
i
i

“Book” — 2022/6/27 — 11:17 — page 1 — #1 i
i

i
i

i
i

CHAPTER

5Non-Cartesian MRI
Reconstruction

Holger Eggers,a,∗, Melanie Kircheis∗∗ and Daniel Potts∗∗
∗Philips Research, Hamburg, Germany ∗∗Technische Universität Chemnitz, Faculty of Mathematics,

Chemnitz, Germany
aCorresponding: holger.eggers@philips.com

ABSTRACT
In this chapter, two fundamental algorithms are introduced for the reconstruction of images
from data not sampled on a Cartesian grid in k-space. Such data are routinely collected with
methods like echo-planar, periodically rotated overlapping lines with enhanced reconstruction
(PROPELLER), radial and spiral imaging. A nonequispaced fast Fourier transform (NFFT) is
derived first, which provides an efficient, albeit approximate, conversion between equidistant
samples in space and nonequidistant samples in k-space. Gridding is then shown to approxi-
mate an inverse NFFT by a weighting of the nonequidistant samples in k-space and an adjoint
NFFT, and different approaches to obtaining a suitable weighting are described. Finally, grid-
ding is illustrated with two examples, using an iterative reconstruction based on NFFTs as
reference, and aspects of spatial resolution and noise in non-Cartesian imaging are discussed,
as well as other NFFTs and their applications.

Keywords: Non-Cartesian MRI, k-space trajectory, NFFT, gridding, sampling density
compensation, iterative reconstruction, spatial resolution, signal-to-noise ratio, distortion
correction

5.1 INTRODUCTION
Signal localization in MRI is predominantly achieved by superposing onto the strong
and homogeneous main magnetic field a comparatively weak magnetic field gradient.
The magnetic field gradient ideally produces a linear increase in the magnetic field
strength in one direction. Since the frequency of the precession of the nuclear spins,
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2 CHAPTER 5 Non-Cartesian MRI Reconstruction

and of the signal this precession induces in the receive coils, is basically proportional
to the local magnetic field strength experienced by the nuclear spins, the magnetic
field gradient linearly encodes the origin of the signal in the frequency. In this way,
the signal is effectively measured in the spatial frequency domain, the so-called k-
space.

By allowing rapid changes of the magnetic field gradient in strength and direction
over time, MRI provides a remarkable flexibility in sampling k-space. The sampling
position k at time t is simply given by the integral of the magnetic field gradient G
over time

k(t) =
γ

2π

t∫
0

G(τ) dτ, (5.1)

assuming the signal to be generated by radiofrequency excitation at t = 0. k and G
are vectors in typically two-dimensional (2D) or three-dimensional (3D) spaces and
are measured in units of [m−1] and [T/m], respectively. γ is the gyromagnetic ratio
of the concerned nucleus, linking the local magnetic field strength to the angular
frequency of the precession. The temporal variation of G, commonly referred to
as gradient waveform, thus determines the k-space trajectory, along which samples
are collected after a single excitation. It is only restricted by hardware and more
fundamentally by safety constraints, which mainly limit the velocity and acceleration
in k-space. Using multiple excitations, or shots, permits segmenting the k-space
trajectory.

MRI was first demonstrated with projection reconstruction in 1973 [1]. This
choice was presumably inspired by CT, with which first clinical images had just
been obtained at that time. The data acquisition proceeded along lines through the
origin and covered a polar grid in k-space, as illustrated in the bottom left plot in Fig.
5.1. According to the Fourier slice theorem, a one-dimensional (1D) inverse Fourier
transform turns the samples along one of these lines into samples of a projection
perpendicular to this line. This allowed employing a backprojection for image re-
construction, as in CT.

Two years later, sampling k-space on a Cartesian grid along parallel lines was
proposed as a simpler alternative [2]. The application of different magnetic field gra-
dients before and during data acqusition was introduced, establising the distinction
between phase and frequency encoding, and the use of a multi-dimensional inverse
fast Fourier transform (IFFT) for image reconstruction was suggested. As remarked
by one of the authors of this seminal work later, this was driven by the conviction
that projections cannot efficiently cover a 2D plane or 3D volume due to the strong
variation in sampling density between the center and the periphery of k-space [3].
The combination of sampling k-space on a Cartesian grid and reconstructing images
based on an IFFT, known as Cartesian imaging, soon developed into the prevalent
method for MRI. In particular in clinical routine, this still holds today.

Nevertheless, a considerable variety of methods has been devised and explored
over the last decades that deliberately acquires data not on a Cartesian grid. The
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FIGURE 5.1 2D Non-Cartesian Imaging - Sampling Patterns

Nonequidistant sampling of k-space in at least one dimension is involved in 2D
echo-planar (top, left), PROPELLER (top, right), radial (bottom, left) and spiral
(bottom, right) imaging.

sampling patterns obtained in k-space with four of the most popular of these methods
in 2D, including projection reconstruction, are plotted in Fig. 5.1.

Echo-planar imaging (EPI) is often not even considered as a non-Cartesian imag-
ing method [4]. It employs a gradient waveform consisting of a train of trapezoids
with alternating polarity for frequency encoding. In its purest form, it traverses the
whole k-space after a single excitation along parallel lines in opposite directions.
To increase speed and efficiency further, the first samples along each line are aleady
collected while the magnetic field gradient is still ramped up and the last samples
are still collected while the magnetic field gradient is already ramped down again.
This so-called ramp sampling leads to an increasing sampling density towards the
edges of k-space in the frequency encoding direction, while a constant sampling
density is preserved everywhere else. The sampling is only interrupted for switch-
ing between adjacent parallel lines. EPI is in widespread use today, especially for
diffusion-weighted imaging (DWI) and functional imaging (fMRI).

Periodically rotated overlapping parallell lines with enhanced reconstruction
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4 CHAPTER 5 Non-Cartesian MRI Reconstruction

(PROPELLER) imaging is also a hybrid Cartesian and non-Cartesian imaging
method [5]. The data acquisition is split up into blades, with each of which a rect-
angular k-space area is covered. Each blade supports an IFFT-based reconstruction
of an intermediate image with anisotropic spatial resolution. These intermediate
images enable a detection and correction of motion between the acquisition of the
individual blades, which are rotated about the k-space origin with respect to each
other. However, the reconstruction of the final image has to cope with the highly
nonequidistant sampling of k-space by all blades together. PROPELLER imaging is
of particular relevance in applications prone to motion, including head, neck, spine,
and shoulder imaging.

