFT with two window functions ¢ and ¢s. In Section 4, we
consider the NNFFT with two sinh-type window functions. Here we show that for fixed
nonharmonic bandwidth N of (1.1), the error of the related NNFFT has an exponential
decay with respect to the truncation parameters m; and ms. Numerical experiments
illustrate the performance of our error estimates.
In Section 5, we study the approximation of the function sinc(Nwzx), x € [—1, 1], by an
exponential sum. For given target accuracy € > 0 and n > 4N, there exist coeflicients

w; > 0 and frequencies v; € (— %, %), j=1...,n,such that for all x € [-1, 1],

n

|sinc(N7z) — ij e_QWiN”jx‘ <e.

j=1



In practice, we simplify the approximation procedure of the function sinc(N7x), x € [—1, 1].
Since for fixed N € N, it holds

ot

sinc(Nwx) = 3 / N 2 e R,
-1

we can apply the Clenshaw—Curtis quadrature with the Chebyshev points zp = cos %” €

[—1,1], k =0...,n, where n € N fulfills n > 4N. Then the function sinc(Nrz),

x € [—1, 1], can be approximated by the exponential sum

n
Z wy e~ MNEE (1.3)
k=0

with explicitly known coefficients wy, > 0 which satisfy the condition Y, _,wy = 1.
An interesting signal processing application of the NNFFT is presented in the last Sec-
tion 6. If a signal A : [— %, %] — C is to be reconstructed from its nonuniform samples

at ay € [— %, %], then h is often modeled as linear combination of shifted sinc functions

h(z) = Z cpsine(Nw (z — ay)) .

=

with complex coefficients c,. Hence, we present a fast, approximate computation of the
discrete sinc transform (see [12, 20])

h(by) = Z Cr. sinc(NW (be — ak)) , telp,, (1.4)
kEILl

where by € [ — %, %] can be nonequispaced. The discrete sinc transform is motivated

by numerous applications in signal processing. However, since the sinc function decays
slowly, it is often avoided in favor of some more local approximation. Here we prefer the
approximation of the sinc function by an exponential sum (1.3). Then we obtain the
fast sinc Algorithm 6.1 which is an approximate algorithm for the fast computation of
the values (6.2). This fast sinc transform applies the NNFFT twice. The error of the
fast sinc transform is estimated. Numerical examples are presented, too.

2 NNFFT

Let © be the set of all functions w : R — [0, 1] with the following properties:

e Each function w is even, has the support [—1, 1], and is continuous on R.
e Each restricted function w|j 1j is decreasing with w(0) = 1.
e For each function w its Fourier transform

wv) = /Rw(x) e 2mMVT g = 9 /01 w(x) cos(2mvzx) dx

is positive and decreasing for all v € [0, ;%11], where it holds m; € N\ {1}
and o7 € [%, 2].



Obviously, each w € Q is of bounded variation over [—1, 1].
Example 2.1 By Ba,,,, we denote the centered cardinal B-spline of even order 2m;

with m1 € N. Thus, By is the centered hat function. We consider the spline

1

B . z€R,
By @) 2 (M)

wBJ(x) =
which has the support [—1, 1]. Its Fourier transform reads as follows

1 T\ 2m1
: = (sinc— eR.
wBJ(v) 1 Bomn: (0) <smc ) , v

Obuviously, wg 1(v) is positive and decreasing for v € [0, my). Hence, the function wp
belongs to the set 2.
For o1 > % and By = 3m1 with my € N\ {1}, we consider

=22 e, 1],
walg,1<m) T { 0 S R\ [_17 1] :

By [23, p. 8], its Fourier transform reads as follows

(261! {(W)m Jg (2mv) v e R\ {0},

@alg,l(v) = :
481 g, % v=20,

where Jg, denotes the Bessel function of order 81. By [1, p. 870], it holds for v # 0 the

equality
(mv) P Jg, (270) 51' Sl;[ ( ) ,

where jg, s denotes the sth positive zero of Jg,. For 1 = 3mq, it holds jg, 1 > 3mq —|—7r—%
(see [13]). Hence, by o1 > § we get

]55

2mm ——my 3m
L o1 L <1.

. 1 < 1
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Therefore, the Fourier transform (ae1(v) is positive and decreasing for v € [O, ;’}711]
Hence, waig1 belongs to the set .
Let o1 € [2, 2] and my € N\ {1} be given. We consider the function

| sa osinh (BivV1—2%)  zel-1,1],
wain 1 (7) = { 0 reR\[-1, 1] @1)

with the shape parameter

1

51 = 27Tm1(1 — T‘_l) .



Then by [23, p. 38], its Fourier transform reads as follows

(82 — Am2?)~1/2 Il(\/m) lv| < m1(1 — i) ,

Wsinh,1 (V) = 3 v=Fmi(l-g),
' sinh 31 7!
(4n20? — B3)~1/2 J1(\/‘W—ﬂ%) o] > ma (1~ i) )
(2.2)

where I1 and J; denote the modified Bessel function and the Bessel function of first order,
respectively. Using the power series expansion of Iy (see [1, p. 375]), for |v| < my (1—%)
we obtain

o0

_ 1 1
(B — 4x*0%) "2 1 (1) B} — 4m20?) = B > FRe 1) (87 — aro*)F.

k=0
Therefore, the Fourier transform Qsinn1(v) is positive and decreasing for v € [O, %],
since for op > % it holds
mi 1
— <m(l——).
201 1( 201)

Hence, wginn,1 belongs to the set €. [

As known (see [9, 28]), the NNFFT can be mainly computed by an NFFT. For w; €
we introduce the window function

Nit
@1(15) = w1 (7) , te€ R. (2.3)
mi
By construction, the window function (2.3) is even, has the support [— %, %—H, and is

continuous on R. Further, the restricted window function @1\[07 m1/N] 18 decreasing with
©1(0) = 1. Its Fourier transform

) m1 /N1
o1(v) = / @1(t) e MYt dr =2 / ©1(t) cos(2mot) dt
R 0

is positive and decreasing for v € [O, Ny — %) Thus, ¢ is of bounded variation over
11
[ 2 2]
In the following, we denote the torus R/Z by T and the Banach space of contin-
uous, 1-periodic functions by C(T). For the window function (2.3), we denote its
1-periodization by
cﬁ(ll)(x) = ngl(x +k), zeR.
keZ
For fixed N, M; € 2N and N; = 01N with o7 > 1, the NFFT (see [7, 8, 32] or
[26, pp. 377-381]) is a fast algorithm which approximately computes the values p(x;),
j € Ing,, of any 1-periodic trigonometric polynomial

p(l‘) — Z Ch p2mike

keln



at nonequispaced nodes x; € [— %, %], j € Iy, where ¢, € C, k € Iy, are given

complex coefficients. Using a linear combination of shifted versions of the 1-periodized
window function @gl), we construct a 1-periodic continuous function s € C(T) which well
approximates p. Then the computation of the values s(z;), j € In, is very easy, since ¢y
has the small support [— N F] The computational cost of NFFT is (’)(N log N+M1)
flops, see [7, 8, 32] or [26, pp. 377-381]. The error of the NFFT (see [29]) can be estimated

by

) : < _ = —
J%lﬁﬂfl|8(%) p(z)l < s —pllom xe[g7§1/2]|s<x> p(z)]
< 601(801) Z |C7L|7

’nEIN

where e, (1) denotes the C(T)-error constant defined as

€0, (p1) = SUp €5y, N (1) (2.4)
€2N

with

N
€o1,N (301) —maxH Z w 2mir Ni-

ooy P

Note that the constants e,, n(¢1) are bounded with respect to N (see [29, Theorem
5.1]).

