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ABSTRACT

The distribution of data points is a key component in machine learning. In most cases, one uses min-
max normalization to obtain nodes in [0, 1] or Z-score normalization for standard normal distributed
data. In this paper, we apply transformation ideas in order to design a complete orthonormal system
in the L2 space of functions with the standard normal distribution as integration weight. Subsequently,
we are able to apply the explainable ANOVA approximation for this basis and use Z-score transformed
data in the method. We demonstrate the applicability of this procedure on the well-known forest fires
data set from the UCI machine learning repository. The attribute ranking obtained from the ANOVA
approximation provides us with crucial information about which variables in the data set are the most
important for the detection of fires.

Keywords ANOVA · high-dimensional · approximation · interpretability · normal distribution

1 Introduction

In machine learning, the scale of our features is a key component in building models. When we work with data from
applications we have to accept it as it is. In most cases, we cannot control where the nodes are lying. Let us, e.g., take
recommendations in online shopping. We are only able analyze the customers that actually exist and what they bought
in the shop. However, the features may lie on immensely different scales. If we measure, e.g., the time a customer spent
in the shop in seconds as well as their age in years, the result will be a scale that contains values with thousands of
seconds and a scale ranging from up to 90 years. Bringing those features on similar scales trough normalization may
significantly improve performance of our model.

Two common methods for data normalization are min-max-normalization and Z-score normalization, see e.g. [7]. The
former method will yield data in the interval [0, 1] and is especially useful if there is an intrinsic upper and lower bound
for the values, e.g., when considering age. If we come back to our previous example, the time a customer spends in
the shop would be less suitable since the values may have a wide range and we will probably have very few people
with a significantly small or large time. In this case, the Z-score normalization makes much more sense. It tells us how
many standard deviations our value lies away from the mean of the data resulting in a distribution with zero mean and
variance one.

The explainable ANOVA approximation method introduced in [21, 23, 22] is based on the well-known multivariate
analysis of variance (ANOVA) decomposition, see e.g. [3, 24, 14, 13, 8, 18], and relies on the existence of a complete
orthonormal system in the space which is suitable for fast matrix-vector multiplication algorithms in grouped transfor-
mations, c.f. [2]. Until now, this method was always applied with min-max-normalization since it relied on the space
L2([0, 1]

d) of square-integrable functions over the cube with the half-period cosine basis. It is our goal to modify the
approach in order to create the possibility to work with standard normal distributed data, i.e., data that has been obtained
trough Z-score normalization.
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We aim to achieve this by using the transformation ideas from [17] and [16] in order to construct a complete orthonormal
system in the space

L2(Rd, ω) :=

{
f : Rd → R : ‖f‖L2(Rd) :=

√∫
Rd

|f(x)|2 ω(x) dx <∞

}
(1)

with the probability density of the standard normal distribution

ω(x) :=

d∏
i=1

1√
2π

e−x
2
i /2 = (2π)−d/2 e−‖x‖

2
2/2. (2)

Combining this transformation with the half-period cosine basis allows for fast multiplications in the grouped transfor-
mations and makes the ANOVA approximation method applicable for Z-score normalized data.

As an example, we apply this approach to a data set about the detection of forest fires, see [1, 4]. Constructing a model
with the capability of efficiently predicting the size of the fire in this data set may provide a way of predicting the
occurrences of fires. This creates the possibility of efficiently implementing appropriate counter-measures. In our time
of climate change with massive forest fires every year, e.g., in Australia or the USA, this is an extremely current topic.
With the interpretation capabilities of the ANOVA method, cf. [22], we are additionally able to explain the importance
of our features and give reasonable explanation for the predictions.

2 Transformed Half-Period Cosine

In this section, it is our goal to construct a complete orthonormal system in the space L2(Rd, ω) from (1) with the
product density ω(x) from (2). This is the probability density function of the standard normal distribution, i.e., the
normal distribution with zero mean and variance one. We have

∫
Rd ω(x) dx = 1 as well as supx∈Rd ω(x) = (2π)−d/2

which implies ω ∈ L∞(Rd).

We aim to construct the basis using transformation ideas from [16, 17] and the half-period cosine basis on L2([0, 1]
d).

The orthonormal basis functions on L2([0, 1]
d) are given by

φcos
k (x) =

√
2
‖k‖0

d∏
i=1

cos(πkixi), k ∈ Nd0 (3)

with ‖k‖0 := |suppk| and suppk := {s ∈ {1, 2, . . . , d} : ks 6= 0}. We start from a given function f : Rd → R,
f ∈ L2(Rd, ω), and aim to transform it onto the cube [0, 1]d. As transformation we propose

ψ : [0, 1]d → Rd, ψ(x) =
√
2


erf−1(2x1 − 1)
erf−1(2x2 − 1)

...
erf−1(2xd − 1)

 (4)

with the inverse transformation

ψ−1 : Rd → [0, 1]d, ψ−1(x) =
1

2


erf(x1/

√
2) + 1

erf(x2/
√
2) + 1

...
erf(xd/

√
2) + 1

 . (5)