Radial imaging, or projection reconstruction, is primarily employed in areas in
which the strong variation in sampling density between the center and the periphery
of k-space actually promises advantages. Above all, the oversampling in the cen-
ter leads to insensitivity to motion by averaging out inconsistencies in the data to a
large extent. Moreover, residual artifacts are spread in two dimensions and appear as
streaks, which are usually more benign than the ghosts arising in Cartesian imaging.
Additionally, the repeated coverage of the center of k-space enables image recon-
struction at various spatial and temporal resolutions in dynamic imaging, as well
as retrospective self-gating in abdominal and cardiac imaging during free breathing
without interspersed navigators or dedicated sensors. Besides, radial imaging al-
lows dispensing with phase encoding by starting the data acquisition in the center
of k-space, permitting very short echo times to capture rapidly decaying signal, as
required for lung and bone imaging.

Spiral imaging first and foremost provides a fast and flexible coverage of k-space
[6]. It supports single-shot and multi-shot imaging, uniform sampling density in all
but the very center of k-space and variable sampling density across k-space, as well
as traversing k-space from the center outward and from the periphery inward. Unlike
in EPI, the magnetic field gradient continuously changes during the acquisition and
dead times for switching its polarity are eliminated. Furthermore, motion and alias-
ing artifacts are rather incoherent, and especially flow artifacts are less pronounced.
Spiral imaging is mainly of interest in a wide range of applications demanding high
speed and efficiency, but is very susceptible to an inhomogeneous main magnetic
field and an imperfect magnetic field gradient.

All of these 2D methods can be extended to 3D, either by the so-called stacking,
the addition of an equidistant sampling along the third dimension, or by a suitable
generalization.

Due to the diversity of sampling patterns in MRI, general algorithms are favored
for reconstruction in non-Cartesian imaging. In view of the limited signal-to-noise
ratio (SNR) typically attainable with MRI, their accuarcy only has to be reasonably
good. An essential part of such general algorithms, a nonequispaced fast Fourier
transform (NFFT), is described in the next section. Based on it, the ubiquitous grid-
ding is introduced and an iterative reconstruction is outlined in the following sec-
tions.



i
i

“Book” — 2022/6/27 — 11:17 — page 5 — #5 i
i

i
i

i
i

5.2 NFFT 5

5.2 NFFT
The signal s measured in k-space is modeled by

s(k) =

N/2∫
−N/2

x(r) e−i2πkrdr, (5.2)

where x denotes the transverse magnetization of an object of maximum extent
[−N

2 ,
N
2 ), from now on simply refered to as the object and the field of view (FOV).

A fast Fourier transform (FFT) of length N efficiently converts N equidistant
samples of x into N equidistant samples of s̃ defined by

s̃m =

N∑
n=1

xn e−i2πkmrn . (5.3)

Here, r and k are unitless and normalized to the range [−N
2 ,

N
2 ) and [− 1

2 ,
1
2 ), respec-

tively. Assuming N to be an even positive integer, the sampling positions in space
are then located at rn = −

N
2 ,−

N
2 + 1, ..., N

2 − 1. s̃ is linked to s by

s̃(k) =
∞∑

p=−∞

s(k + p) (5.4)

due to the limited coverage of k-space by the acquisition and the spatial discretiza-
tion of the object in the reconstruction. Thus, the s̃m in Eq. 5.3 are not samples of
s, but of s turned into a periodic signal s̃ with a period of 1. To reduce the compu-
tational complexity from O(N2) of a direct evaluation of Eq. 5.3 to O(NlogN), an
FFT exploits symmetries in the exponential factors, which are lost if rn or km are not
equidistant anymore.

An NFFT generalizes an FFT to nonequidistant samples of x, s̃, or both [7, 8].
It relies on an FFT for the actual transformation between the spatial and the spatial
frequency domain and, therefore, has to convert nonequidistant to equidistant sam-
ples intermediately. This involves an approximation, the accuracy of which can be
traded off for computational complexity. In the following, the case of equidistant
samples of x and nonequidistant samples of s̃ is considered. It is of relevance for an
efficient evaluation of Eq. 5.3, the forward model, which requires in non-Cartesian
MRI the calculation of M samples of s̃ from N samples of x. The other two cases
are discussed at the end of this chapter.

To convert equidistant into nonequidistant samples in k-space, a convolution with
a window function c, turned into a periodic function c̃ with a period of 1 by

c̃(k) =
∞∑

p=−∞

c(k + p), (5.5)

is performed. c̃ is assumed to have a uniformly convergent Fourier series, which
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6 CHAPTER 5 Non-Cartesian MRI Reconstruction

allows writing it as

c̃(k) =
∞∑

r=−∞

c̃r ei2πkr (5.6)

with the Fourier coefficients

c̃r =

1/2∫
−1/2

c̃(k) e−i2πkrdk. (5.7)

Substituting k by k − k′ results in

c̃r =

1/2∫
−1/2

c̃(k − k′) e−i2π(k−k′)rdk′, (5.8)

which is approximated by

c̃r ≈
1

f N

f N/2−1∑
n′=− f N/2

c̃
(
k − n′

f N

)
e−i2π

(
k− n′

f N

)
r. (5.9)

The oversampling factor f ≥ 1 is introduced to increase accuracy, where f N is also
assumed to be an even positive integer [9, 10]. If the periodic function c̃ is ban-
dlimited with a maximum frequency of f N

2 , Eq. 5.9 holds exactly. Otherwise, alias-
ing occurs and the estimation of the c̃r is confounded by higher frequencies. More
specifically, the frequency bands [ f N p − N

2 , f N p + N
2 ), for any integer p , 0, fold

back onto the baseband [−N
2 ,

N
2 ). Rearranging Eq. 5.9 leads to

ei2πkr ≈
1

f Nc̃r

f N/2−1∑
n′=− f N/2

c̃
(
k − n′

f N

)
ei2π n′

f N r, (5.10)

provided that c̃r , 0, and substituting r by −r to

e−i2πkr ≈
1

f Nc̃−r

f N/2−1∑
n′=− f N/2

c̃
(
k − n′

f N

)
e−i2π n′

f N r, (5.11)

which is inserted into Eq. 5.3 to obtain

s̃m ≈

f N/2−1∑
n′=− f N/2

c̃
(
km −

n′
f N

) N∑
n=1

xn

f Nc̃−rn

e−i2π n′
f N rn . (5.12)

The inner sum amounts to an FFT of length f N, transforming N equidistant sam-
ples of x in space, after weighting and zero padding to f N equidistant samples in
space, into f N equidistant samples in k-space. The outer sum converts the latter by
a convolution into M nonequidistant samples in k-space.
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5.2 NFFT 7

