FAST SUMMATION AT NONEQUISPACED KNOTS BY NFFTS

DANIEL POTTS* AND GABRIELE STEIDL
Dedicated to Professor Manfred Tasche on the occasion of his 60th birthday

N
Abstract. We develop a new algorithm for the fast computation of discrete sums f(y;) := > apK(y; — =)
k=1

(j = 1,...,M) based on the recently developed fast Fourier transform at nonequispaced knots. Our algorithm, in
particular our regularization procedure, is simply structured and can be easily adapted to different kernels K. Our
method utilizes the widely known FFT and can consequently incorporate advanced FFT implementations. In summary
it requires O(N log N + M) arithmetic operations. We prove error estimates to obtain clues about the choice of the
involved parameters and present numerical examples in one and two dimensions.

2000 AMS Subject Classification: 65T40, 65T50, 65F30
Keywords: fast discrete summation, fast Fourier transform at nonequispaced knots, Toeplitz matrices,
radial basis functions

1. Introduction. The fast computation of special structured discrete sums or from the linear
algebra point of view of products of vectors with special structured dense matrices is a frequently
appearing task in the study of particle models [17, 18], in the numerical solution of integral equations (or
of partial differential equations by recasting them as integral equations) [20, 9] and in the approximation
of functions by radial basis functions (RBFs) [5, 4]. There exists a rich literature on the above topics
and we have only cited some typical papers here.

Various algorithms were designed to speed up the summation process. The hierarchical multipole
method and the fast multipole method (FMM) are very popular in the context of particle simulation
[17, 18] and of approximation by RBFs [5, 4]. For a short introduction into these methods see, e.g.,
the tutorial of Beatson and Greengard [3] and for a nice matrix version of the FMM [32]. The first
method requires O(log(1/€)(N + M) log N) arithmetic operations, where € denotes the accuracy of the
computation. As convenient in literature in this field we do not use the Landau symbol in its strong
sense but write instead O(a g1 (N) + 892(M)) := F(M,N) for N, M > 1 if there exists 0 < ¢ < o0
independent of « and S such that |F(N,M)/(ag1(N) + Bg2(M))| < ¢. The FMM is quicker than
the hierarchical method, namely O(log(1/€)(N + M)), even in practical experiments. However, the
price we have to pay for this consists in a more complex structure of the algorithm and thus in a more
complicated adaptation to new kernels.

Closely related to the hierarchical multipole scheme but designed for the numerical solution of integral
equations is the panel clustering method [20]. Here the summation kernel is not explicitly given. Instead
the summation coeflicients have a special structure due to the analytic background they are arising
from.

In recent years fast summation algorithms were introduced by Hackbusch [19] in the theory of H-
matrices and by Tyrtyshnikov et al. [33, 16] under the name mosaic—skeleton approzimation. The
paper [9] also fits into this context.

Other algorithms for the computation of discrete sums which require only O(Nlog N) arithmetic
operations focus on the matrix compression by the discrete wavelet transform [1, 7, 21, 23].

Recently, Beylkin and Cramer [8] have proposed a fast summation algorithm with O(Nlog N + M)
arithmetic operations based on the multiresolution concept used in wavelet theory. Their hierarchical
scheme is again closely related to the method of local corrections [2].

In this paper, we are interested in an algorithm for the fast computation of sums of the form
N
fl) =) axK(yj—=zx) (=1,...,M), (1.1)
k=1

*University of Liibeck, Institute of Mathematics, Wallstr. 40, D-23560 Liibeck, (potts@math.uni-luebeck.de).
fUniversity of Mannheim, Institute of Mathematics, D-68131 Mannheim, (steidl@math.uni-mannheim.de).

1

where K are special kernels, e.g.,

25 o7 loglel, 2 logal, 7, (1.2)
and in its multivariate generalization for RBFs K. Of course, our algorithm can be modified for other
kernels frequently used in the approximation by RBFs, e.g., the Gaussian or the (inverse) multiquadric
(2% + ¢®)F'/2. This and the consideration of discrete sums with non explicitly given summation ker-
nels will be done in a forthcoming paper. Here we propose a new summation algorithm based on the
recently developed fast Fourier transform for nonequispaced knots (NFFT), see [29] and the references
therein. Our algorithm, in particular our regularization procedure, is simply structured and can easily
be adapted to different kernels K. Further, our method utilizes the widely known fast Fourier trans-
form (FFT) and can incorporate advanced FFT implementations. The hierarchical structure of our
algorithm is hidden in the FFT. Our algorithm requires O(N log N + M) arithmetic operations for
uniformly distributed points zj, and is related to the approach in [8], see Remark 3.2. Numerical ex-
periments demonstrate the power of our algorithm both in the one—dimensional and two—dimensional
settings.

The remainder of this paper is organized as follows: the original idea for our algorithm came from
the consideration of (1.1) for equispaced knots x; and y;. In this case we have simply to compute
the multiplication of a vector with a Toeplitz matrix or a block—Toeplitz—Toeplitz—block matrix in
the bivariate setting. The standard algorithm to do this uses the FFT. In Section 2 we recall this
standard procedure from a point of view which is suited for the generalization of the algorithm to
nonequispaced knots. In one dimension this generalization is done in Section 3. In Subsection 3.1
we introduce our algorithm. In particular, we present a simple regularization procedure of the kernel
which involves only solutions of small systems of linear equations with right—-hand sides depending on
the kernel. Thus it is easy to incorporate various kernels. Error estimates are proved in Subsection
3.2. Here we focus especially on a careful analysis of our regularization procedure. Subsection 3.3
provides a couple of numerical examples in one dimension. The generalization of our algorithm to
the multivariate setting is done in Section 4, where we restrict our attention to RBFs as summation
kernels. We have attached an appendix which contains the NFFT algorithms. For readers not familiar
with the NFFT we recommend to read the appendix first.

2. Fast Summation at Equispaced Knots. The basic idea underlying our algorithm for the

fast computation of (1.1) steams from the standard algorithm for the fast multiplication of a vector
with a Toeplitz matrix. We recall this algorithm in a slightly generalized form from a point of view
which carries over to the nonequispaced setting.
Let 2 (k=1,... ,N)andy; (j =1,...,M) be equally spaced points in [-1/4,1/4), i.e., without loss
of generality let z}, := —1/4+(k—1)/(2N) (k=1,...,N)andy; := —1/4+(j—1)(2M) (j = 1,... M).
In the following, we agree to set K(0) := 0 if K has a singularity at the origin. For the fast summation
of

N .
Flu) =Y ok (E - E) G=1,...,M), (2.1

we want to apply the following aliasing formula.