For better readability, we describe the NNFFT shortly. For chosen functions wy, wy € €2,
we form the window functions

‘C(T) '

Not

e1(t) =wi(—), @a(t) :=wa(——

), teR, (2.5)
mi ma

where again Ny = 01 N € 2N with some oversampling factor o1 > 1 and m; € N\ {1}

with 2m; < N; and where Ny := 09 (N1 + 2my) € 2N with an oversampling factor

oo >1and mg €N \ {1} with 2mgy < (1 — —) Ns. The second window function ¢o has
the support [ NQ, e ] We introduce the constant

2mq

—14 Mo 2.6

a:=1+ N, (2.6)

such that aN1 = N1+2m; and Ny = 0901aN. Without loss of generality, we can assume

that
1 1

%0 2a)

If vy € [ — %, %], then we replace the nonharmonic bandwidth N by N* := N + |
._ N

and set v; = Fr V5 € [ 2@, o ] such that Nv; = N* .

For arbitrarily given f, € C, k € I, and vg € [— 21(1, Qa} k € Iy, , we introduce the

compactly supported, continuous auxiliary function

= Y frwi(t—w), tER,

ke]Ml

vk € [ — (2.7)

2
o |




which has the Fourier transform
h(Nz) = / h(t) e 2miN=t 4y

= > fk/ (t —vp) e 2miNet (2.8)

kGIMl

= > fre NG (Na) = f(z) 1 (N2), z€R. (2.9)
kel

Hence, for arbitrary nodes z; € [ — % %] j € Iy, we have

f(xj): jEIM2'

Therefore, it remains to compute the values ﬁ(N xj), j € Im,, because we can precom-
pute the values ¢1(N z;), j € Ipr,. In some cases (see Section 4), these values ¢ (N z;),
j € Iy, are explicitly known

For arbitrary vy, € [ 2 , 2—] with k € Iy, , we have @1 (t—v) = 0 for all t < ———"J\% =
—§+( %) and for all ¢t > 2a+N1 = %—(%—21(1) since supp @1 = [ ’]\}i, 7]\1,—11] and
1 — 2 >0. Thus, by (2.8) and

a a
Suppcp1(~—vk)C [_57 5]7 keIMlv

we obtain

Z fk/ o1(t — o) e TN gtz eR.
/2

kEIM
Then the rectangular quadrature rule leads to

Z fk* Z @1(N£—vk) e 2milr/or 4 e R, (2.10)
1

k’GI]ul [GIN1+2m1

which approximates h(Nz). Note that NL € [—% 2] for each £ € In,yom, by

Nj + 2my = aN;. Changing the order of summations in (2.10), it follows that

¢ .
s(Nz) = > <]\171 kzI: Jr SOI(E - ”k)) e Pmite/on, (2.11)
SVH

ZEIN1+2m1

After computation of the inner sums

— Z frer ——vk) 0 € Inytom, (2.12)

kEI]\II



we arrive at the following NFFT

Wey= gt jen,

LeIN, +2m,

If we denote the result of this NFFT (with the 1-periodization géél) of the second win-
dow function o and Ny = o2 (N1 + 2m1)) by s1(N z;), then s1(N x;)/@1(N x;) is an
approximate value of f(x;), j € Ins,. We summarize:

Algorithm 2.2 (NNFFT)

Input: N € N with N > 1, My, M, € 2N,

Ny =01 N € 2N with o1 > 1, m; € N\ {1} with 2m; < Ny, azl—i—%%l,

Ny = 09 (N1 + 2my) € 2N with o9 > 1, my € N\ {1} with 2my < (1 — =) No,

v € [— %, ﬁ] for k€ Iy, v € [— %, %] for j € Ing,, w1 and w2 are given by (2.5).

0. Precompute the following values

G1(N x;) for j € Ingy, ¢2(£) for € € In, 1om,,

o1( = ) for k€ Tag, and € € Ty o (08) = {0 € Tnysamy © |5 — v] < B},
4,02(% — Niz) forj € In, and s € Iy (v5) :=={s € In, : |7; — %} < %}

Further set ‘Pl(N% — ) =0 for k € Iny, and € € Iny 1om; \ Iy, om, (Vk)-

1. For all £ € IN,yom, compute the sums (2.12).
2. For all l € In,1om, form the values

ge == g
P2(4)

3. For all s € Iy, compute by fast Fourier transform (FFT) of length N

1 .~ _omi
hs — N Z Gve 2 ZS/NQ.

2
LEIN, +2m,

4. For all j € Iy, calculate the short sums

si(Nzj) = ) hs o2 (2 — ).

o1 No
sEIE\’,2 (x5)

Output: s1(Nxzj)/p1(Nzj;) approzimate value of (1.2) for j € Ip,.

In Step 4 of Algorithm 2.2 we use the assumption 2me < (1 — U%) Ny such that

1 mso 1
<
200 Ny = 2
Then for all j € Iy, and s € Iy,, it holds
SN i A NN o A
o (=) =0 75)-

The computational cost of the NNFFT is equal to O(N log N + M; + Mg) flops.



3 Error estimates for NNFFT

Now we study the error of the NNFFT which is measured in the form

N 2
A - fl( ;) ‘ ’ (3.1)
J€lnr, (Pl(N xj)

where f is a given exponential sum (1.1) and where z; € [— %, %], j € I, are arbitrary

spatial nodes. We introduce the a-periodization of the given window function (2.3) by

:Zgol(a:+a€), z €R. (3.2)
LeZ

For each x € R, the above series (3.2) has at most one nonzero term. This can be seen

as follows: For arbitrary x € R there exists a unique £* € Z such that x = —af* +r
with a residuum r € [ — %, ). Then ¢(z + al*) = ¢1(r) and hence ¢1(r) > 0 for

s (—%, 7]'\}—11) and ¢1(r) =0 forr € [ — &, —%] U [%— ). For each ¢ € Z\ {¢*}, we
have

al)=¢pi(a(t—0)+7r)=0,

p1(z +
since [a (0 — %) +7| > § =3+ N > . Further it holds

=(a)r .y _

o1 (z) =pi(x), =€ [—1—Fl 1+E]
By the construction of (1, the a-periodic window function (3.2) is continuous on R and
of bounded variation over [ -5 f] Then the kth Fourier coefficient of the a-periodic
window function (3.2) reads as follows