Choosing

c̃r =

{ 1
f N , −

f N
2 < r ≤ f N

2
0, otherwise

(5.13)

allows dispensing with the weighting, usually referred to as deapodization, and re-
sults with Eq. 5.6 in

c̃(k) =
1

f N

f N/2∑
r=− f N/2+1

ei2πkr. (5.14)

Here, the shift in the range of r arises from substituting r by −r above. c̃(k) is a
complex trigonometric polynomial of degree f N

2 in this case, for which Eq. 5.9 holds
exactly. It is written as

c̃(k) =
sin(πk f N)
f N sin(πk)

eiπk (5.15)

and approximated by

c̃(k) ≈ sinc(πk f N) (5.16)

for small πk using

sinc(x) =
{ sin(x)

x , x , 0
1, otherwise

. (5.17)

According to the sampling theorem, s can be recovered from equidistant samples of
s by

s(k) =
∞∑

n=−∞

s
(

n
f N

)
sinc

(
π
(
k − n

f N

)
f N

)
. (5.18)

Consequently, the sinc function of infinite extent is the ideal window function in
the hypothetical case of unlimited coverage of k-space by the acquisition. In the
practicable case of limited coverage of k-space, however, it is, according to Eq. 5.15,
better replaced by the sinc function turned into a periodic function, times the phasor
eiπk, which arises from the asymmetry in rn for even f N.

To reduce the computational complexity of the convolution, the window func-
tion is preferably real and limited in its extent, either by design or by truncation, to
[− K

2 f N ,
K

2 f N ] with a positive integer K, the kernel size. A truncation leads to

c′(k) =
{

c(k), |k| ≤ K
2 f N

0, otherwise
(5.19)

and a corresponding periodic function c̃′ with a period of 1, and changes Eq. 5.12 to

s̃m ≈

f N/2−1∑
n′=− f N/2

c̃′
(
km −

n′
f N

) N∑
n=1

xn

f Nc̃−rn

e−i2π n′
f N rn . (5.20)
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The Kaiser-Bessel window is, in the continuous case, a simple approximation to
prolate spheroidal wave functions, which maximize the relative energy of a function
of given extent in one domain in an interval of given extent in the other domain
[11, 12]. Thus, it is particularly well suited to minimize aliasing errors in Eq. 5.12
and truncation errors in Eq. 5.20 [10, 13]. If aliasing errors are to be minimized, the
deapodization is defined by the Kaiser-Bessel window

c̃r =

 1
f N I0

(
b
√

1 −
(
πK
f Nb r

)2
)
, |r| ≤ f Nb

πK

0, otherwise
, (5.21)

where I0 is the zeroth order modified Bessel function of the first kind. By setting the
shape parameter b to

b = πK
(
1 − 1

2 f

)
, (5.22)

the Fourier coefficients drop to zero for |r| > f N − N
2 [14]. The window function,

also referred to as convolution kernel, is then given by

c(k) =


2b
πK sinhc

(
b
√

1 −
(

2 f N
K k

)2
)
, |k| ≤ K

2 f N

2b
πK sinc

(
b
√(

2 f N
K k

)2
− 1

)
, otherwise

(5.23)

using

sinhc(x) =
{ sinh(x)

x , x , 0
1, otherwise

. (5.24)

If truncation errors are to be minimized instead, the convolution kernel is defined by
the Kaiser-Bessel window

c(k) =

 1
K I0

(
b
√

1 −
(

2 f N
K k

)2
)
, |k| ≤ K

2 f N

0, otherwise
(5.25)

and the deapodization is given by

c̃r =


1

f N sinhc
(
b
√

1 −
(
πK
f Nb r

)2
)
, |r| ≤ f Nb

πK

1
f N sinc

(
b
√(

πK
f Nb r

)2
− 1

)
, otherwise

. (5.26)

Both choices lead to similar convolution kernels and deapodizations, as illustrated
in Fig. 5.2 and Fig. 5.3 with f = 2.0, K = 5, N = 800, and a normalization of the
values of the functions to the range [0, 1]. It is worth noting that the second case in
Eq. 5.23 and Eq. 5.26 is just provided for completeness. Due to the truncation of
the convolution kernel and the limited extent of the object, only the first case is of
relevance in practice. Moreover, by subtracting an offset of 1

f N I0(b) and 1
K I0(b) from
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FIGURE 5.2 Convolution Kernels and Deapodizations

A Kaiser-Bessel window is employed as convolution kernel in the conversion
of equidistant into nonequidistant samples in k-space (red, left). To compen-
sate for the inherent low-pass filtering, a deapodization is performed in space
by dividing by the inverse Fourier transform of the Kaiser-Bessel window (red,
right). Alternatively, dividing by a Kaiser-Bessel window serves the deapodza-
tion (green, right) and the Fourier transform of the Kaiser-Bessel window as
convolution kernel (green, left).

the first case of Eq. 5.21 and Eq. 5.25, the Kaiser-Bessel window smoothly drops to
zero already at |r| = f Nb

πK and |k| = K
2 f N , which allows eliminating aliasing errors and

preventing the convolution kernel from extending over K + 1 equidistant samples in
k-space in the worst case, respectively.

In general, the accuracy and the computational complexity of an NFFT increase
with increasing oversampling factor and kernel size. Error bounds have been estab-
lished for various window functions to guide the selection of minimal values for f
and K given a target accuracy [8]. Since the running time of an FFT is usually not
a monotonic function of the length of the FFT, the choice of f is preferably made
in view of the running time of an FFT of length f N [15]. The complexity of the
window function is less of a concern, because it is typically calculated only once and
stored in a look-up table [16].