The error function is given by

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

As a result, we have the commutative diagram in Figure 1. This allows us to transform the half-period cosine to a
complete orthonormal system on L2(Rd, ω) with the help of
Lemma 2.1. Let g, h ∈ L2([0, 1]

d), u, v ∈ L2(Rd, ω) with probability density ω from (2), and transformation ψ, ψ−1
as in (4) and (5) respectively. Then

〈g ◦ ψ−1, h ◦ ψ−1〉L2(Rd,ω) = 〈g, h〉L2([0,1]d)

〈u, v〉L2(Rd,ω) = 〈u ◦ ψ, v ◦ ψ〉L2([0,1]d)

and subsequently ‖h‖L2([0,1]d)
=
∥∥h ◦ ψ−1∥∥

L2(Rd,ω)
and ‖u ◦ ψ‖L2([0,1]d)

= ‖u‖L2(Rd,ω).

2
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[0, 1]d Rd

R

L2([0,1]
d)3f◦ψ−1

ψ

ψ−1

f∈L2(Rd,ω)

Figure 1: Commutative diagram of the function and the transformations.

Proof. Let g, h ∈ L2([0, 1]
d) and u, v ∈ L2(Rd, ω). Then we insert the definition and perform a change of variables as

follows

〈g ◦ ψ−1, h ◦ ψ−1〉L2(Rd,ω) =

∫
Rd

g(ψ−1(x))h(ψ−1(x))ω(x) dx

=

∫
Rd

g(t)h(t)ω(ψ(t))ψ′(t) dt.

As functional determinant we obtain ψ′(t) =
∏d
i=1

√
2π eerf

−2(2xi−1) and subsequently

ω(ψ(t))ψ′(t) =

d∏
i=1

1√
2π

e−erf
−2(2xi−1) ·

√
2π eerf

−2(2xi−1) = 1.

This proves the first equality. For the second equality, we way use an analogous procedure.

Theorem 2.2. The functions (φtrafok )k∈Nd
0

with

φtrafok (x) := (φcosk ◦ ψ−1)(x) =
√
2
‖k‖0

d∏
i=1

cos

(
πki

erf(xi/
√
2) + 1

2

)
(6)

form a complete orthonormal system in L2(Rd, ω).

Proof. Clearly, we have φtrafok ∈ L2(Rd, ω), k ∈ Nd0 by Lemma 2.1. The orthonormality follows from Lemma 2.1 and
the orthonormality of the half-period cosine basis, i.e., for k, ` ∈ Nd0 we have

〈φtrafok , φtrafo` 〉L2(Rd,ω) = 〈φcosk ◦ ψ−1, φcosk ◦ ψ−1〉L2(Rd,ω)

= 〈φcosk , φcos` 〉L2([0,1]d) = δk,`.

It remains to show that the system is complete, i.e., for every f ∈ L2(Rd, ω) we have

lim
n→∞

∥∥∥∥∥f −
n∑
i=1

〈f, φtrafokn
〉L2(Rd,ω) φ

trafo
kn

∥∥∥∥∥
L2(Rd,ω)

= 0

with kn, n = 1, 2, . . . , an order of k ∈ Nd0. First of all, we have

ĉk := 〈f, φtrafok 〉L2(Rd,ω) = 〈f ◦ ψ, φcosk 〉L2([0,1])

by Lemma 2.1. We apply the norm equality from Lemma 2.1 to obtain

lim
n→∞

∥∥∥∥∥f −
n∑
i=1

ĉk φ
trafo
kn

∥∥∥∥∥
L2(Rd,ω)

= lim
n→∞

∥∥∥∥∥f ◦ ψ −
n∑
i=1

ĉk φ
cos
kn

∥∥∥∥∥
L2([0,1]d)

and since (φcosk )k∈Nd
0

is complete in L2([0, 1]
d) and f◦ψ ∈ L2([0, 1]

d), the limit is zero and our statement is proven.

In summary, we have constructed a complete orthonormal system (φtrafok )k∈Nd
0

on the weighted space L2(Rd, ω)
using transformation ideas from [16] and the well-known half-period cosine basis (φcosk )k∈Nd

0
on L2([0, 1]

d). The
transformation ψ in one dimension and the corresponding basis functions φtrafok are visualized in Figure 2.

3
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(a) Transformation ψ from (4) in one dimension

−3 −2 −1 0 1 2 3

−1

0

1

λ

(b) Basis functions φtrafo
k from (6) in one dimen-

sion for k = 1 (solid), k = 2 (dotted), and k = 3
(dashed)

Figure 2: Transformation ψ and transformed basis functions φtrafok in one dimension

3 Interpretable ANOVA Approximation

In this section, we briefly summarize the interpretable ANOVA (analysis of variance) approximation method and
the idea of grouped transformations, see [21, 2]. The approach was considered for periodic functions, but has been
expended to non-periodic functions in [23, 22]. In this paper, we focus on functions f : Rd → R from L2(Rd, ω) with
probability density ω from (2). Since ω is the standard normal distribution, this function space is of a high relevance. It
allows us e.g. to work with data from applications that has been Z-transformed, i.e., data with zero mean and variance
one, see e.g. [7]. Since the transformed half-period cosine (φtrafok )k∈Nd

0
, see Theorem 2.2, is a complete orthonormal

system in the space L2(Rd, ω), we have

f(x) =
∑
k∈Zd

ck(f)φ
trafo
k (x), ck(f) = 〈f, φtrafok 〉L2(Rd,ω), (7)

and through Parseval’s identity ‖f‖2L2(Rd,ω) =
∑

k∈Zd |ck(f)|2.