1 [ , 1.k
@ = [ d e = (D), kez.  (33)
a.J_a/ a a
By the Convergence Theorem of Dirichlet—Jordan (see [35, Vol. 1, pp. 57-58]), the
a-periodic Fourier series of (3.2) converges uniformly on R and it holds

1 ~ k Tikx/a
Zc 1 ?rike/a o 2901(5) e?rikz/a (3.4)

keZ kEZ

Lemma 3.1 Let the window function @1 be given by (2.3). Then for any n € In with
N € 2N, the series

Z ngalr Ni+2mq) ((pga)) e27ri (rtr (Nt 2ma))e/a
reZ

is uniformly convergent on R and has the sum

o —27int/(N1+2m1) ~(a) £
N1-|-2m1 Z (§ $1 ($+N1)

LeIN, +2m,



which coincides with the rectangular quadrature rule of the integral

~(a 1 a2 a Tins/a a) (=@ Tinz/a
C’Ela)(gD(l)(x—"_.))_/ /2 ()(x+5)62 / ds:c%)(cpg ))62 fe.

Proof. Using the uniformly convergent Fourier series (3.4), we obtain for all n € Iy that

e—27rina:/a @ga) ($) _ ch(ga)(@ga)) 27 (k—n)z/a _ chﬁq(@ga)) e27riqx/a )
keZ qEZL

Replacing = by = + Nil with ¢ € In, yom,, we see that by Ny + 2m; = a Ny,

—2nin(z+¢/N1)/a ~(a) ¢ _ (a) ~(a)y 2rigx/a 2mwigl/(N1+2m
e (z+L/N1)/ @\ ($+E)_Z @ e qz/a 2miql/(N1+2m1)

qEZ

Summing the above formulas for all ¢ € Iy, 2, and applying the known formula

Z 27 gt/ (N1+2m1) _ Ny +2my q = 0mod (N1 + 2my),
0 g # 0mod (N7 + 2my),

ZGIN1+2m1

we conclude that

—27min(x a ¢
Z o~ 2min(z+e/N1)/ (’D( )(x+ﬁ1)

LEIN +2my

- (Nl + 2m1) Z C’Eza—I)—T (N1+2m1)(35§a)) GQWiT (Ni42ma)e/a .
re€Z

Obviously,

1 —omin(z+L/N1)/a ~(a) t
Ny +2my Z ¢ 1 1 ($+N1)

LeIN] +2m,

is the rectangular quadrature formula of the integral

1 a/2 )
/ Sbga)(x + 8) e27r1ns/a ds
—a/2

with respect to the uniform grid {NLI NS IN1+2m1} of the interval [— 5 %] This
completes the proof. B

By (3.3) we obtain that for n € Iy,

2wir (N14+2m1)z/a —

[§]

(a) (a)
Z n-i—r (N1+2m1)( )

Z Sol n/a+TN1) 27rirN1:1:/a
e (1)

reZ\{0} $1(n/a)

reZ\{0}

Now we generalize the Lemma 3.1.

10



el

Lemma 3.2 For arbitrary fized v € [— and given window function (2.3), the

function
- 14
. —2mivl/(N1+2m1) 727r11)z/a o 3.5
LEL
18 N%—pem’odic, continuous on R, and of bounded variation over [— %, %] For each

x € R, the corresponding N%-pem’odz’c Fourier series converges uniformly to ¢ (x), i.e.,

2901 + T‘N 27ri'r’N1r
rel

Proof. The definition (3.5) of the function v is correct, since

1 —27iv m —2rivz/a ¢
P1(z) = — Z e BTt/ (Nit2ma) g=2miva/a o, ($+ﬁ1)
EGZmI,Nl(fE)

with the finite index set Z,, v, (#) = {{ € Z : [Nyz + €| < mi}. If z € -1, 1], we
observe that Zp,, n,(z) C In,4+2m, and therefore

1 ; ~ l
1 (.T) _ Z ewilvf/(N1+2m1) 6727r1vx/a 801(37 + F) .
LeIN, +2m, 1

Simple calculation shows that for each x € R,

1 1 —2miv(+1)/(N1+2m1) —2mivz/a (+1
T+ )=~ e 1T e T+ =1(x).
Bl ) = pile+ ) =)

By the construction of ¢1, the N%—periodic function )7 is continuous on R and of bounded

variation over [ — %, %] Thus, by the Convergence Theorem of Dirichlet—Jordan, the

Fourier series of 1)1 converges uniformly on R to ;. The rth Fourier coefficient of
reads as follows

1/N1 .
Cg/Nl)(wl) — Nl/ wl(t)e_zmertdt
0

, VN l
_ Zef2mv£/(N1+2m1) / ef27r1vt/a 01 (t + F) dt
= 0 '

(4+1) /Ny , v
= S [ ae s ds = gy (U, e,
ez, N a

This completes the proof. l

From Lemma 3.2 it follows immediately:

11



Corollary 3.3 Let the window function 1 be given by (2.3). For all x € [— %, %] and

w E [— %, év—a] it holds then

Z 901 w + er) o2mi (w+rNi)x

rezZ\{0} Pr(w)
1 —2miwl /Ny ¢ 2miwe
= — e T+ —)—e . 3.6
N1 g1 (w EEIZ e1( Nl) (3.6)
Np+2mq
Further, for all w € [— 55 %], it holds
C N oniwe/N 2
ma: - T+ —)e 7r1w/1_eﬂ'1wz‘
vel-1/2,1/2) ’N1 ¢1(w) MZ Aty
Ny+2my
‘ Z 901 w _('_ 7’)N1) 2wirNy - . ) (37)
reZ0 {0} o1 (w (T)
Proof. As before, let v € [— %, %] be given. Substituting w := = € [— 23, 2&] and
observing Ny + 2m1 = alN1, we obtain by Lemma 3.2 that for all x € [ %, %} it holds,

1 . ; 14
F Z e—27r1wZ/N1 e 2miwa o1 (ZL’ + E) Sbl(w)
ZGINl-Q—le

- Z @1(w+rN1)627rierz'
reZ\{0}

Since by assumption ¢1(w) > 0 for all w € [— %, %] - [— %, %], it holds

1 —2miwl/N1 ,—27miwz ¢
B e e T+ — 1
Nig1(w) 2 o Nl)

EEINl +2mq

Z 901w+TN1) 27r1rN1:1:
reZ\ {0} $1(w)

Multiplying the above equality by the exponential e?™ % this results in (3.6) and (3.7).
|

We say that the window function ¢; of the form (2.3) is convenient for NNFFT, if the
general C(T)-error constant

Eq,(¢1) := sup Eyy n(¢1) (3.8)
NeN
with N )
801 v+ riVy 27r17"N
B, — H Prw+rivy s 3.9
wlpr) = mex 2 51(v) o) (3.9)

reZ\{0}

12



fulfills the condition E,, (¢1) < 1 for conveniently chosen truncation parameter m; > 2
and oversampling factor o; > 1. Obviously, the C(T)-error constant (2.4) is a “discrete”
version of the general C(T)-error constant (3.8) with the property

eo1 (p1) < Eoy (1) - (3.10)

Thus, Corollary 3.3 means that all complex exponentials ™% with w € [— %, %}
and x € [— %, %] can be uniformly approximated by short linear combinations of shifted

window functions, cf. [7, Theorem 2.10], if ¢; is convenient for NNFFT.