Eq. 5.20 can be rewritten as

s̃ ≈ C′ F D x (5.27)

with a diagonal N x N deapodization matrix D

[D]n,n =
1

f Nc̃−rn

, (5.28)

an f N x N Fourier transform matrix F

[F]n′,n = e−i2π
(

n′−1
f N −

1
2

)
rn , (5.29)
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FIGURE 5.3 Aliasing and Truncation Errors

The convolution kernels from Fig. 5.2 and their inverse Fourier transforms are
displayed with a logarithmic scale over a larger range of k and r, respectively.
While a Kaiser-Bessel window is a function with compact support, its Fourier
transform and inverse Fourier transform are not. Consequently, aliasing errors
occur in space using a Kaiser-Bessel window as convolution kernel in k-space
(red, right), whereas truncation errors occur in k-space using it for deapodiza-
tion in space (green, left). The prescribed kernel size and FOV (solid black), the
FOV extended by oversampling (dashed black), and the first three frequency
bands folding back onto the prescribed FOV (solid, dashdotted, and dashed
blue) are indicated.

and a sparse M x f N convolution matrix C′[
C′

]
m,n′ = c̃′

(
km −

n′−1
f N +

1
2

)
. (5.30)

Here, the entries in the columns and rows of the matrices are numbered starting at
1, which complicates the expressions in the parentheses in Eq. 5.29 and Eq. 5.30
compared to Eq. 5.20. Eq. 5.27 is an approximation of

s̃ = E x (5.31)

with an M x N encoding matrix E

[E]m,n = e−i2πkmrn . (5.32)

Extending an NFFT to multiple dimensions is straightforward using a tensor
product approach. While separable convolution kernels, defined by the product of
1D convolution kernels for each dimension, are convenient and prevailing in prac-
tice, non-separable convolution kernels, such as circularly and spherically symmet-
ric ones, promise to enhance accuracy given a target computational complexity [17].
However, a theoretical comparison of them still seems to be missing.
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5.3 GRIDDING
The object x is ideally recovered from the signal s by

x(r) =

∞∫
−∞

s(k) ei2πkrdk. (5.33)

Due to the limited coverage of k-space by the acquisition, s is only known for k
in [− 1

2 ,
1
2 ) and, without prior knowledge, disregarded elsewhere, which leads to the

approximation

x̂(r) =

1/2∫
−1/2

s(k) ei2πkrdk. (5.34)

In addition, s is sampled with finite resolution, limited by hardware constraints in
the frequency encoding direction and more fundamentally by time constraints in the
phase encoding direction(s), resulting in the further approximation

x̂n =
1
M

M∑
m=1

sm ei2πkmrn (5.35)

or

x̂ =
1
M

EH s. (5.36)

An IFFT of length M efficiently converts M equidistant samples of s into M equidis-
tant samples of x̂. If the object is to be reconstructed with higher spatial resolution,
that is to be enlarged by Fourier interpolation, the number of equidistant samples of
x̂, and with it the length of the IFFT, is increased here to N > M, whereas the spacing
of the equidistant samples of s is decreased to 1

N . In analogy with Eq. 5.14 and Eq.
5.15, the point spread function (PSF), which links x to x̂, is then given by

PSF(r) =
1
N

M/2−1∑
m=−M/2

ei2π m
N r

=
sin

(
πM r

N

)
N sin

(
π r

N

)e−iπ r
N .

(5.37)

Thus, the equidistant samples of x̂ are approximately related by a sinc interpolation.
Only in the case of N = M, which is exceptional because Fourier interpolation is
almost always applied in clinical routine, they are uncorrelated.

An IFFT is both the adjoint and the inverse of the corresponding FFT. For an
NFFT, this does not hold anymore. Gridding was developed in radioastronomy from
simpler interpolation methods and adopted in medical imaging before NFFTs were
proposed and thoroughly analyzed in mathematics [18, 9]. It aims at reconstructing
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12 CHAPTER 5 Non-Cartesian MRI Reconstruction

N equidistant samples of x from M nonequidistant samples of s. To provide an
approximate explicit inverse NFFT (INFFT), gridding relies on an adjoint NFFT and
introduces an additional weighting of the nonequidistant samples of s, the sampling
density compensation. It is described by

x̂ ≈ DH FH C′H W s (5.38)

with a M x M diagonal matrix W of a vector of weights w.
Different approaches to deriving a suitable sampling density compensation have

been proposed. One class of them considers each sm as representative for a certain
neighborhood in k-space and turns Eq. 5.35 into the Riemann sum

x̂n =

M∑
m=1

wmsm ei2πkmrn . (5.39)

Here, the sum of the positive weights, which represent lengths in 1D, is normalized
to a value of 1. The calculation of the weights is based on either a continuous or a
discrete model.

For simple non-Cartesian sampling patterns, the weights can analytically be ob-
tained from the Jacobian determinant of a differentiable coordinate transformation
to a Cartesian sampling pattern. In the case of 2D radial imaging, the coordinate
transformation from a polar grid to a Cartesian grid is defined by

kx = kr cos
(
2πkϕ

)
ky = kr sin

(
2πkϕ

) (5.40)

with the radial direction kr and the azimuthal direction kϕ normalized to the range
[0, 1

2 ] and [− 1
2 ,

1
2 ), respectively. The determinant of the Jacobian matrix

JR =


∂kx
∂kr

∂kx
∂kϕ

∂ky

∂kr

∂ky

∂kϕ

 (5.41)

is then equal to 2πkr. Extending the integration in Eq. 5.34 to a circular area R of
radius 1

2 in 2D results in

x̂(rx, ry) =
"

R

s
(
kx, ky

)
ei2π(kxrx+kyry)dkxdky (5.42)

and a change in variables in

x̂(rx, ry) = 2π

1/2∫
0

1/2∫
−1/2

s
(
kr, kϕ

)
kr ei2πkr(cos(2πkϕ)rx+sin(2πkϕ)ry)dkϕdkr. (5.43)

Accordingly, s(kr, kϕ) is weighted by 2πkr, which corresponds to the ideal ramp filter
used in backprojection.

In the case of 2D spiral imaging, a coordinate transformation to a polar grid exists
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for some common k-space trajectories, which can readily be extended to a coordinate
transformation to a Cartesian grid [19]. For the segmented, or interleaved, variable
angular speed k-space trajectory plotted in Fig. 5.1 on the bottom right, it is defined
by

kr =
ks

2
√
α + (1 − α) ks

kϕ =
N

2MI
·

ks
√
α + (1 − α) ks

+ ki,

(5.44)

where ks parameterizes the sample, or time, along an interleaf, normalized to the
range [0, 1], and ki parameterizes the interleaf, or its rotation around the k-space
origin, normalized to the range [− 1

2 ,
1
2 ). Both ks and ki are considered as continuous

here. The range of kϕ is extended to [− 1
2 ,

1
2 +

N
2MI

), and M is subdivided into MI

interleaves with MS samples each. Since

kr =
MI

N

(
kϕ − ki

)
, (5.45)

this is an Archimedean spiral with a parameter α in the range [0, 1]. For α = 0
and α = 1, a constant linear velocity spiral and a constant angular velocity spiral is
obtained, respectively. The determinant of the Jacobian matrix

JS =

 ∂kr
∂ks

∂kr
∂ki

∂kϕ
∂ks

∂kϕ
∂ki

 (5.46)

is then given by

|JS | =
2α + (1 − α) ks

4 (α + (1 − α) ks)
3
2

(5.47)

and the determinant of the Jacobian matrix of the composite coordinate transforma-
tion to a Cartesian grid by

|JS JR| =
π

4
·

2αks + (1 − α) k2
s

(α + (1 − α) ks)2 . (5.48)

For more complex non-Cartesian sampling patterns, the weights can geomet-
rically be obtained from the discrete k-space sampling positions, constructing a
Voronoi diagram and calculating the area of each Voronoi cell, for instance [20].