THEOREM 2.1. (Aliasing formula)
Let g be a 1-periodic function with absolutely convergent Fourier series and Fourier coefficients

1/2
er(g) == /g(w)e*%ikzdx.
-1/2
Define an approximation
1 n/2-1]
P J\ . —2nijk/n
= ¥ a(2)e
j=-n/2

2

of ¢ (g) by using the trapezoidal quadrature rule. Then the following relation holds true:

ar = cr(g) + Z Ck+rn(9)-

rEZL
r#0

Now let n := 2lem(N, M). The values K(j/n) (j = —n/2+1,...,n/2 — 1) are determined by the
entries of the matrix (K (i3 — ’;;Nl));\/[k’ivl Let Kg be any smooth 1-periodic function with

Kg(j/n)=K(/n) (=

-n/2+1,...,n/2-1)
and with an arbitrary boundary value Kg(—1/2). Then we have by the aliasing formula that
KR(.’L') = Z Cy (KR) eZmile

ez

n/2-1 n/2—1

Z a(Kg)e2mile 4 Z Zcz+m(KR)e2”i(l+T")””
I=—n/2

=— TEL
I=—n/2 S

n/2—1

n/2—1
= Z bl627rilw+ Z ZCH_TH(KR)eZWilw(eZWinrz_1)’ (2.2)
I=—n/2 I=—n/2 :%
where
1 n/2—1 j
b= = I\ g—2miji/n _
=5 ¥ Ka(2)e 29
j=—n/2

) — (k —1)/(2N), we see by definition of n that e?>™"" — 1 vanishes. Thus

. . n/2—1
J=1 k=1_ o (j=1 k-1)_ 2mil((j—1)/(2M) = (k=1)/(2N))
Kr (oM 2N) =K (oM ~ 2N _l_zﬂb‘e

and by (2.1)

N n/2—1

Fa) =Y ar 3 bemG-n/em—n/eN)
k=1 l=—n/2
n/2—1

N
_ Z bz(ake—27ril(k—1)/(2N)> o2mil(j—=1)/(2M)
k=1

I=—n/2

This suggests the following algorithm for the fast summation of (2.1):
ALGORITHM 2.2.

Precomputation: Computation of (bl)l":/i;l/z by (2.3).
1. Forl=-n/2,... ,n/2—1 compute

N
ay = ZO"“ o—2mil(k—1)/(2N)
k=1

by FFT(2N) and applying that aj1ons = a; for s = —(n — 2N)/(4N),...,(n —2N)/(4N).
2. Forl=—n/2,...,n/2—1 compute the products

dl = albl.
3

3. For j =1,... ,M compute

n/2-1 M-1 (n—2M)/(4M)
fly) = Z dy e2mlG=1/ M) _ Z Z diponss | €2™LGE—1/(M)
I=—n/2 I=—M \s=—(n—2M)/(4M)
by IFFT(2M).

, N
For M = N we have that Ky := (K (&E is an N by N Toeplitz matrix. In this case Algorithm
2N /) 5 k=1

2.2 coincides with the standard Toeplitz mag’rix — vector multiplication algorithm based on embedding
K into an 2N by 2N circulant matrix, and than carrying out the multiplication by using the fast
Fourier transform (see e.g. [10]). Note that there exist faster algorithms for the multiplication of a
vector with a Toeplitz matrix based on trigonometric transforms [27]. These algorithms can be derived

in a similar way as above by using Chebyshev expansions instead of Fourier expansions.

3. Fast Summation at Nonequispaced Knots. Let

N
f@) =) apK(z —), (3.1)
k=1

where |zp| < 1/4 — 1/32. To keep the notation simple, we restrict our attention to even kernels
K which are in C*° except for the origin. In the following subsection, we propose an algorithm
for the fast evaluation of f at M nonequispaced knots y;, where |y;| < 1/4 — 1/32. Note that,
for some reasons which will become clear in the next subsection, we have scaled the knots so that
ly; —xr| < 1/2—1/16 = 7/16. Error estimates, which determine together with the desired arithmetic
complexity of our algorithm the choice of the parameters, are given in Subsection 3.2. Numerical
results for the even kernels in (1.2) are presented in Subsection 3.3.

3.1. The Algorithm. The outline of our algorithm can be sketched as follows: we regularize K
near 0 and near the boundary +1/2 to obtain a 1-periodic smooth kernel Kg in the Sobolev space
HP?(T). Then we approximate Kg by the Fourier series Kzp given by

n/2—1
Kgr(z) := /z b e*m, (3.2)
l=—n/2
where n < 2N and
by == 1 "/2231 Kp <l> e~ 2mil/n (l=-n/2,...n/2-1). (3.3)
n n

Note that one can also use the more symmetric setting

n/2

Krp(z) = Z ey €™
I=—n/2

where g; :=1/2if | = £n/2 and ¢; := 1 otherwise. This would introduce only small modifications in
the following considerations.
Regarding that

K= (K_KR) + (KR_KRF) + KRF = KNE + KER + KRF, (34)

where Kng := K — Kg and Kgg := Kgp — Kgr and assuming that Kgg becomes sufficiently small,
we approximate K by Knxg + Kgrr and consequently f by

f(@) = fne(@) + frF(2), (3.5)

4

where

fre(z ZakKRF(w — Tp) (3.6)
k=1
and where
Ine(z ZakKNE(-T — k) (3.7
k=1

denotes similar to multipole methods the near field summation at x. Instead of f we intend to evaluate
f at the points y;. We suppose that the knots x; (k = 1,...,N) are uniformly distributed so that
every interval of length 1/n contains at most v points, i.e. n ~ 2N/v. Choosing Kg such that
supp (K — Kr)N[-7/16,7/16] C [—a/n,a/n] with an appropriate parameter a, the evaluation of fxg
at the M points y; requires only O(avM) arithmetic operations. Similarly, if instead the points y;
(j = 1,...,M) are uniformly distributed so that every interval of length 1/n contains at most v of
these points, i.e. n & 2M /v, then the evaluation of fyg requires O(avN) arithmetic operations.
Note that by our scaling of the input knots z; and y; we have no additional computational effort at
the boundary here. By (3.2) we can rewrite (3.6) as

n/2—1
fRF Zak Z b e27r1l r— zk)
k=1 I1=-n/2
which further implies that
n/2—1

Trr(y5) Z b (Z ape 2””“) e2mily;

l=—n/2

The expression in the inner brackets can be computed by an NFFT™(n), this will be followed by n mul-
tiplications with b; and completed by an NFFT(n) to compute the outer summation with the complex
exponentials. If m is the cut-off parameter and o = 2 the oversampling factor of the NFFT*/NFFT,
then the proposed evaluation of frr at the points y; (j = 1,... , M) requires O(m(N + M) +nlog(n))
arithmetic operations.