Theorem 3.4 Let o1 > 1, my € N\ {1}, and N1 = 01N € 2N with 2m; < N; be given.
Let @1 be the scaled version (2.3) of wi € Q. Assume that the Fourier transform
fulfills the decay condition

[ 1+ 4],
o< @ Wb ) m )
el ol >ma (14 55-),

with certain constants ¢c1 > 0, co > 0, and p > 1.
Then the general C(T)-error constant E,, (p1) of the window function (2.3) has the upper
bound . 5 )
C2 1—p
E < 2t (1= ) 3.11
nlon) < gy 20+ e (U 55) (3.11)

201

Proof. By the scaling property of the Fourier transform, we have

m

. o . ,mv
= t 27r11)t dt _ — he— R.
21v) /R‘pl()e N lw ) ve

Forallve [— &, &] and r € Z\ {0, £1}, we obtain

1 1
’%—&—mlr‘ 2m1(2— Tﬁ) >m1(1—|—7)

209
and hence
~ mi . ,M1U mi Co v —
N7)| = — - < _
[Prv+rN)l = @i ( N +mir)| < N, ’Nl +7|
. _ 11
From [29, Lemma 3.1] it follows that for fixed u = - € [ - To? 271},
2 11—
Z |u+r|_“§7(1——)1 _
w—1 201
re€Z\ 0,41}
For all v € [— %, %], we sustain
N my . miv mi
[g1(v £ N1)| = A |W1(Tlim1)’ < N L

13



since it holds

miv 1 1
‘ ]\;1 iml‘ € [ml(l — E), m1(1+ T‘l)] .
Thus, for each v € [— %, %], we estimate the sum
. mi [y. ,MV . /MU
Z |p1(v+7rNy)| < ﬁ [wl(Tll - ml)‘ + wl(Tll +m1)‘
reZ\{0}
., MU
+ > WI(TII +m17“)\]
keZ\{0,+£1}
my Co v _
< ]\71|:261+’I’nlf Z ‘E—FT‘ 'LL:|
rez\{0,+1}
m 22 b ]
S Nl |:2€1+(,LL1)TTL!1L( 20’1)
such that
: m 2 Ly
ve[—I]nV?Q}?N/Q} reZz\EO} [Pr(v+rN)] < Ny {261 * (p—1)mf ( 201) ’

Now we determine the minimum of all positive values

A _my . ,Mmiv N N
Spl(v)_lel(Nl)u UE[ 272}
Since m]{,lvl < go- forallv e [ - s %}, we obtain
min a0 ="%  min o (M) = ™o (M = (N > 0
ve[-N/2,N/2] 1 N1 ve[-N/2,N/2] ! Ny Ny ! 207 ¥1 2 ’

Thus, we see that the constant E,, n(¢1) can be estimated by an upper bound which
depends on mj and o1, but does not depend on N. We obtain

1
E, < max p1(n+rN
N S G v W 2 TN
1 2¢o 1 1
< 2 —_— (1 - — .
- (2;1(7”711) { cl+(,u71)m’f( 201) }

Consequently, the general C(T)-error constant E,, (1) has the upper bound (3.11). By
(3.10), the expression (3.11) is also an upper bound of C(T)-error constant es, (¢1). W

1

Now for arbitrary spatial nodes z; € [ — %], j € Iy, we estimate the error of the

2
NNFFT in the form
N x; N N N
max | £(e;) = V)| o oy () — ST | oy BV E) — s1(N )
i€l PN z;) |~ jelm, p1(N ;) jeh, é1(N ;)

14



At first we consider

s(N x;) s(N z)
max |f(zj) — ————~| < max ) —
j€In, () gpl(Nl‘j)‘ z€[-1/2,1/2] /(@) gol(Nx)}
From (2.9) and (2.11) it follows that for all x € R,
s(Nz)  h(Nz)—s(Nz)
fx) = = =
¢1(N x) ¢1(N )
. 1 / .
_ Z fr |:e—27r1vax o _ Z @1(7 o 'Uk) e—27r1€3:/01} )
KeTm, N1 p1(N z) telnam, Ny
Thus, by (2.7), (3.7), and (3.9), we obtain the estimate
s(N z)
max | f(z) - — 5| < Eoyn(p fil < Eqy (¢ Jl-
B O = Siwag] < Baven) 3 1< Enlen) 3 1
My My

Now we show that for ps(t) := wz(M) and Ny = 09 (N1 + 2m;) it holds

m2

[s(N @) = s1(Na)| < Egyi02) D el (3.12)

max
ze[-1/2,1/2] P
1 mi

By construction, the functions s and s; can be represented in the form

s(Nz) = Y gee M/,
€elng +2my

siNz) = 3 h (= -2, zeR,
s€ln, o1 N2

(1)

where @5’ denotes the 1-periodization of the second window function ¢ and

1 9e  —onmits/N
hg := — - e cmes/N2
2 P2(£)

2
LeIN, +2my

Substituting ¢t = £, it follows that

o1’

s(Mt) = Y gee ™,

Leln, +2m,
- S
s1(Nit) = Zhsgpél)(t—ﬁ), teR,
SEIN2 2

are 1-periodic functions. By [29, Lemma 2.3], we conclude

omax[s(Nit) = si(Vit)| < eoy(2) D ol < Eou(p2) D0 lal,
G[_ / 5 /] ZEINlJerl 661N1+2m1

15



where the general C'(T)-error constant E,,(y2) defined similar to (3.8) has an analogous
property (3.10). Since x = o7 t, we obtain that

ma s(Nit) — s1(Nit)| = ma s(Nx)—s1(Nzx)| < E, ,
tE[*1/2€(1/2]| ( ! ) 1( ! )| xE[*Ul/gfm/Z]’ ( ) 1( )‘ = 2(902) EEINEEQ |g€|
1 mi

such that (3.12) is shown. Note that for z € [ — 3, 3] it holds

sVa) = D7 hapa(C = )

SGIX,Q (z)

with the index set s T m
(@) ={scly,: |— | <=2

Further, by (2.6) and (2.12) it holds

)ORNTIEEE D DEED DN T = SRV

1
£61N1+2ml KEIN1+2m1 k;EIMl kJEI]ul

= a ) Ifil-

kE]Ml

Thus, we obtain the following error estimate for the NNFFT:

Theorem 3.5 Let the nonharmonic bandwidth N € N with N > 1 be given. Assume
that Ny = 01N € 2N with o1 > 1. For fitred my € N\ {1} with 2m; < N, let
Ny = 09 (N1 4 2mq) with o9 > 1. For mg € N\ {1} with 2mg < (1 — a%) No, let o1 and
@2 be the window functions of the form (2.5). Let x; € [— %, %], J € Iy, be arbitrary
spatial nodes and let fi, € C, k € Iy, , be arbitrary coefficients. Let a > 1 be the constant
(2.6).