Another class of approaches solves a minimization problem. For example, re-
placing s in Eq. 5.38 by s̃ from Eq. 5.27 leads to

x̂ ≈ DH FH C′H W C′ F D x. (5.49)

Setting D = I eliminates the deapodization and turns the sparse convolution matrix
C′ into a dense convolution matrix C. Choosing additionally f = 1.0 allows simpli-
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14 CHAPTER 5 Non-Cartesian MRI Reconstruction

fying Eq. 5.49 to

F x̂ ≈ N CH W C F x, (5.50)

since F FH = N I. Ideally, applying the forward model to an image and then gridding
to the simulated signal recovers the image. Independent of x, this would be ensured
by the condition

N CH W C = I. (5.51)

However, this matrix equation is normally overdetermined. It can be rewritten as a
linear system of N2 equations and multiplied on the left with the system matrix, or
the Frobenius norm of the matrix N CH W C − I can be minimized instead [21, 22].
Both lead to the same linear system of M equations

A w = b (5.52)

with

[A]m,m′ =
∣∣∣∣[C CH

]
m,m′

∣∣∣∣2
[b]m =

1
N

[
C CH

]
m,m
.

(5.53)

Due to the often poor condition and the high computational complexity, solving Eq.
5.52 is only practicable for non-Cartesian sampling patterns with smaller number of
samples. It is worth noting that the weights obtained by this least squares approxi-
mation of Eq. 5.51 are not necessarily positive anymore.

Similarly,

N C CH W = I (5.54)

is derived by demanding consistency of the signal in k-space rather than of the image
in space. If this condition is relaxed by considering the diagonal elements of the
resulting matrices on the left and on the right only, it reduces to

N C CH w = 1, (5.55)

for the solution of which the fix-point iteration

[
w[i+1]

]
m
=

[
w[i]

]
m

N
[
C CHw[i]]

m
(5.56)

was suggested, which remains practicable for non-Cartesian sampling patterns with
higher number of samples using a truncated convolution kernel [23].

A generalization of gridding is obtained by replacing the sampling density com-
pensation with a spatially variant convolution kernel, promising better accuracy at
the expense of higher computational complexity for optimizing the convolution ker-
nel once per sampling pattern [22].
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5.4 ITERATIVE RECONSTRUCTION
Replacing s̃ by s in Eq. 5.31 leads to the forward model

s = E x. (5.57)

The inverse problem is solved by the least squares approximation

min
x̂
∥s − E x̂∥22 (5.58)

using the normal equations of the first kind

EH E x̂ = EH s, (5.59)

or by the weighted least squares approximation

min
x̂

M∑
m=1

[w]m |[s − E x̂]m|
2 (5.60)

using the modified normal equations of the first kind

EH W E x̂ = EH W s. (5.61)

Here, Eq. 5.57 is assumed to be overdetermined, and the diagonal matrix W of the
vector w is specifically the one introduced for sampling density compensation.

Iterative methods, such as the conjugate gradient (CG) method, are preferably
applied to the large linear system of equations Eq. 5.59 and Eq. 5.61. They typically
involve a repeated calculation of products of the system matrix EH E or EH W E and
a vector p̂. These products can efficiently be computed either with an NFFT and an
adjoint NFFT or with a fast convolution [24]. For the latter, the entries of the system
matrix are written as [

EH E
]
n,n′
=

M∑
m=1

ei2πkm(rn−rn′ ) (5.62)

or [
EH W E

]
n,n′
=

M∑
m=1

wm ei2πkm(rn−rn′ ) (5.63)

and refered to as q (rn − rn′). It is worth noting that q(r) corresponds to the PSF for a
reconstruction with an adjoint NFFT or a gridding. The products then reduce to the
convolution

N∑
n′=1

p̂n′ q (rn − rn′) (5.64)

in space, which can be evaluated by a multiplication in k-space. In this way, an
NFFT and an adjoint NFFT are essentially replaced by an FFT and an IFFT. The
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FIGURE 5.4 1D Object

A continuous triangular function, covering 80% of the FOV, is chosen as 1D
object (left). Its frequency spectrum is real and non-negative (right).

Fourier transform of q has to be computed only once. However, the fast convolution
requires a two-fold oversampling to prevent backfolding. In the overdetermined case,
it usually provides a substantial acceleration nevertheless [25].

Iterative methods can synthesize signal outside the k-space area covered by the
acquisition [26]. This concerns in particular the edges of a square k-space, if only
the circle inscribed in the square is actually sampled. Since recovering such signal is
ill-conditioned, it typically entails an excessive noise amplification. To suppress the
resulting high-frequency noise, a low-pass filtering is usually applied to the recon-
structed image.

5.5 EXAMPLES
Gridding is first illustrated with a 1D example, in which the triangular function
shown in Fig. 5.4 serves as object. The Fourier transform of this object is given
by

s(kx) = R sinc2(πRkx), (5.65)

where R = 320.
Initially, an equidistant sampling of s with kx in the range [− 1

4 ,
1
4 ) and M = 400 is

assumed. The object is reconstructed at rx = −
N
2 , ...,

N
2 − 1 with N = 800. Thus, it is

enlarged by Fourier interpolation by a factor of 2, involving zero padding in k-space
to the range [− 1

2 ,
1
2 ). The equidistant sampling allows applying an IFFT for reference

and assessing truncation or aliasing errors introduced by a gridding. Resulting errors
are plotted in Fig. 5.5 and are dominated by ringing artifacts at rx = −320, 0, 320.
The triangular function is continuous but not differentiable at these points. Therefore,
the classical Gibbs phenomenon is not observed, but a poorer approximation by a
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FIGURE 5.5 1D Cartesian Sampling - IFFT versus Gridding

From an equidistant sampling of the frequency spectrum in Fig. 5.4, 1D ob-
jects are reconstructed with twice the spatial resolution using zero padding,
once with an IFFT (left) and once with a gridding (right), and the errors to the
continuous triangular function are calculated.

truncated Fourier series is expected due to the slower decay of the Fourier coefficients
with frequency. Compared to the IFFT, the gridding with f = 2 and K = 5 adds only
negligible errors, which originate from the truncation of the convolution kernel in
this case. In the following, these settings of the oversampling factor and the kernel
size are kept.