Before summarizing the above algorithm we have to describe the regularization Kg of K near the
origin and the boundary more precisely.
Since K is even, we construct Kg on [—1/2,1/2] as follows:

Ti(z) ifxe(—2,2),

n’n
Kn(z):={ To() ifze€[-5—5) Uk 1 (3.8)
K(xz) otherwise.
Here we choose
P ™mj
_ I
= Z a; 08 < T, (3.9)
7=0
where the coefficients aJI are determined by
(2 g (2 - _
T! (n) =K (n) r=0,...,p—1), (3.10)

and

pil af cos(8jm(x —1/2)) if z € (7/16,1/2],
Tp(x) =4 79 (3.11)

E af cos(8jm(x +1/2)) if z € [-1/2,-7/16),

where the coefficients aJB are defined by

T (7/16) = K™ (7/16) (r=0,...,p—1). (3.12)

Note that we can use an expansion with sine functions for odd kernels K and Fourier expansions
for other kernels. The ansatz (3.9) and the conditions (3.10) lead to the following linear systems of
equations

L2
> a1y =k (%),
=0
L2+ o\ " 1
> az;(2)7 (=) = <%) K (ﬁ) r=1,..., V’TJ), (3.13)
LEEQJ L (2 + 1)+ (=) = — (2_(1) o K2r+1) (ﬁ) r=0 {EJ) (3.14)
par QAgj41\4] = p— n r=0,..., 5 . .

Here |a| denotes the largest integer < a. Similarly, we obtain from (3.11) and (3.12) linear systems of
equations with the same coefficient matrices

View = (0 U Vi = (o + e U2 (3.15)

even rj=1 r,j=0
as in (3.13), (3.14) but with different right-hand sides
[72*]

r=1

=)

r=0

((sw)‘% K@) (7/16)) , ((&r)‘(”“) K@r+D) (7/16)) (3.16)

Thus, the computation of the coefficients af and aJB requires the solution of 4 small (size ~) linear

systems of equations with two different mosaic Vandermonde-like coefficient matrices (3.15). These
matrices will come into the play in our error estimates.

Now we can summarize our algorithm.

ALGORITHM 3.1.
Precomputation:
i) Computation ofaf, af (j=0,...,p—1) by (3.13), (3.14) and (3.16).
i) Computation of (by);* ", by (3.3) and (3.8).
iii) Computation of Kng(y; — xx) for all j = 1,... ,M and k € I)'F (y;), where INE (y;) :=
{ke{l,...,N}:|y; — x| < £}. See also Remark 3.6.
1. Forl = —-n/2,...,n/2 —1 compute

N
ap = § :ak e—2mlmk
k=1

by NFFT*(n), see Algorithm 5.2 in the appendix.
2. Forl = —n/2,...,n/2 —1 compute the products

dl = albl.
6

3. For j =1,...,M compute

n/2—1

fRF y] . Z d e27r1ly]

l=—n/2

by NFFT(n), see Algorithm 5.1 in the appendix.

4. For j =1,...,M compute the near field summations
fnely;) = Z arKne(y; — k)
keINE(y;)
5. For j =1,..., M compute the near field corrections

F) = fnew;) + fre(y;).

Our algorithm requires
O(nlogn +m(N + M) + av M) (3.17)

arithmetic operations, where m is given by the NFFT/NFFT™ algorithms in the appendix.

REMARK 3.2. (Relation to the approach of Beylkin and Cramer [8])

Recently, Beylkin and Cramer have proposed a fast summation algorithm based on the multiresolution
concept. This algorithm requires also O(N log N + N) arithmetic operations. We want to sketch its
relation to our approach. Shortly speaking Beylkin’s and Cramer’s idea is the following: for |y—z| > R
they showed that the kernel K can be approximated with accuracy dependent on R by

~Yt o(r-5)e(v—57) (3.18)

where ¢ denotes a (dilated) scaling function with small support. As in [6] the authors prefer (dilated)
cardinal B-splines as ¢, see (5.10). The coefficients ¢ are simply kernel values for large indices k and
must be computed by solving a linear system of equations which involves the mask of the two—scale
relation of the autocorrelation function of ¢ for smaller indices k. Then (1.1) can be approximated by

Zathr o (m—5)e(v—75)
_Zakztr scp(k—Q—J)cp(y——) ZakK —),

where I, := {z}, : |y —zx| < R}. The computation of the last two sums requires as Step 4 of Algorithm
3.1 only O(M) arithmetic operations, where the constant in O(M) depends on R. The first sum can
be rewritten as

Z Ztr szak‘;o(k__) 90(?/—2%)

which implies the following computation scheme:
e Computation of

9r -—Zaw(wk— —)

for all r. Since ¢ has small support, this requires for fixed r only a small number of additions
and for all r only O(N) arithmetic operations.

7

e Computation of §s :=) grt,._s for all s.

This is a Toeplitz mat;ix times vector multiplication which can be realized as in Section 2
by FFTs of length 2 times the size of the Toeplitz matrix, i.e. in O(NlogN) arithmetic
operations.

e Computation of }_ gs ¢ (y —).

E
By the small support of ¢ this requires O(M) arithmetic operations.
Let us turn to our algorithm. By (5.8) in the appendix, we see that our NFFT algorithm uses the
approximation

@

. 1 ~ r .
—2mikz 0 —2mikr/(on)
ond(k) ;1# (a: an) ¢ ’

with appropriate real-valued even functions ¢ and . If ¢ has compact support, e.g. in case of (dilated)
B-splines ¢, then ¢ = ¢. Using this in (3.2), we obtain for |y — z| > a/n (and |y — z| < 1/2 — a/n)
with accuracy depending on a/n the approximation

n/2—1

KRF(y _ .’E) ~ Z b e—27r1lw e27nly
I=—n/2
n/2—1

b 7 —27ilr/(on) 7. rils/(om
~ X Gatap S (e) e (v) e

I=—n/2
- o) 2,

where

n/2—1

N by —2milj/(on)
b= 2 GareE © ‘

l=—n/2

This shows the relation to (3.18). However, we think that the details of our algorithm, in particular
our regularization procedure, are much simpler than those in [8]. Moreover, our ¢ is not restricted to
functions satisfying a two—scale relation. O

3.2. Error Estimates. In this section, we show that the error involved in our algorithm can be
kept sufficiently small, where we have to pay for smaller errors with a larger amount of arithmetic
operations and thus with a slower speed of the performance.

Beyond the well-known errors appearing in the NFFT computations, see appendix, our algorithm

introduces the errors | f(y;)—f(y;)| (= 1,... , M). By (3.4), (3.5) and (3.8), we see for |y| < 1/4—1/32
that

N
1f () = F)l =1 axKerly — ox)|
k=1

and by Holder’s inequality with 1/¢+1/¢' =1 (1 < ¢ < o) that

1) = FW)I < lledllq (Kpry — 26)iis e (3.19)

N 1/q
where |||, := (z |ak|q) for 1 < ¢ < o0 and [lafl = _max_Ja]. In the following, we restric
k=1 =1,...

our attention in (3.19) to ¢ = 1. Note that this estimate is sharp if a; = 0 for all indices k except for
this one which corresponds to the largest value of |[Kgg(y — 2)|- If the values ay are nearly equal
for all £ it would be better to choose ¢ = oo. This will be considered in a forthcoming paper. In case

g = 1, it remains to estimate ||[Kggr||lw := max |Kggr(z)|.
z€[-1/2,1/2]

8

THEOREM 3.3. Let K be an even function which is C™ except for the origin. Assume that K satisfies

KO (@)| < C % (z € [-1/2,1/21\{0}), (3.20)

forallr =1,...,p (p > 2) and some nonnegative constants C € R and a € Ny depending only on K.
Then, for 2 < p < 50, the following estimate holds true

n® (p+a+6bpa—2) (pr\’
Kirlle < : 7
KRl < O ax-1 p—1 4a

where 8 := /14 (2/7)? and d¢,o := max{0,1 — a}.