Then for a given exponential sum (1.1) with arbitrary frequencies v € [— %, ﬁ],
k € Ing, the error of the NNFFT can be estimated by

N Sl(N.CCj) < _ sl(Nx)

e @) = G Nyl = V@ s
< |E, S ,
< | (00 + 5y (2)] ;;I: £l

where B, (¢j) for j =1, 2, are the general C(T)-error constants of the form (3.8).

4 Error of NNFFT with sinh-type window functions

Let N € N with N > 1 be the fixed nonharmonic bandwidth. Let o1, o9 € [%, 2] be
given oversampling factors. Further let Ny = o1 N € 2N, my € N\ {1} with 2m; < Ny,

16



and Ny = 09 (N1 + 2my) = 0102a N € 2N be given, where a > 1 denotes the constant
(2.6). Let mg € N\ {1} with 2my < (1 — U%) N, be given, too.
For j =1, 2, we consider the functions

1 .
——— sinh (£; V1 — 22 xze[-1,1],
s = { T ee b

0 reR\[-1, 1] (4.1)

with the shape parameter

1
—orma (11— — ) .
P ﬂmj( 20j>

As shown in Example 2.1, both functions belong to the set 2. By scaling, for j = 1, 2,
we introduce the sinh-type window functions

N;t
Poinnj(£) = weinnj (=), L ER. (4.2)
J

Applying Theorem 3.4, we obtain by the same technique as in [29, Theorem 5.6] that

EO'J' ((‘OSith) S (24m§’/2 + 10) 6727rmj 171/‘” ) j = 17 2. (43)

Now we estimate @sinh’l(%). Using the scaling property of the Fourier transform, by
(2.2) we obtain

N mq mlN mq mq

@sinh,l(;) = E@Sith(T]\ﬁ) = ﬁlwsmh’l (T‘l)
__mmif o TIMi\—1/2 ,  mm?
~ Nisinh By ( ! o? ) Il( P o2 )

i)_1/2 Il (271'171,1 1-— i) 5

_o_mm o b
B (1 201)(1 o1 o1

N1 sinh 61
where we have used the equality

1 \1/2
L
407 01

m2m3 . 1/2 1 2

From mq > 2 and o1 > %, it follows that

1 1 4
2y 41— — >dm |1 — — > zp = —=.
o1 o1 \/3

By the inequality for the modified Bessel function I; (see [29, Lemma 3.3]) it holds
2
() > Vage ™ I (zg) a7 /2 e > 5 e7V2e" | x>,

Thus, we obtain

N V2mym (1 1)(1_i)_3/462m1m'

. 2y s T 95,
@slnh,l( 9 ) - 5N1 sinh ﬁl 201 71
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By the simple inequality

sinh 81 < 1eﬁl = le%ml(l*l/(?al))
2 2 ’

we conclude that

N, _ 22 1 1, -
Peinh,1 () = VAT (1 - 55 (1= ) 8/4 2mma (\/1=1/01-141/(201))

and hence

a 5Ny a L1 L \3/4 _ommi(\/1=1/o1—14+1/(201))
. < 1—— 1—-— e “TmM o1 o), 4.4
Gsinh,1(N/2) = 24/2mym ( 201) ( (71) (4.4)

Applying Theorem 3.5, we estimate the error of the NNFFT with two sinh-type window
functions (4.2). By (4.3) and (4.4) we obtain the inequality

By (@sin1) 4 5——mros By (9sinn2) < (24m3/% +10) e 2rmv/1-1/on
Sosinh,l(N/Q)

+(24m3"* +10) ZNVO oy (1—/T-1]o1-1/(201)) o—27ma/T-1]0>

2 2m17r )
since it holds

D L y-1 134 5 5

—(1—-— 1-—— < -2 <2 Z 9]

2( 201) ( 01) _3\f< ’ 016[4’ }

Thus, the error of NNFFT with two sinh-type window functions (4.2) has exponential
decay with respect to the truncation parameters m; and mo. We summarize:

Theorem 4.1 Let the nonharmonic bandwidth N € 2N with N > 1 be given. Let
Ny = o1 N € 2N with o1 € [%, 2] be given. For fired my € N\ {1} with 2m; < Ny, let
Ny = 09 (N1+42my) € 2N with o9 € [%, 2}. For mg € N\ {1} with 2mgy < (1—0%) No, let
@sinh,1 and Psinn2 be the sinh-type window functions (4.2). Assume that mg > mq. Let
T € [— %, %], J € Iz, be arbitrary spatial nodes and let fi, € C, k € Iy, be arbitrary
coefficients. Let a > 1 be the constant (2.6).

Then for the exponential sum (1.1) with arbitrary frequencies vy € [— %, i], k€ I,
the error of the NNFFT with the sinh-type window functions (4.2) can be estimated in
the form

s1(N ) s1(N )
max |f(z;) — ———>—| < max ) — — | < E(ysi
3€In, |f( i) Psinh,1 (IV :Ej)‘ xe[—1/2,1/2] ‘f( Peinnt (N x)‘ (¢sinh) kEZI:M | f|
1
with the constant
E(psinn) = (24771‘1’/2 + 10) o—2mmiy/1-1/01
+ (24m§/2 +10) 2N1 + 4my o2mm1 (1=/1=1/51-1/(201)) g—2mmar/1-1/o

\/2m17r
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Now we visualize the result of Theorem 4.1. To this end, we introduce the “relative
error” (3.1), i.e

s1(Nxz,;
(3 1A max < f(a) - ((NJ:)C)\ (4.5)
kel stmh,l 7
By Theorem 4.1 it holds
s1(Nx;
Z [fel) ™ Joax ‘f Tj) — ((Njy)c)‘ < E(psinh) -
kelar, 9081nh,1 ]

For ease of presentation we consider m; = mgy € {2,...,8} and 01 =09 € [%, 2]. In this

case, the constant E(psinn) reads by (4.3) as follows

(24m3/2 +10) e 2mmV/1-1/en (1 i 2]V12_|—\/74W62wm1 (17,/171/0171/(201))> ' (4.6)
mqm

Thus, we choose random nodes x; € [ — 1,1, j € Ing, and vy € [—5-, £, k € Iy,
with a =1+ =5 le as well as random coefficients fi € C, k € Iy, and compute approxi-
mation (1.2) once directly and once rapidly using the NNFFT. This test is repeated one
hundred times and afterwards the maximum error over all repetitions is computed. The
appropriate results for the parameter choice N = 1200, M7 = 2400 and My = 1600 are
displayed in Figure 4.1(b), while the error bound (4.6) is depicted in Figure 4.1(a). For
the NNFFT we use two standard window functions, namely the Kaiser—-Bessel window
functions (see [30]). It can clearly be seen that the higher the truncation parameters
are, the smaller the error bound (4.6) and the relative error (4.5) are.