To simulate a nonequidistant sampling of s, the readout gradient is assumed to
ramp up 100 µs after the excitation with a gradient slew rate of 200 Tm−1s−1, at
which point in time the data acquisition is also triggered, and to level off at a gradient
strength of 40 Tm−1, as illustrated in Fig. 5.6. The gradient system is modeled as a
linear time-invariant system, once with an ideal frequency response

H(iω) = 1 (5.66)

and once with a more realistic frequency response

H(iω) =
eiωT

1 + iωT
, (5.67)

which corresponds to a mono-exponential decay with a time constant T , chosen to
be 40 µs in this example. The amplitude and phase of H(iω) are plotted in Fig.
5.7. In the ideal case, the actual gradient waveform is identical with the demand
gradient waveform. In the more realistic case, however, the actual gradient waveform
is smoothed. This is seen in Fig. 5.6, as well as the resulting k-space sampling
positions as function of time. The data acquisition is performed twice, with positive
and negative polarity of the readout gradient, to traverse the 1D k-space from the
center, or origin, to the periphery, in positive and negative direction, respectively.
Thus, the same range of kx as before is covered. The sampling positions are located
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FIGURE 5.6 Gradient Waveform and k-Space Trajectory

The demand gradient waveform (red, left) increases linearly with the maximum
gradient slew rate until the maximum gradient strength is reached. The real
gradient system from Fig. 5.7 low-pass filters the gradient waveform (green,
left), leading to a distortion of the k-space trajectory hardly perceptible at this
scale (right).
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FIGURE 5.7 Gradient System Characterization

An ideal gradient system (red) has an invariant amplitude (left) and phase
(right) response, whereas a real gradient system (green) typically exhibits an
amplitude response decaying with frequency and a phase response growing
with frequency.

at the points of intersection of the horizontal black lines (ky = 0) with the colored
circles in Fig. 5.8. While the sampling density in principle increases towards the k-
space center, |kx| <

0.36
N remains uncovered in the case of the more realistic gradient

system. It is worth noting that this does not constitute an undersampling per se,
because the critical sampling distance of 1

N is larger than the diameter of the gap.
Applying a gridding to the nonequidistant sampling of s produces the errors plot-

ted in Fig. 5.9. With the ideal gradient system, a moderate offset is observed, whereas
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FIGURE 5.8 1D and 2D Sampling Patterns

From the k-space trajectories in Fig. 5.6, 1D (kx) and 2D (kx, ky) sampling pat-
terns are generated by equiangular rotation around the origin. Unlike with the
ideal gradient system (left), the sampling pattern obtained with the more realis-
tic gradient system (right) leaves a gap in the k-space center, which is enlarged
in both graphs.
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FIGURE 5.9 1D Non-Cartesian Sampling - Gridding

Using the two nonequidistant 1D sampling patterns from Fig. 5.8, 1D objects
are reconstructed with twice the spatial resolution with a gridding and the errors
to the continuous triangular function are calculated.

with the more realistic gradient system, major errors apparently arise from the central
gap in the sampling pattern.

So far, a sampling density compensation based on the distance between adjacent
k-space sampling positions has been used. Weights obtained with this geometrical
approach and with some of the other approaches described above are juxtaposed
in Fig. 5.10, along with corresponding errors, for the problematic case of the more
realistic gradient system. The fix-point iteration according to Eq. 5.56 slowly con-
verges from w[0] = 1

N 1, for which the weights always remain positive. A sinc2 con-
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FIGURE 5.10 Sampling Density Compensation

From the second nonequidistant 1D sampling pattern in Fig. 5.8, weights for
sampling density compensation are derived (left), geometrically (top, black),
numerically based on a repeated gridding with 5 (top, red), 25 (top, green),
and 125 (top and bottom, blue) iterations, once with (solid) and once without
(dashed) normalization, and algebraically based on Eq. 5.55 (bottom, red) and
Eq. 5.52 (bottom, green). 1D objects are reconstructed with them and the
errors to the continuous triangular function are calculated (right).

volution kernel, truncated to two side lobes, was employed in this example to map
nonequidistant samples to nonequidistant samples directly [27]. Errors decrease at
first, but soon are dominated by a systematic overestimation of the weights due to
the omitted side lobes. By contrast, enforcing ∥w∥1 = 1 allows reducing errors by
two orders of magnitude overall, yet results deteriorate again when proceeding with
the iteration. Solving Eq. 5.55 and Eq. 5.52 leads to weights that still show the strik-
ing, unexpected oscillation for the sampling positions close to the k-space center, but
that are not necessarily positive anymore. The same convolution kernel as before
was chosen in the first case, while Eq. 5.15 was selected in the second case. A CG
method without explicit regularization reliably converges only in the second case, in
which also the lowest errors are attained.
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FIGURE 5.11 1D Non-Cartesian Sampling - Iterative Reconstruction

Using the two nonequidistant 1D sampling patterns from Fig. 5.8, 1D objects
are iteratively reconstructed with twice the spatial resolution and the errors to
the continuous triangular function are calculated.

Finally, results obtained with an iterative reconstruction are provided for refer-
ence in Fig. 5.11. A CG method, initialized with x̂[0] = 0, leads to similar errors as a
gridding in the case of equidistant sampling or in the case of nonequidistant sampling
with favorable sampling density compensation. An NFFT and an adjoint NFFT were
used, but no sampling density compensation or explicit regularization.

The conic function shown in Fig. 5.12 is chosen as object to illustrate gridding
with a 2D example. Its Fourier transform is given by

s(kr) =
 π2 J1(Rkr)H0(Rkr)−J0(Rkr)H1(Rkr)

k2
r

, kr , 0
1
3πR

2, otherwise
, (5.68)

where J0 and J1 denote zeroth and first order Bessel functions of the first kind and
H denotes the Struve function [28].

Applying an IFFT for reference and a gridding to an equidistant sampling of s
with kx and ky in the range [− 1

4 ,
1
4 ) and M = 4002 results in the errors plotted in

Fig. 5.13. The errors are dominated by ringing artifacts at r2
x + r2

y = 3202 and at the
origin, where the conic function is not differentiable. Additional errors introduced
by the gridding remain negligible, even though they are perceptibly higher than in
the 1D example. The gridding requires about 2.75 times the number of floating point
operations of the IFFT in this case, of which more than 80% are involved in the
transformation due to the oversampling and less than 20% in the convolution.