Note that condition (3.20) is fulfilled for our homogeneous kernels, e.g., we have a = 1 for K(z) =
and o = 2 for K (z) = Z5. Further we see that a = 0 for K(z) = log |z|. The theorem can be enlarged
for a € Ry by carefully handling the factorial.

We conjecture that the above restriction p < 50 is not necessary. However, our proof incorporates
some numerical computations up to p = 50.

1

Proof. By the same procedure as in the previous section (see (2.2)), i.e., by Fourier expansion of Kg
and application of the aliasing formula, we obtain that

n/2—1

Kpr@) = 3 3 chprn(Kg) ¥ (e 1),

k=-n/2 m€7
7#0

Note that by an appropriate choice of n, this error was zero for equispaced knots. For arbitrary
x € [-1/2,1/2], we can further estimate

oo
|Ker(@) <2(2 Y |e(KR)|+[cns2(KR)|
k=n/2+1

By construction we have that K € HP(T) which implies that

ce(KR) = (2mik) 7 e (K'D)

so that
- 1/2
Ken(@)|<2(2 Y @by e+@r| [KD @)
k=n/2+1 i

For p > 2 the above sum can be estimated by an upper integral. This leads to

1/2
C

|Ker(z)| < (e / |K1(§)(33)|d$

-1/2

and since K and Ty, Tg are even to
o . 15 3
Ken@) € o=y | [TP @Ide+ [KO@Ide+ [P @10z | . @2)

0 a 7

o

9

Now we have to take the definition of the kernel K into consideration. By (3.20), the integral in the
middle of (3.21) can be estimated by

z z
16 16
/|K(p)(;c)| dz<C(p+a- 1)!/:1:_(”+°‘) da
+a—1
<C(p+a-2) (g)p . (3.22)

For the estimation of the first integral in (3.21) we restrict our attention to even p > 2. Similar
estimates can be obtained for odd p. Set ¢ := p/2 — 1. Then we see by (3.9) that

< (%)p Z]”ai
j=1
and consequently
» L opel
[irP@le < (5) () Xilall (.29
0 j=1

The coefficients a}; and aj; , ; are determined by the linear systems (3.13) and (3.14) with corresponding
coeflicient matrices (3.15). By considering

Veven (ck,l)i,lzl =1,

where I, denotes the g x g identity matrix, and regarding the relation between Vandermonde matrices
and polynomial interpolation, we conclude that ci; are just the coefficients of the even Lagrange
polynomials

_5 _ 2 2= (2s)
L2l,p(x) - ;(_1)k+lck,l = (2l)2 H (2l)2 _ (28)2 . (3-24)

w &
~

~

Using Vieta’s Theorem, we see that the coefficients c,; are positive. Together with (—1)k+t Ckl =
Lgikp) (0)/(2k)! this implies ¢ = |Lg§3 (0)|/(2k)! and consequently

q
wr v (B O
even - (2k)|
l,k=1

In the same way, we see that

2k+1 q

vy <|Lél+1,,3<0)|>
odd - T /oL 1 1\)
1,k=0

2k + 1)!
where
q 2 2
=z z? — (25 + 1)
Lot p(7) = 20 +1) 1:[0 (20+1)2 = (2s+1)2° (3:25)

sl

10

Thus, by (3.13),

(@) = (Vi)™ ((i—i)%mw (g)) (3.26)

which implies together with (3.20) that

q 2k
ny\e 2 (2k+a—1)!
di<e(2)' S (2) et gl
k=1 ’

et ()" 5 (2) s

The analogue for the coefficients with odd index is

(P—2+a+60a) [nye o 2\
a3l < C 22 () 3 (2) Lo

—1)!
(p—1)! a/ = \m

Now we obtain by (3.23) that

] T @) dr < 0 () (2)7 REAZ2E000N () 4 Soaa)
0

(p—1)!
where
q 2%k g o
Z() Xeirigol (3.27)
j=1
q 2%k+1 g Lok
Soad(p Z () D @25+ 1)PILy L 0)]. (3.28)
k=0 7=0
The values Seven(p) and S,qd(p) can be estimated by Lemma 3.4. Using these results, we get
" _ p
(p) _ P(TYP (NP (B
/|T, @iz < Cr-2+a+80)! (3) () o) (3.29)

0

Finally, the third integral on the right-hand side of (3.21) can be estimated in a similar way.
We finish the proof by combining this result with (3.29), (3.22) and (3.21). |

LEMMA 3.4. Letp > 2 be even and let q :== p/2 — 1. Further, let Lo , and Laj11, be given by (3.24)
and (3.25), respectively. Then the sums Seven(p) and Soaa(p) in (3.27) and (3.28) can be estimated by

2k g1 2
221/BP4QI [(qk)]

Seven(p) < (;) 9 (5) Z(p 2k —2)P k! 2 (p—k=2)! ’ (3.30)

(p—2k—2)!

_ (p=1)!(g=k)t 1°

2\ /B* 2 & 2 (p—2h—D)lq!
Soda(p) < (;) (5) > (p—2k—1)7 [kp(p% . (3.31)

k=0 Tp—2h—1)1

For p < 50, we have
p
™

Suensoaa(®) < € (%) =1 (3.32)

11

with a constant C' < 1/2.

Proof. We restrict our attention to Seven(p). The upper bound for S,qq(p) can be deduced in a similar

way.
First we see by (3.24) that

2 91 2 g—1
oz z? — (2s 1 1 5 o2
To-2@ = g5 1 05—y = Grayims L1 — 299
and that
--2? :
Lajp(x) = sz,p—z(m)ﬁ UG=1...,¢-1).
For k =1,...,q, we obtain by Leibniz’s rule
2 2
(2k) _ L(Q'k) 2 —(p—2) 2x 2k L(Q-k_l)
Lyjp (@) = Lajps(2))2 —(p—22 " (2j)2— (p—2)2 22 ()
(2k)(2k = 1) (2k—2)
MCIERIPER
and in particular for z := 0
2
(2k) 728) (p—2) (2k—2) 2k(2k — 1)
L2] p(O) 25,p— 2(0) (p _ 2)2 _ (2])2 27,p—2 (0) (p _ 2)2 _ (2])2 (333)
Substituting this in Seven(p) and regarding that Lgﬁ?ﬁ() and Lgkp 222 (0) have opposite signs, we get
- (28)
Soen(s) = 3 (2) (0~ 2113, (0)
k=1
q 2k q—1 .
2 (25)* 70
e 5
(p) l; T ;(p 2) () | 2j,p— 2()l
9 2k g—1 (.
2k—2)
+Z(;) 2k—1) | 2j,p— 2()|
k=1]:1
a4 o2k o)
<o-2r Y (2) 1,0
k=1
92\ 2 R g—1 9\ 2k g—1 (2)P (2k)
¥ <1+ (2)) > (2) S ot - O