10t 8 1078 8
1072} 8 107°} .
1075 A 1070 y

108 —8-0; =09 = 1.25
—— 0y =09=1.5
107117+ ()'1:()‘2:2

10712} |—=8-01 =09 = 1.25
—— 01 =09=1.5
—a— ()'1:()'2:2

i i i i | | | 10~ b= i i i | I ——
2 3 4 5 6 7 8 2 3 4 5 6 7 8
mi=ms mi1=mo
(a) Error bound (4.6) (b) Relative NNFFT error (4.5)

Figure 4.1: Visualization of Theorem 4.1 for the NNFFT with sinh-type window func-
tions, where m; = mg € {2,...,8} and 01 = 09 € {1.25,1.5,2}.
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5 Approximation of sinc function by exponential sums

The exponential sum (1.1) is a linear combination of exponentials with bounded fre-
quencies which is used in [4] for a local approximation of a bandlimited function F' of
the form

1/2 _
F(x) := / wt)e 2 NT At e R, (5.1)
~1/2
where w : [—3, 1] — [0, co) is an integrable function with fiﬁz w(t)dt > 0. By
1 (N2 s i
F(x :/ w( — =) e?™s7 4, 5.2
@ =5 [ ) (52)

the Fourier transform of (5.1) is supported on [ — ]
bandlimited with bandwidth N. For w(t) := 1, t € [— %, %], we obtain the famous
bandlimited sinc function

F(z) = sine(rNz) i= { R TR\,
r =0u.

(5.3)
Now we show that the bandlimited sinc function (5.3) can be uniformly approximated
on the interval [—1, 1] by an exponential sum (1.1). We start with the uniform approx-
imation of the sinc function on the interval [ — %, %]

Theorem 5.1 Let e > 0 be a given target accuracy.
Then for sufficiently large n € N with n > 2N, there ewist constants w; > 0 and

frequencies v; € (— %, %), j=1,...,n, such that for all x € [— %, %],
n .
|sinc(rNwz) — ij e 2N YT < g (5.4)
j=1

Proof. This result is a simple consequence of [4, Theorem 6.1]. Introducing v := % < %,
we obtain by substitution 7 := —% that

1/2 ) v
sinc(mNx) = / e MNTE 4r — e
—-1/2 v/,
Setting y := nx € [— 5 %], we have
: 1 v imt
sinc(mvy) = — e dt.
v J_,
Then from [4, Theorem 6.1] (with d = 1), it follows the existence of w; > 0 and

©; € (—v,v), j=1,...,n, such that for all y € [—%—1, %—Fl],

1 . . ;
% /Va(t)emydt—zqujemejy‘ <e.
_ st
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Hence, forallz = £ € [— 1, 1], we conclude that for v; :== —52 € (=4, 1), =1,...,n,

1Yy - in6; . i N,
% Tt — ij e’”ne]m‘ = |sinc(rNz) — g wje ZmNUJz} <e.
Jv j=1 j=1

This completes the proof. l
Substituting the variable z = £, t € [~1, 1], and replacing the bandwidth N in (5.4)

by 2N, we obtain the following uniform approximation of the sinc function (5.3) on the
interval [—1, 1] (after denoting ¢ again by x):

Corollary 5.2 Let € > 0 be a given target accuracy.
Then for sufficiently large n € N with n > 4N, there exist constants w; > 0 and
frequencies v; € (— %, %), j=1,...,n, such that (5.4) holds for all x € [—1, 1], i.e.,
n .
|sinc(rNz) — ij e*ZT”N”jx‘ <e, zel-1,1]. (5.5)
j=1

The practical approximation of the function sinc(N7z) by an exponential sum on the in-
terval [—1, 1] can efficiently be realized by means of the Clenshaw—Curtis quadrature (see
[33, pp. 143-153] or [26, pp. 357-364]). Using this procedure for the integrand %e"riN ta
t € [-1, 1], with fixed parameter = € [—1, 1], the Chebyshev points zj, = cos £ € [—1, 1],
k=0,...,n, and the positive coefficients

.

where it holds £,(0) = e, (n) = @ and e,(j) :=1,7=1,...,n—1 (see [26, p. 359]),
we obtain the following result:

en(k)? Z?ﬁ) 5n(2j)2# cos @ n € 2N,

en(k)? Zgigl)ﬁ 5n(2j)2# cos @ ne2N+1,

(5.6)

S 3=

) 1/ " .
sinc(Nwzx) = 5 e TN qp & Z wy, e TN
-1
k=0

Further the coefficients fulfill the condition (see [26, p. 359])

n
> wp=1. (5.7)
k=0
Then we receive the following error estimate.

Theorem 5.3 Let n € 2N with n > 4 be given. Let zp = cos %k, k=20,...,n, be the
Chebyshev points and let wy, k = 0,...,n, denote the coefficients (5.6).
Then for all x € [—1, 1], the approzimation error of sinc(N7wx) can be estimated in the
form

144 (e2—1)N

n
|sinc(N7z) — Z wy e ™ Zkz| < 7 e cosh T
k=0

— 70(e?—1) 2e (5:8)
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Proof. Since the imaginary part of the integrand %e*”iN tz ¢ e [~1, 1], is odd, it holds
Y I

sinc(Nmzx) = 2/ e MM gt — 2/ cos(mNtz)dt. (5.9)
-1 -1

Now we apply the Clenshaw—Curtis quadrature to the analytic function f(t,z) :=
% cos(mNtz), t € [1,1], with fixed parameter € [—1, 1]. Note that it holds

n n
Zwk e Nz Zwk cos(mN zpz) +0
k=0 k=0

by the symmetry properties of the Chebyshev points z; and the coefficients wy, namely
2k = —2Zp—k and wg = wy—k, k=0,...,n (see [26, p. 359]).
By E, with some p > 1, we denote the Bernstein ellipse defined by

1 1 1 1
E,={z€C: Rez= §(p+;) cost, Imz = i(p—;) sint, t € [0, 2m)}.

Then £, has the foci —1 and 1. For simplicity, we choose p = e.
For z € C and fixed = € [—1, 1], it holds

1
‘5 cos(mNzz)| < = cosh(mNzImz).

N =

For z € C with Re z = 0 we have
1 1
‘5 cos(mNzz)| = 5 cosh(rNzImz).