The same readout gradient as above is assumed to simulate a nonequidistant sam-
pling of s, but the data acquisition is repeated ⌈ π2 N⌉ = 1257 times. The direction of
the readout gradient is rotated by a constant angle after each instance, and with it
the sampling positions in the 2D k-space. The number of instances is selected such
that the distance between adjacent sampling positions in azimuthal direction does
not exceed 1

N . Thus, subsampling is avoided. The resulting sampling patterns, which
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FIGURE 5.12 2D Object

A continuous conic function, covering 50% of the square and 64% of the in-
scribed circular FOV, serves as 2D object (left). The magnitude of its frequency
spectrum is displayed with a logarithmic scale (right).
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FIGURE 5.13 2D Cartesian Sampling - IFFT versus Gridding

From an equidistant sampling of the frequency spectrum in Fig. 5.12, 2D ob-
jects are reconstructed with twice the spatial resolution using zero padding,
once with an IFFT (left) and once with a gridding (right), and the errors to the
continuous conic function are calculated.

cover a circular k-space area, are shown in Fig. 5.8, where the seemingly continuous
sampling in azimuthal direction is due to the high density of sampling positions in
the k-space center.

Applying a gridding and an iterative reconstruction to the nonequidistant sam-
pling of s produces the errors plotted in Fig. 5.14 and Fig. 5.15, respectively. Weights
for sampling density compensation were derived with a geometrical approach and
only used in the gridding. Compared to the 1D example, most notably the errors ob-
tained with the gridding in the case of the more realistic gradient system are reduced
by one order of magnitude.
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FIGURE 5.14 2D Non-Cartesian Sampling - Gridding

Using the two nonequidistant 2D sampling patterns from Fig. 5.8, 2D objects
are reconstructed with twice the spatial resolution with a gridding and the errors
to the continuous conic function are calculated.
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FIGURE 5.15 2D Non-Cartesian Sampling - Iterative Reconstruction

From the two nonequidistant 2D sampling patterns in Fig. 5.8, 2D objects are
iteratively reconstructed with twice the spatial resolution and the errors to the
continuous conic function are calculated.

The convergence of the iterative reconstruction is analyzed in Fig. 5.16. While
using Eq. 5.61 with a sampling density compensation leads to a considerable ac-
celeration compared to using Eq. 5.59 without a sampling density compensation, it
adversely affects the convergence in the presence of noise, which demands either a
suitable explicit regularization or a sufficiently early termination of the iteration.
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FIGURE 5.16 2D Non-Cartesian Sampling - Convergence

2D objects are iteratively reconstructed without (red) and with (green) sampling
density compensation, once without (left) and once with (right) added noise
emulating a nominal SNR of 50, and the MSEs to the continuous conic function
are plotted as function of the number of iterations.

5.6 SPATIAL RESOLUTION AND NOISE
A common measure of spatial resolution is the full width at half maximum (FWHM)
of the main lobe of the PSF. In 1D Cartesian imaging, the PSF is given by Eq. 5.37
and approximated by

PSF(r) ≈ sinc(πr) (5.69)

for M = N and small r
N . The FWHM equals 1.21, since sinc(π 0.6) ≈ 0.5. In 2D

Cartesian imaging, the PSF remains the same along the axes rx and ry, but changes
to

PSF(rd) ≈ sinc2
(
π
√

2
rd

)
(5.70)

along the diagonals rd, with rd = ±
√

2 rx and rx = ±ry, assuming a square k-space
area to be covered by the acquisition. The FWHM increases to 1.25, which indicates
a slightly anisotropic spatial resolution.

In 2D non-Cartesian imaging, a smaller circular k-space area is usually covered
instead, as shown in Fig. 5.1. The PSF is approximated by

PSF(r) ≈ 2 jinc(πr) (5.71)

using

jinc(x) =
{ J1(x)

x , x , 0
1
2 , otherwise

, (5.72)

and the FWHM amounts to 1.41 regardless of direction. Eq. 5.71, as Eq. 5.69 and
Eq. 5.70, can be derived by assuming a continuous sampling of the covered k-space
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FIGURE 5.17 Spatial Resolution

PSFs are approximated for acquisitions covering a square FOV, along the axes
(red) and the diagonals (green), and circular FOVs, with the circle inscribed
in the square (solid blue) and the area of the circle and the square equalized
(dashed blue), and the crossings of the main lobes with the horizontal line at
half the normalized maximum amplitude are determined.

area [29].
To match the spatial resolution in 2D Cartesian imaging, the circular k-space area

has to be enlarged relative to the square k-space area. Scaling the radius of the former
by 2

√
π
= 1.13 equalizes the area of both. Applied to Eq. 5.71, this results in

PSF(r) ≈ 2 jinc(2
√
πr). (5.73)

The FWHM then corresponds to the FWHM along the diagonals in 2D Cartesian
imaging. This is illustrated in Fig. 5.17, in which the PSFs according to Eq. 5.69,
Eq. 5.70, Eq. 5.71 and Eq. 5.73 are plotted. It is worth noting that the amplitudes of
the first side lobes of the PSF along the axes in 2D Cartesian imaging are the highest.
In general, this leads to more pronounced ringing artifacts than in 2D non-Cartesian
imaging.

The validity of the continuous sampling approximation is substantiated in Fig.
5.18. Despite the rather small number of samples, the calculated PSFs for PRO-
PELLER, radial, and spiral imaging and a gridding with sampling density compen-
sation closely agree with each other, to the extent that they are not discernible at this
scale, and with the approximated PSF in Fig. 5.17. The calculated and approximated
PSFs for EPI along the axes and the diagonals are similarly consistent. Naturally,
this only holds for the main lobe and the first side lobes.

While the sampling density compensation is crucial to shape the PSF in gridding,
it entails a reduction in SNR by a factor of∑M

m=1 [w]m
√

M ∥w∥2
, (5.74)
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FIGURE 5.18 Point Spread Functions

PSFs are calculated for the sampling patterns in Fig. 5.1, namely for EPI along
the axes (left, red) and the diagonals (left, green), as well as for PROPELLER
(right, red), radial (right, green), and spiral (right, blue) imaging, and a gridding
without (dashed) and with (solid) sampling density compensation.

assuming additive white Gaussian noise [30]. This factor equals 1.0 only if the
weights are uniform. For the sampling patterns in Fig. 5.1, it decreases to 0.98, 0.85,
0.87, and 0.96 in the case of echo-planar, PROPELLER, radial, and spiral imaging,
respectively. It drops further from 0.87 to 0.80 for the second 2D sampling pattern
from Fig. 5.8 due to the additional nonequidistant sampling along the projections.