Now we apply (3.33) with p — 2 instead of p in the last sum and iterate this scheme. Setting

2

)

12

L 1,(2%)

pP—2,p

O)I;

we obtain in this way

2)P 2 2 (p_4)p

Co\2(4\2 g4 (p—6)F B
S s Sl (7o ey) (e ey g S
+(p—2)?...42p7714 2 R(4)

(p=22=22)((p—4)* -2%)... (42 = 2%)
-y B (p — 2k — 2)P R(p — 2k) 7'[—
k

S

(3.34)

Il
<}
N

T
¥
BN

|
™
N

Next, we consider

k=1
where
g—1
wy(z) = [J (=" - (29)*)
s=0
Since

wy(x) = wp—2(z)(2” — (p—4)?)
we obtain by applying the Leibniz rule again
wi¥) (0) = —w{™)(0)(p — 4)* + 2k(2k — Dw'>*, 2 (0).

Hence the sum R(p) can be rewritten as

w0 s (-0 5 (3) o

k=1

+@-2)(p-3) ()21:() 0)I>
< Y k: (2)" weton = (2) ro-2
O - 07

Substituting the above expression for R(p — 2k) in (3.34), we get (3.30).

The estimates (3.32) can be obtained from (3.30) and (3.31) by straightforward computation on the
computer. This completes the proof. |

By (3.19), Theorem 3.3 and Stirling’s formula in the form
n n
| =
n! <11 (e) 2mn

we obtain the following corollary:
13

COROLLARY 3.5. Under the assumptions of Theorem 3.3 the error introduced by Algorithm 3.1 can
be estimated by

|f(y;) — F(y)| < C ety n®

VP+a+d.—2 So.0 — 2\ PO H00a—2
P 0,0 (51 Pta+doa—2) : (3.35)

al=%.(p—1) de a
Thus, the error decays exponentially with p if

,B_?Tp+0l+(50,a—2<1 B_?TNl
4e a 4e 3)°
O

In our numerical examples we simply choose a = p. Of course one obtains better approximation results
for larger values of a. However, by (3.17), this also enlarges the arithmetic complexity of the algorithm.

3.3. Numerical Results. In this section, we present a couple of numerical examples. All algo-
rithms were implemented in C and tested on a SGI O2 using double precision arithmetic.
We have computed (1.1) with M = N and y; =z; (j=1,...,N) ie,

N

ki

for the different kernels in (1.2) by our Algorithm 3.1. In all computations we have used n = N and
randomly chosen uniformly distributed knots xy in [-1/4 +1/32,1/4 — 1/32] so that v = 2 in (3.17).
Then, by (3.17), our algorithm has the arithmetic complexity O(N log N + 4mN + 4aM).

We always apply the NFFT/NFFTT with Kaiser—Bessel function ¢ (see appendix (5.12)) and over-
sampling factor o = 2. The FFT implementation was taken from the “Numerical Recipes in C” [30, p.
523 f]. By using a more sophisticated FFT implementation the speed of our algorithm can be further
improved.

The coefficients ay, were randomly distributed in [0, 1]. Moreover, every figure presents the arithmetic
mean of 20 runs of the algorithm. We are interested in the behavior of the error

5. |/ (z;) —‘J)F(%'N‘

j=1,....N |f(z;)] (3.36)

First we consider the kernels K(z) = 1/|z|* (@ = 1,2) in more detail. Note that similar results
also happen for the other kernels in (1.2). Figure 3.1 shows the error log,, E of Algorithm 3.1 for
(p,a) € {1,...,9}? and N = 512. Here we have set m = 12 to ensure that the choice of this parameter
doesn’t create an additional error in the NFFT/NFFT”. The figure suggests to choose simply a = p.
This was also recommended from the theoretical point of view in Subsection 3.2.

Next we are interested in a minimal choice of the parameter m since this influences the arithmetical
complexity of the NFFT/NFFTT. Figure 3.2 shows the error log;o F for a = p € {1,...,9} and
m € {1,...,9} for the kernels K (z) = 1/|z| (left) and K(z) = 1/|z|? (right), where N = 512. We see
that for p < 5 one should use the simple setting a = p = m, while for larger values of p the choice
m = 5 leads also to good results.

Figure 3.3 incorporates the other even kernels (1.2). We consider the error E as function of p = a = m.
The figure confirms the exponential decay of E with increasing p.

Finally, Table 3.1 compares the CPU time of our algorithm and with those of the FMM proposed in [12],
Algorithm 3.2. Our implementation of the FMM uses the Chebyshev expansion of order 5 to obtain
an accuracy E < 1073, Note that recently an algorithm which is roughly twice as fast as the used
FMM algorithm was developed in [34]. Table 3.1 presents the CPU times as well as the approximation
errors. By tsiow, tapr and trvm we denote the computational time for the straightforward algorithm,
Algorithm 3.1 and the Algorithm based on the FMM, respectively. Furthermore, Column 3 shows the
computational time tyg for Step 4 of Algorithm 3.1 based on Remark 3.6. The Columns 6 and 7
contain the approximation error of Algorithm 3.1 and of the FMM, respectively.

14

Fic. 3.1. Error log,o E for K(z) = 1/|x| (left) and K(z) = 1/|z|? (right) for N = 512, m = 12 and (p,a) €
{1,...,9}2.

T T R N G A]
w5 b o Lo a A b b L

Fic. 3.2. Error log,;o E for K(z) = 1/|z| (left) and K(z) = 1/|z|% (right) for (a,m) € {1,...,9}? and a = p,
N = 512.

REMARK 3.6. Up to now we have assumed that the values Kng(y; —2r) = K(y; —2r) — Kr(y;—) =
K(y; —xr) — Tr(y; — xx) (k € INE(y;); j =1,...,N) in Step 4 of Algorithm 3.1 were precomputed.
Alternatively, one can use the following procedure: splitting

Inely) = Y aK(yi—z) — Y. axTily;— =),

keI 2 (y;) kTN E(y;)

we evaluate the first sum with O(2avM) arithmetic operations first. By definition (3.9) of T} the
computation of the second sum would require O(2parv M) arithmetic operations. We approximate this

sum as follows: we precompute TI(%aip) (s = —ap, ... ,ap) and approximate T;(y; — xx) by cubic
spline interpolation. Now the (approximate) computation of the second sum requires nearly the same
number of arithmetic operations as the computation the first one. (I

4. Fast Summation at Multivariate Nonequispaced Knots. In this section we briefly ex-
plain how to extend our univariate scheme to higher dimensions.
Of course, the generalization of Algorithm 3.1 for the tensor product setting, i.e., for the fast summation

N d
fly) =Y ar [K°wi-2) (G=1....M),
k=1 s=1

where ;= (z5)%_,, y, = (y5)%_, and K® are some univariate kernels considered in the previous
section, is straightforward. With respect to Section 2 we only note that our fast summation algorithm
on a regular two—dimensional grid coincides with an algorithm based on the embedding the correspond-
ing block—Toeplitz—Toeplitz—block matrix in a block circulant matrix with circulant blocks (see [10]).