Hence, in the interior of the Bernstein ellipse E,, the integrand is bounded, since

1 1 Nz(e2—1) 1

‘5 cos(mNzz)| < 3 coshﬂxéee) 5 e -

Thus, by [33, p. 146] we obtain the error estimate (5.8). Note that for even n > 4N the
error (5.8) is very small. For example, in the case N = 128 and n > 512 the error is

smaller than

144 1287 (e2 — 1
e 212 cosh L

S <1.22-10718,
70 (e? — 1) 2e -
This completes the proof. l

In practice, the coefficients wy, in (5.6) can be computed by a fast algorithm, the discrete
cosine transform of type I (DCT-I) of length n + 1, n = 2, (see [26, Algorithm 6.28 or
Algorithm 6.35]), where the DCT-I uses the orthogonal cosine matrix of type I

n

2 : JkT\n
C;H = \/; (en(j) en(k) cosi)mk:o.
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Algorithm 5.4 (Fast computation of the coefficients wy)
Input: n = 2" with t € N\ {1}, £,(0) = ep(n) := @, en(j):=1forj=1,...,n—1.

1. Form the vector (a;)j_o with agj = €n(25) #, Jj=0,...,n/2 and agj11 := 0,
j=0,...,n/2 1.

2. Compute (ax)}_o = C’;H(aj)?zo by means of DCT — 1.

3. Form the values wy, := \/%En(k) ag, k=0,...,n.

Output: wy, in (5.6) for k=0,...,n.

In [12] a Gauss—Legendre quadrature was applied to obtain explicit coefficients wy, for
given Legendre points z;. Due to their error estimate the authors claimed that n € N,
n > 5 would be sufficient in this setting. However, the computation of the coefficients
wg using our approach in Algorithm 5.4 is more effective for large n.

Now we visualize the result of Theorem 5.3. To this end, we compare the error constant
and the maximum approximation error, cf. (5.8). To measure the accuracy we consider
a fine evaluation grid x, = %7", r € Ir, with R > N, where R = 3-10° is fixed. On this
grid we calculate the discrete maximum error

n
max |sinc(rNw,) — Z wy, e TVERT (5.10)
relg
k=0
for different bandwidths N = 2¢, £ =3,...,7. For the parameter n we investigate sev-

eral choices n = vN with v € {1,...,10}. We compute the coefficients wy, using Algo-
rithm 5.4. Subsequently, the approximation to the sinc function is computed by means
of the NFFT. The results for error bound (5.8) are depicted in Figure 5.1(a), while the
maximum error (5.10) is displayed in Figure 5.1(b). It can clearly be seen that the higher
the oversampling v is, the smaller the error bound (5.8) and the maximum error (5.10)
are.

6 Discrete sinc transform

In the last section we present an interesting signal processing application of the NNFFT.
If a signal h : [— %, %] — C is to be reconstructed from its equispaced /nonequispaced
samples at aj € [ — %, %], then A is often modeled as linear combination of shifted sinc
functions

h(z) = Z cpsine(N7 (z —ax)), z€R, (6.1)
kelr,

with complex coefficients c;. In the following, we propose a fast algorithm for the
approximate computation of the discrete sinc transform (see [12, 20])

h(be) = Y cpsinc(Nw (b —ar)), L€, (6.2)
k‘E[Ll

where b, € [— %, %] can be equispaced /nonequispaced points.
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(a) Error constant (5.8) (b) Maximum error (5.10)

Figure 5.1: Visualization of Theorem 5.3 the approximation of sinc(Nwz), = € [—1,1]
for different bandwidths N = 2¢, ¢ =3,...,7, wheren = vN, v € {1,...,10}
and Chebyshev nodes z, € [-1,1], k =0,...,n.

Such a function (6.1) occurs by the application of the famous Sampling Theorem of
Shannon—Whittaker—Kotelnikov (see e.g. [26, pp. 86-88]). Let f € Li(R) N C(R) be
bandlimited on [—m Lo, m L] for some Lo > 0, i. e., the Fourier transform of f is supported
on [—mLg, mLo]. Then for N € 2N with N > Ly, the function f is completely determined
by its values f (%), k € Z, and further f can be represented in the form

flz) = Zf(%) sinc(N7(z — %)), reR,

kEZ

where the series converges absolutely and uniformly on R. By truncation of this series,
we obtain the linear combination of shifted sinc functions

Z f(%) sinc(N7(z — %)), z €R,
kelr,

which has the same form as (6.1), when ay are equispaced.

Since the naive computation of (6.2) requires O(L; - L) arithmetic operations, the aim
is to find a more efficient method for the evaluation of (6.2). Up to now, several ap-
proaches for a fast computation of the discrete sinc transform (6.2) are known. In
[12], the discrete sinc transform (6.2) is realized by applying a Gauss—Legendre quadra-
ture rule to the integral (5.9). The result can then be approximated by means of two
NNFFT’s with O((L; + L2)log(L1 + L)) arithmetic operations. A multilevel algorithm
with O(L2log(1/9)) arithmetic operations is presented in [20] which is most effective for
equispaced points ar and by and, as the authors claim themselves, is only practical for
rather large target evaluation accuracy § > 0.

In the following, we present a new approach for a fast sinc transform (6.2), where we
approximate the function sinc(N7wz) by an exponential sum on the interval [—1,1] by
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means of the Clenshaw—Curtis quadrature as described in Section 5. Let the Chebyshev
points z; = cosZr, j = 0,...,n, and the coefficients w; defined by (5.6) be given.

Utilizing (5.8), for arbitrary ay, by € [— %, %] we obtain the approximation

n n
SinC(NW(ak _ bg)) ~ ij e~ T Nzj(ap—be) _ ij e~ M Nzjag (miN2zjby (6.3)
j=0 §=0
Inserting this approximation into (6.2) yields

n

hg — § Ck E :wj e—mNZjak e7r1NZjbg

kel,,  j=0
n

=3 wj( ) cke—”iNZf“k> emiNube g (6.4)
=0 kel

If ¢ > 0 denotes a target accuracy, then we choose n = 2!, ¢t € N\ {1} such that by
Theorem 5.3 it holds
144 m(e?—1)N

7 e™Mepsh——0 /77
70(62_1)e coS 7o <e

For example, in the case ¢ = 10~8 we obtain n > 4N for N > 64.

We recognize that the term inside the brackets of (6.4) is an exponential sum of the
form (1.1), which can be computed by means of an NNFFT. Then the resulting outer
sum is of the same form such that this can also be computed by means of an NNFFT.
Thus, as in [12] we may compute the discrete sinc transform (6.2) by means of an
NNFFT, a multiplication by the precomputed coefficients w; as well as another NNFEFT

afterwards. Hence, the fast sinc transform, which is an application of the NNFFT, can
be summarized as follows.

Algorithm 6.1 (Fast sinc transform) ‘
Input: N € N, L1, Lo € 2N as well as ¢, € C, ai € [— %, %] fork eI, z; = cos%7r
with j =0,...,n andn > 4N.