A similar reduction is observed in the right graph in Fig. 5.16 using an iterative
reconstruction without sampling density compensation. The nominal SNR of 50 ac-
counts for a mean squared error (MSE) of 4 · 10−4, given that the maximum signal
is normalized to a value of 1.0 and that other errors are negligible. The actual MSE
of 6.3 · 10−4 after 100 iterations then implies an amplification of the noise variance
by a factor of 1.58 and a loss in SNR of 20%. However, a CG method provides a
diminishing intrinsic regularization in the course of the iterations [31]. This is par-
ticularly evident in the right graph in Fig. 5.16 with sampling density compensation.
The amplification of the noise variance is ultimately given by the diagonal elements
of the matrix

X =
(
EH E

)−1
(5.75)

or

X =
(
EH W E

)−1 (
EH W2 E

) (
EH W E

)−1
(5.76)

and is often unacceptably high without explicit regularization, because the system
matrix EH E or EH W E is typically ill-conditioned in non-Cartesian imaging [26].

Variation in sampling density in k-space also leads to colored noise, which is
characterized by a nonconstant power spectral density. Colored noise impairs in
particular the perceived spatial resolution in reconstructed images [32]. This can be
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mitigated by adding noise or by considering other criteria, for instance for contrast
weighting, in the sampling density compensation [33].

5.7 EXTENSIONS
In this chapter, an NFFT for an efficient conversion between equidistant samples in
space and nonequidistant samples in k-space was introduced. Its adjoint was shown
to be an integral part of a gridding and it and its adjoint of an iterative reconstruction.
Other NFFTs exist for related conversions, which are also of relevance to reconstruc-
tion in non-Cartesian imaging. They and their applications are briefly discussed in
the following.

For a mapping of nonequidistant samples in space to equidistant samples in k-
space, the approximation

e−i2πkr ≈
1

f Nc̃−k

f N/2−1∑
n′=− f N/2

c̃
(
r − n′

)
e−i2πkn′ (5.77)

is obtained analogously to Eq. 5.11. It leads to the forward model

s̃m ≈
1

f Nc̃−km

f N/2−1∑
n′=− f N/2

( N∑
n=1

xn c̃
(
rn − n′

))
e−i2πkmn′ . (5.78)

The inner sum converts the nonequidistant samples in space by a convolution into
equidistant samples in space. The outer sum amounts to an FFT of length f N, trans-
forming the equidistant samples in space into equidistant samples in k-space. The
deapodization is applied to the equidistant samples in k-space in this case.

Nonequidistant samples in space occur in the presence of an imperfect magnetic
field gradient, namely a spatially nonconstant magnetic field gradient, which affects
the spatial encoding and leads to distorted images, if it is disregarded in the recon-
struction. The signal measured in k-space is modeled by

s(k) =

N/2∫
−N/2

x(r) e−i2πkg(r)dr (5.79)

under these circumstances, where g denotes a function mapping the true position r to
the apparent position r′ in space. Provided that g is invertible, a change in variables
results in

s(k) =

g(N/2)∫
g(−N/2)

x
(
g−1(r′)

) dg−1(r′)
dr′

e−i2πkr′dr′ (5.80)

and a spatial discretization usually in nonequidistant samples of x. A correction of
the distorted images is routinely performed after the reconstruction in space today,
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using an interpolation and an intensity scaling. However, integrating it into the recon-
struction promises advantages, especially a reduction in the loss of spatial resolution
[34]. While this demands an efficient evaluation of Eq. 5.78 in Cartesian imaging,
the forward model has to be generalized to nonequidistant samples in both domains
in non-Cartesian imaging.

Nonequidistant samples in space also arise from an inhomogeneous main mag-
netic field. The signal is described by

s(t) =

N/2∫
−N/2

x(r) e−i2πk(t)r e−i2πt f (r)dr (5.81)

in this case. Here, s and k are explicit functions of t, the time after the excitation,
and f maps the deviation of the frequency of the precession of the nuclear spins. In
Cartesian imaging, k is a linear function of t, because the readout gradient remains
unchanged during the acquisition. Thus, Eq. 5.81 can be written as Eq. 5.79 and
the same correction can be applied. This still holds in EPI in the phase encoding
direction, in which the dominant distortion occurs [35].

The consideration of an inhomogeneous main magnetic field in non-Cartesian
imaging in general is discussed in another chapter. Only an NFFT for an efficient
conversion between nonequidistant samples in space and nonequidistant samples in
k-space is derived here. It is, besides the already introduced NFFTs, applicable
to such an off-resonance correction [36, 37]. Instead of approximating the Fourier
coefficients of the periodic function c̃, the Fourier transform of the function c

(F c)(r) =

∞∫
−∞

c(k) e−i2πkrdk (5.82)

is rewritten as

(F c)(r) =

1/2∫
−1/2

∞∑
p=−∞

c(k + p) e−i2π(k+p)rdk (5.83)

and approximated by

e−i2πkr ≈
1

f N(F c)(−r)

f N/2−1∑
n′=− f N/2

∞∑
p=−∞

c
(
k − n′

f N + p
)

e−i2π( n′
f N −p)r. (5.84)

The inner sum is then eliminated, for example by simply limiting the range of k to
[− 1

2 +
K

2 f N ,
1
2 −

K
2 f N ), leadig to

e−i2πkr ≈
1

f N(F c) − (r)

f N/2−1∑
n′=− f N/2

c′
(
k − n′

f N

)
e−i2π n′

f N r. (5.85)

Such an NFFT also permits including higher order magnetic field perturbations



i
i

“Book” — 2022/6/27 — 11:17 — page 29 — #29 i
i

i
i

i
i

5.7 Extensions 29

in the reconstruction, which can be modeled by

s(t) =

N/2∫
−N/2

x(r) e−i2π
∑L

l=1 kl(t)bl(r)dr (5.86)

with spatial basis functions b and corresponding time-variant coefficients k [38].
While spherical harmonics are commonly chosen for b, separate calibration mea-
surements, such as gradient impulse response measurements, or concurrent magnetic
field monitoring are usually performed to determine k [39, 40]. Even if only spheri-
cal harmonics of first order are considered, which correspond to a spatially constant
magnetic field gradient, knowledge of the actual sampling positions in k-space with
high accuracy often constitutes a crucial prerequiste for attaining adequate image
quality in non-Cartesian imaging.

Finally, exponential signal decay during the acquisition can be incorporated into
Eq. 5.81 by adding a scaled relaxation rate as imaginary part to f [41].
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