15

—— WK
—— x|
—— log |x|
—— x“log |x|

N

F1G. 3.3. Error E for various kernels and a =p =m € {2,4,6,8,10}, where N = 512.

Computational Time Error
N=n tslow iNE tapr tFMM E Ervm
64 1.152e-03 | 1.193e-03 | 2.952¢-03 | 1.584e-03 || 1.634e-06 | 1.060e-05
128 4.608e-03 | 2.429¢-03 | 5.911e-03 | 3.243e-03 || 6.778e-06 | 1.580e-05
256 1.849e-02 | 4.938e-03 | 1.194e-02 | 6.738e-03 | 4.521e-06 | 1.223e-05
512 7.396e-02 | 9.557e-03 | 2.419e-02 | 1.450e-02 | 6.366e-06 | 5.0164e-06
1024 3.010e-01 | 1.956e-02 | 5.034e-02 | 3.940e-02 || 9.184e-06 | 4.010e-06
2048 || 1.524e+00 | 3.953e-02 | 1.171e-01 | 8.093e-02 || 9.483e-06 | 5.676e-06
4096 | 6.702e+00 | 7.843e-02 | 2.559e-01 | 2.263e-01 || 4.256e-06 | 1.770e-06
8192 || 2.730e+01 | 1.590e-01 | 5.997e-01 | 1.112e+00 || 5.449e-06 | 1.372e-06
TABLE 3.1

Comparison of the computational time and of the approrimation error of Algorithm 3.1 with a = p = m = 4 and

of the FMM for K(z) = 1/|z|.

Other algorithms for the fast multiplication of vectors with block—Toeplitz—Toeplitz—block matrices

based on trigonometric transforms can be found e.g. in [28].

In this paper we are interested in rotation-invariant kernels, i.e., in radial basis functions K(zx)
K (||z||), where we denote by || - || the Euclidean norm in R?. Again we assume that K is even. We

focus on the fast computation of

where x,y; € R? are with [|a]] < -
that [ly; — x|l <

1 1

2 16

fly) =Y aK(ly;—zl) G=1,...

=
16

k=1

require really a multivariate setting.

53 and [ly, [l < 3 -
An advantage of rotation-invariant kernels is that we can use nearly
the same regularization procedure as in the univariate case. Only the NFFT/NFFTT computations

16

, M),

3%. Note that we have by the above scaling

4.1. The Algorithm Similar as in Subsection 3.1 we regularize K near 0 and near the boundary
of % := [—5, 5) to obtain a smooth kernel Kg. Then we approximate K g by the Fourier series

ICRF Z by e27nla:
lel,
where I, := {l € Z¢: —2 <1 < 2} with componentwise inequalities and
o - —2migl/n
by = ﬁ Z Kr(j/n)e 2mdt/» (1 el,). (4.2)
J€EIn
We construct the regularized kernel K for x € II% as follows:
Ti(llel) i fell <

_] Tallel) it £ <liwl <,
K@) =9 7o) it () > &,

K(||z|]) otherwise.

(4.3)

Here we choose Ty(zx) as in (3.10) and

i e
Tg(z):= > af cos(8mj(w —1/2)) (x € (7/16,1/2]),

=0

where the coeflicients af are defined by (3.12) and

() o)

This leads to the following algorithm:

ALGORITHM 4.1.
Precomputation:)
i) Computation of a} (j =0,...,p—1) anda} (j =0,...,p—1+ [p/2]).
ii) Computation of (bl)le[by (4.2) and (4.3).
iii) Computation of Kyg(y; — @) for all j =1,... ,M and k € Iﬁf(j), where Ifxf(g) =
{ke{l,... ,N}:|ly; —z&l| < }. See also Remark 3.6.
1. Forl € I,, compute

N
ap = § :ak e727r1l:c;c
k=1

by d-variate NFFT" (n), see Algorithm 1.2 in [29].
2. Forl € I,, compute the products

dl = albl.
3. For j =1,..., M compute

frr(y;) Z dy ¥

lel,
by d-variate NFFT(n), see Algorithm 1.1 in [29].
4. For j =1,...,M compute the near field summations
Iney) = Y arKnily; —).
keI Z(5)
5. For j =1,..., M compute the near field corrections

f(y]) = fne(y;) + frF(yY;))-

Our algorithm requires O(n?logn + m¢(M + N) + a?M) arithmetic operations.
17

4.2. Numerical Results. We have implemented Algorithm 4.1 in two dimensions. In the fol-
lowing we present numerical results for the kernel 1/||z||. We have used the same general settings
as in Subsection 3.3, i.e., the coefficients oy were randomly chosen in [0, 1], the knots y; = ; € R?
(j =1,...,N = M) were randomly distributed in a disk with radius < 1/4 —1/32 and the parameters
for the NFFT are tensor products of Kaiser—Bessel functions as ¢ and ¢ = 2 as oversampling factor.
Table 4.1 presents the CPU time as well as the approximation error of Algorithm 4.1 for the computa-
tion of the sum (4.1) for increasing transform lengths N and fixed m = a = p = 4. The Columns 3 - 5
of Table 4.1 show the CPU times tgow Of the straightforward algorithm, ¢xg of the near field correction
including Remark 3.6 and ¢, of the whole Algorithm 4.1, respectively. Note that ¢y g includes the
computational time for the search of all points in the near field, which can be done in O(log N). The
last column contains the approximation error

() = Flag)|

i=t...N |f(z;)|
Computational Time Error
n N tslow INE tapr E
32 1024 3.300e-01 | 6.600e-01 | 6.900e-01 || 5.246e-06
64 4096 5.050e4-00 | 1.940e+00 | 2.060e+00 || 1.379e-05
128 | 16384 || 8.571le+01 | 6.850e+00 | 7.450e4+00 || 1.158e-05
256 | 65536 || 1.534e+03 | 2.652e+01 | 3.094e+01 [| 2.070e-05
512 | 262144 || 2.942e+04 | 1.052e+02 | 1.253e+02 || 1.595e-05
512 | 550000 || 1.326e+05 | 4.316e+02 | 4.575e+02 || 1.442¢-05
TABLE 4.1

Computational time and approzimation error for the kernel K(x) = 1/||z|| and m =a =p = 4.

5. Appendix: NFFT. The main tools in our fast summation Algorithm 3.1 are the NFFT™ and
the NFFT in Step 1 and 3 of the algorithm. Details concerning NFFT algorithms can be found for
example in [29] and a software package can be found in [24]. In the following, we briefly describe the
basic idea of these algorithms and cite error estimates.