0. Precompute the values wj, j =0,...,n, by Algorithm 5.4.
1. Forall j =0,...,n, compute by NNFFT

gj= ) cxe T NH®, (6.5)
k‘G[Ll

where g; is the approximate value of g;.
2. For all j =0,...,n, form the products

Qj 1= Wy - gj . (6.6)
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3. For all ¢ € Ir,, compute by NNFFT
n .
he= " ajemNabe (6.7)
j=0

where hy is the approzimate value of ﬁg.

Output: hy approzimate value of (6.2) for £ € I,.

If we use the same NNFFT’s (with the window functions ¢;, truncation parameters m;,
and oversampling factors o; for j = 1, 2), Algorithm 6.1 requires all in all

O(NlogN+ L1+ Lo +2’I’L)

arithmetic operations.
Considering the discrete sinc transform (6.2), we can deal with the special sums of the
form

M) = 3 ensine(Na(a - ). LIy, (6.8)

kEILl

i.e., we have given equispaced points b, = % with Lo = N. In this special case, we simply
obtain an adjoint NFFT instead of the NNFFT in step 3 of Algorithm 6.1. Therefore,
the computational cost of Algorithm 6.1 reduces to O(Nlog N + L1 +n). In the case,
where a; = Lﬁl’ k € Ir,,, the NNFFT in step 1 of Algorithm 6.1 naturally turns into an
NFFT. Clearly, in this case the same amount of arithmetic operations is needed as in the
first special case. If both sets of nodes ax and by are equispaced, then the computational
cost reduces even more to O(N log N 4+ n). Hence, these modifications can be included
into our fast sinc transform.
Now we study the error of the fast sinc transform in Algorithm 6.1, which is measured
in the form .

max |h(be) — hel . (6.9)

I,

Theorem 6.2 Let N € N with N > 1 be given. Let Ly, Ly € 2N be given. Assume
that Ny = oo N € 2N with 01 > 1. For fited m; € N\ {1} with 2m; < Ny, let
Ny = 09 (N1 + 2my) with o9 > 1. For mg € N\ {1} with 2my < (1 — a%) Ns, let o1
and @y be the window functions of the form (2.5). Let ag, by € | — %, %} with k € I,
¢ € Iy, be arbitrary points and let ¢, € C, k € I1,, be arbitrary coefficients. Let a > 1
be the constant (2.6). For a given target accuracy € > 0, the number n = 2¢, t € N\ {1},

1s chosen such that ( ) )
144 m(e* —1)N
— e " h——mM . 6.10
70(62_1)6 cos e <e (6.10)

Then the error of the fast sinc transform can be estimated by

max‘h(bg)—ilg‘ < <€+2[Eg1(901>+ . a

F () Emle)
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+[Em(<p1)+ @1&) (e } ) kezlzl ek, (6.11)

where Eq (¢j) for j =1, 2, are the general C(T)-error constants of the form (3.8). If

a
Eo, (1) + — Eqy(p2) < 1,

#1(%)

one can use the simplified estimate

- 2a
max |h(bs) — he| < (e +2E5,(p1) + —~ Eoy (@ ckl -
g [(b0) = | < (= + 280, (1) 220y 2)) kg;lm

Proof. By (6.4), the value hy is an approximation of h(b). Since ay, by € [— %, %], it
holds by (5.8) and (6.10) that

!Sinc(wN(ak - bz)) — ij e—wisz(ak_be)‘ <e.
j=0

Hence, we conclude that

(b)) = hel <& > ewl, L€ IL,. (6.12)
kGILl

After step 1 of Algorithm 6.1, the error of the NNFFT (with the window functions ¢
and ) can be estimated by Theorem 3.5 in the form

- a .
l9; — 351 < [Eol(¢1)+ﬁ o wz] > ekl, §=0,....n.
901(7) kelr,

Using (5.7), step 2 of Algorithm 6.1 generates the error

n
|he — he] < ij ‘gj _!N]J’

n

< W EU1 - a E[72 c
< (2 ) [Fo 1) 4 oy )] ’;| f
= [Eo'l (p1) + @ E,, (2 ] kezILl AR (6.13)

After step 3 of Algorithm 6.1, the error of the NNFFT (with the same window functions
1 and @) can be estimated by Theorem 3.5 in the form

Vw—ﬁe‘ < [E01(¢1)+ (E) Eqy (02 } Zw]‘g] telp,.
2

¢1
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Using the triangle inequality, we obtain

3] < lgil+195 =3l < D el + 195 — il

kEILl
02 (,02} Z’Ck‘ j:O,...,')”L

< Z !CkH-[ o (1) +

kelp, 21(3) kelp,

such that by (5.7)

he—he| < {Eal(%)‘i‘Al?N) o2 902} Zw] Z ]
2

¥ =0 kelp,

+[Eal(901)+aN) o2 902} Zw] Z |ck|
2

¥1 kelr,
a

—

[Ba(01) + —5~ Eoulgn)] Z e

P1 (%) kelr,

2
+ [ Eoilp1) + e Eoy(2)] k; k] (6.14)

Thus, the error of Algorithm 6.1 can be estimated by
|\h(be) — he| < |h(be) — he + |he — he| + |he — he|, €€ 1L, .
From (6.12) — (6.14) it follows the estimate (6.11). W

This is to say, the error of Algorithm 6.1 for the fast sinc transform mostly depends
on the quality of its precomputation. Thus, the error of Algorithm 6.1 can easily be
controlled by the error results of the NNFFT given in Theorem 3.5.

Next we verify the accuracy of our fast sinc transform in Algorithm 6.1. To this end,
we choose random nodes aj € [— %, %], equispaced points b, = % with ¢ € Iy, as
well as random coefficients ¢y € C, k € I, and compute the discrete sinc transform
(6.2) directly as well as its approximation (6.7) by means of the fast sinc transform.
Subsequently, we compute the maximum error (6.9). Due to the randomness of the
given values this test was repeated one hundred times and afterwards the maximum
error over all repetitions was computed.

In this experiment we choose different bandwidths N = 2¥, k =4, ..., 13, and without
loss of generality we use L; = % We apply Algorithm 6.1 using the weights w; com-
puted by means of Algorithm 5.4 and the Chebyshev points z; = cos j%, j=0,...,n.
Therefore, we only have to examine the parameter choice of n > 4N. To this end, we
compare the results for several choices, namely for n € {4N,6N,8N}. The appropriate
results can be found in Figure 6.1. We see that for large N there is almost no difference
between the different choices of n. However, we point out that a higher choice heavily
increases the computational cost of Algorithm 6.1. Therefore, it is recommended to use
the smallest possible choice n = 4N. Compared to [12] the same approximation errors
are obtained, but with a more efficient precomputation of weights.
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Figure 6.1: Maximum error (6.9) for different bandwidths N = 2¥, k = 4,..., 13, shown

for several choices of 4N <n € {4N,6N,8N} when using the coefficients w;
obtained by Algorithm 5.4.
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