We are interested in the fast computation of the sums

n/2—1
fwy)= > fee?™kui (j=-M/2,...,M/2-1) (5.1)
k=-n/2
and
M/2-1
hG) = > fee T (j=-n/2,...,n/2-1), (5.2)
k=—M/2

where w; € [-1/2,1/2). In Step 1 of Algorithm 3.1 we have to compute (5.2) with M = N and

Wy, = Tpyp 241 and in Step 3 we have to calculate (5.1) with w; = —y;4 /241 Since (5.1) is in

. . 9. . o n/2—1 . i —orikw: M/Q—l,n/Q—l
matrix—vector form the multiplication of f := (fk)k:_n/z with A = (e72™ wj)jsz/2,k:7n/2

(5.2) describes the multiplication with A™, every algorithm for the fast computation of (5.1) implies a
fast algorithm for the computation of (5.2), for details see e.g. [29]. In this sense we refer to the first
algorithm as NFFT or NFFT(n) if we want to emphasize the transform length and to the second one
as NFFTT. We restrict our attention to the computation of (5.1) by the NFFT(n).

18

and

Problem (5.1) is equivalent to the evaluation of the 1—periodic function

n/2—1

fw)y= > fre kv (5.3)

k=-n/2

at the knots w; (j = —M/2,...,M/2 —1). This can be realized in an efficient way by approximating
f by the sum of translates of a 1-periodic function ¢ with good localization in time and frequency.
Let ¢ € L2(R) be given such that its 1-periodic version

Pw) =) plw+r)

has an absolute convergent Fourier series. We further assume that ¢ is even so that ¢ is real-valued.
In the following, we choose ¢ by the above periodization so that its Fourier coefficients are given by

1/2
p(k) = /cp(w)eQ”ik“’dw = / p(w)e? ™ dw (k€ Z)
R —1/2

and

Let 0 > 1 be a so—called oversampling factor. We want to approximate f by the sum f; of translates
of

on/2—1

fiw) = ¥ gz¢(w—j—n),

l=—0on/2

i.e., we ask for appropriate coefficients g;. Switching to the Fourier series representation of the right—
hand side, this can be rewritten as

fi (w) — Z g (k) o~ 2mikw
keZ
on/2-1 on/2—1
= Y ap®e™ 4 NN gy @k + onr) e mkonnu,
k=—on/2 reZ\{0} k=—on/2
where
on/2—1
g = Z i e27r1k:l/(0n)‘ (54)

l=—omn/2

Note that gx, = Gr+orn for all » € Z. Comparing this equation with (5.3) and supposing that ¢(k) # 0
for k=—-n/2,...,n/2 — 1 we propose to set

Gk = { gk/w(k) i - :37/12/2 j?/—2n721’— L;n/2,...,on/2—1 (5-5)
By (5.4) this implies
n/2—1 o)
_ A —2mi on
g=— k:En/2 gre : (5.6)

19

Then we obtain

n/2—1

fi(w) = f(w) + Z Z 1 Bk + onr) e 2miktonrw,

r€Z\{0} k=—n/2

In general the approximation f; of f introduces a so—called aliasing error given by the double sum on
the right—hand side. Obviously, the aliasing error becomes small if the Fourier coefficients ¢(k) of @
are small for |k| > (on/2)(2 —1/0). In case that ¢ is bandlimited in [—on + n/2,0n — n/2], e.g., for
suitably dilated Kaiser—Bessel window functions or for suitably dilated powers of the sinc function, do
we have f = f;.

We further suppose that ¢ is small (relative to ¢(0)) outside some interval

Iy, :=[-m/(on),m/(on)] (m < n) so that we can approximate it by a compactly supported function
¢ = 1;,_ ¢, where 1; denotes the characteristic function of the interval I. Let ¢ be the 1-periodic
version of 1. Then we obtain instead of f; the sparse sums

[wjon]+m

- l]

hw)= > a¢ (wj - 5) (j==-M/2,...,M/2-1). (5.7)
I=[wjon]—m

Here [a] denotes the integer nearest to a. In general the approximation f; of f; introduces a truncation

error. Only in case that ¢ is supported in I, e.g., for suitably dilated cardinal B—splines ¢, do we

have ¢ = ¢ and thus f» = fi.

In summary, the whole algorithm for the fast approximate computation of (5.1) consists in the com-
putation of the n multiplications (5.5), the computation of (5.6) by a (reduced) FFT(on) and the
sparse summations (5.7) and requires O(n + onlog(on) + (2m + 1) M) = O(nlogn + mM) arithmetic
operations.

AvLcoriTHM 5.1. (NFFT)
Precomputation:
i) Computation of the Fourier coefficients (k) (k= -n/2,... ,n/2—1)
ii) Computation of the function values Y(w; — &) (I = [wjon] —m,... ,[wjon] + m;j =
-M/2,...,M/2—-1)
1. For k= —-n/2,... ,n/2 — 1 compute

i = fi/ o (k).
2. Forl=—on/2,... ,0n/2 — 1 compute by reduced FFT(on)

n/2—1 Jom
— ~ —27ikl/(on
g1 = on szﬂﬁ g€ .
3. For j =—-M/2,... ,M/2—1 compute
[wjon]+m

Pw):= 3 @ <wj - %) '

I=[wjon]—-m
The corresponding “transposed” algorithm for the fast computation of (5.2) reads as follows:

ALGORITHM 5.2. (NFFT")
Precomputation:
i) Computation of the Fourier coefficients $(j) (j = —n/2,...,n/2 —1)
ii) Computation of the function values P(wy — L) (k € J,(1); | = —on/2,... ,on/2 — 1),

on

where J, (1) :={ke {-M/2,... ,M/2—-1}:1—m < onw, <]+ m}.

20

1. Forl= —on/2,... ,on/2 —1 compute
l
= X si(w-g,).
JEIm (1)
2. For j = —n/2,...,n/2 — 1 compute

on/2—1

Z G 6727r1kl/(o'n)

l——an/z

3. For j = —n/2,...,n/2 — 1 compute

Setting f := (6(- — k))i/n2 /_21, we note that the above algorithms use the approximation

o= 2mike ; Z¢ (x _ _> o= 2mikl/(on) (5.8)

To keep the aliasing error and the truncation error small, several window functions ¢ with good
localization in time and frequency were proposed, e.g. the (dilated) Gaussian [13, 31, 11]

_ —(onw)? 20 m
]. wk\2
(k) = — e (Gn)70
pk) = —e ;
(dilated) cardinal central B—splines [6, 31]
p(w) = Moy, (onw), (5.10)

. L k=0,
@(k)Z{ . 2m(k

Lginc®™ (£Z) otherwise,
on on

(dilated) powers of the sinc function

_n(o—1) . o (7w (20 —1)
p(v) = g sinc (7%” , (5.11)
2mk
5(k) = My, | —2TF
§08) = Mo (o)
and (dilated) Kaiser—Bessel functions [22, 15]
inh(b
sinh(for[w] <2 (hi=n(2—-1)),
1 m2 — (on)2w?
p(w) = — (5.12)

sin(by/(on)?w? — m?2)

otherwise,
(on)?2w? — m?

. L1 (m\/b2 27k /(Un))Z) for k=—-on(1—-5),...,on(1-5),
(p(k) — on o o
0 otherwise,

where Iy denotes the modified zero—order Bessel function. For these functions ¢ it was proved that

|f(w;) — f(w;)| < Clo,m)|| £|l1

21

where

4 ¢ mm(1-1/(20-1)) for (5.9) [31],
2m
4 (5) for (5.10) [31],
C = 2m
(o,m) L (022m + (200_1) > for (5.11),

5m2m3/2 {1 — Lemm2mV/1=1/o for (5.12).

Thus, for fixed o > 1, the approximation error introduced by the NFFT decays exponentially with the
number m of summands in (5.7). On the other hand, the complexity of the NFFT increases with m.
Beylkin et al. [6, 8] prefer B—splines and Rokhlin et al. [13] Gaussians. Further approaches based on
scaling vectors [25], based on minimizing the Frobenius norm of certain error matrices [26] or based
on min—-max interpolation [14] were proposed.

By the results in [15, 26, 14] we prefer to apply the Algorithms 5.1 and 5.2 with Kaiser—Bessel functions.
Using the tensor product approach our algorithms and the error estimates can be generalized to the
multivariate setting.

REFERENCES

=
w

. Alpert, G. Beylkin, R. Coifman, and V. Rokhlin. Waveletlike bases for the fast solution of second—kind integral
equations. SIAM J. Sci. Comput., 14:159 — 184, 1993.

[2] C. Anderson. A method of local corrections for computing the velocity field due to a distribution of vortex blobs.
J. Comput. Phys., 62:111 — 123, 1986.
[3] R. K. Beatson and L. Greengard. A short course on fast multipole methods. In M. Ainsworth, J. Levesley, W. A.
Light, and M. Marletta, editors, Wavelets, Multilevel Methods and Elliptic PDEs. Clarendon Press, 1997.
[4] R. K. Beatson and W. A. Light. Fast evaluation of radial basis functions: methods for 2-dimensional polyharmonic
splines. IMA J. Numer. Anal., 17:343 — 372, 1997.
[5] R. K. Beatson and G. N. Newsam. Fast evaluation of radial basis functions: I. Comput. Math. Appl., 24:7 — 19,
1992.
[6] G. Beylkin. On the fast Fourier transform of functions with singularities. Appl. Comput. Harmon. Anal., 2:363 —
381, 1995.
[7] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical algorithms I. Comm. Pure and
Appl. Math., 44:141 — 183, 1991.
[8] G. Beylkin and R. Cramer. A multiresolution approach to regularization of singular operators and fast summation.
SIAM J. Seci. Comput., 24:81 — 117, 2002.
[9] R. H. Chan, F. R. Lin, and C. F. Chan. A fast solver for Fredholm equations of the second kind with weakly
singular kernels. J. Numer. Math., 10:13 — 36, 2002.
[10] R. H. Chan and M. K. Ng. Conjugate gradient methods of Toeplitz systems. SIAM Rev., 38:427 — 482, 1996.
[11] A.J. W. Duijndam and M. A. Schonewille. Nonuniform fast Fourier transform. Geophysics, 64:539 — 551, 1999.
[12] A. Dutt, M. Gu, and V. Rokhlin. Fast algorithms for polynomial interpolation, integration and differentiation.
SIAM J. Numer. Anal., 33:1689 — 1711, 1996.
[13] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Stat. Comput., 14:1368 —

1393, 1993.

[14] J. A. Fessler and B. P. Sutton. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans.
Signal Process., 2002. in press.

[15] K. Fourmont. Schnelle Fourier-Transformation bei nichtdquidistanten Gittern und tomographische Anwendungen.
Dissertation, Universitdt Miinster, 1999.

[16] S. A. Goreinov, E. E. Tyrtyshnikov, and E. E. Yeremin. Matrix—free iterative solution strategies for large dense
systems. Num. Lin. Alg. Appl., 4:273 — 294, 1997.

[17] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, Cambridge, 1988.

[18] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73:325 — 348, 1987.

[19] W. Hackbusch. A sparse matrix arithmetic based on H—matrices, Part I: introduction to H—matrices. Computing,
62:89 — 108, 1999.

[20] W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary element method by panel
clustering. Numer. Math., 54:463 — 491, 1989.

[21] A. Harten and I. Yad-Shalom. Fast multiresolution algorithms for matrix—vector multiplications. STAM J. Numer.
Anal., 31:1191 — 1218, 1994.

[22] J. I. Jackson. Selection of a convolution function for Fourier inversion using gridding. IEEE Trans. Med. Imag.,
10:473 — 478, 1991.

[23] M. Konik, R. Schneider, and G. Steidl. Matrix sparsification by discrete multiscale methods. In C. K. Chui and
L. L. Schumaker, editors, Approzimation Theory VIII: Approrimation and Decomposition. World Scientific
Publishing, 1995.

22

S. Kunis and D. Potts. NFFT, Softwarepackage, C subroutine library. http://www.math.uni-luebeck.de/potts/nfft,
2002.

N. Nguyen and Q. H. Liu. The regular Fourier matrices and nonuniform fast Fourier transforms. SIAM J. Sci.
Comput., 21:283 — 293, 1999.

A. Nieslony and G. Steidl. Approximate factorizations of Fourier matrices with nonequispaced knots. Linear
Algebra Appl., to appear.

D. Potts and G. Steidl. Optimal trigonometric preconditioners for nonsymmetric Toeplitz systems. Linear Algebra
Appl., 281:265 — 292, 1998.

D. Potts, G. Steidl, and M. Tasche. Trigonometric preconditioners for block Toeplitz systems. In G. Niirnberger,
J. W. Schmidt, and G. Walz, editors, Multivariate Approzimation and Splines, pages 219 — 234, Birkh&user,
Basel, 1997.

D. Potts, G. Steidl, and M. Tasche. Fast Fourier transforms for nonequispaced data: A tutorial. In J. J. Benedetto
and P. J. S. G. Ferreira, editors, Modern Sampling Theory: Mathematics and Applications, pages 247 — 270,
Boston, 2001.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. Cambridge University
Press, Cambridge, 1992.

G. Steidl. A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math., 9:337 — 353, 1998.

X. Sun and N. P. Pitsianis. A matrix version of the fast multipole method. SIAM Rew., 43:289-300, 2001.

E. E. Tyrtyshnikov. Mosaic—skeleton approximations. Calcolo, 33:47 — 57, 1996.

N. Yarvin and V. Rokhlin. An improved fast multipole algorithm for potential fields on the line. SIAM J. Numer.
Anal., 36:629 — 666, 1999.

23