The classical ANOVA decomposition, cf. [3, 24, 14, 8], provides us with a unique decomposition in the frequency
domain as shown in [21]. We denote the coordinate indices with [d] = {1, 2, . . . , d} and subsets as bold small letters,
e.g., u ⊆ [d]. The ANOVA terms are defined as

fu(x) = fu(xu) :=
∑
k∈Zd

suppk=u

ck(f)φ
trafo
k (x).

The function can then be uniquely decomposed as

f(x) =
∑
u⊆[d]

fu(x)

into |P([d])| = 2d ANOVA terms where P([d]) is the potency set of [d]. Here, the exponentially growing number of
terms shows an expression of the curse of dimensionality in the decomposition.

It is our goal to obtain information on how important the ANOVA terms fu are with respect to the function f . In order
to measure this, we define the variance of a function f as

σ2(f) := ‖f‖2L2(Rd,ω) − |c0(f)|
2
=

∑
k∈Zd\{0}

|ck(f)|2 .

Note that we have the special case σ2(fu) = ‖fu‖2L2(Rd,ω), u ⊆ [d]. The relative importance with respect to f is then
measured via global sensitivity indices (GSI) or Sobol indices, see [25, 26, 14], defined as

%(u, f) :=
σ2(fu)

σ2(f)
. (8)

4
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From the GSI we get a motivation for the concept of effective dimensions, specifically the superposition dimension as
one notion of effective dimension. For a given α ∈ [0, 1] it is defined as

d(sp) := min

s ∈ [d] :
1

σ2(f)

∑
u⊆[d]
|u|≤s

‖fu‖2L2(Rd,ω) ≥ α

 . (9)

The superposition dimension d(sp) tells us that we can explain the α-part of the variance of f by terms fu with u ≤ ds.
Using subsets of ANOVA terms U ⊆ P([d]), it is our goal to find a way to circumvent the curse of dimensionality for
efficient approximation. In order to achieve this, we aim to truncate the ANOVA decomposition by taking only the
ANOVA terms in U into account. The truncated ANOVA decomposition is then defined as

TUf(x) =
∑
u∈U

fu(x).

A specific idea for the truncation comes from the superposition dimension d(sp) in (9). The idea is to take only variable
interactions into account that contain ds or less variables, i.e., the subset of ANOVA terms is

U(d, ds) := {u ⊆ [d] : |u| ≤ ds} . (10)

Since ds does not necessarily have to coincide to the superposition dimension d(sp), we call it superposition threshold.
A well-known fact from learning theory is that the number of terms in U(d, ds) grows only polynomially in d for fixed
ds < d, i.e.,

|U(d, ds)| ≤
(
ed

ds

)ds
which has reduced the curse of dimensionality.

In the following, we argue why the truncation by a superposition threshold ds works well in relevant cases. For the
approximation of functions that belong to a space Hs(Rd, ω) ⊆ L2(Rd, ω) that characterizes the smoothness s > 0
by the decay of the basis coefficients ck(f), we can show upper bounds on the superposition dimension d(sp) for
α ∈ [0, 1], see e.g. [21]. In fact, there are types of smoothness that are proven to yield a low upper bound for the
superposition dimension specifically dominating-mixed smoothness with POD (product and order-dependent) weights,
cf. [12, 5, 11, 6, 21].

In terms of real data from applications, the situation is much different. Here, we cannot make the assumption that in
complete generality we have a low superposition dimension. However, there are many application scenarios where
numerical experiments successfully showed that this is indeed the case, see e.g. [3]. Since we generally do not have
a-priori information, we work with low superposition thresholds ds for truncation and validate on our test data.

3.1 Approximation Procedure

In this section, we briefly discuss how the approximation is numerically obtained and how we can interprete the results.
In this section, we assume a given subset of ANOVA terms U ⊆ P([d]). This set may be equal to or a subset of U(d, ds).
We have given scattered data in the form of a set X = {x1,x2, . . . ,xM} ⊆ Rd of standard normal distributed nodes
and values y ∈ RM , M ∈ N. Moreover, we assume that there is an L2(Rd, ω) function f of form (7) with f(xi) ≈ yi
which we want to approximate.

First, we truncate f to the set U such that f ≈ TUf . However, there are still infinitely many coefficients and therefore
we perform a truncation to partial sums on finite support index sets

I∅ = {0}, and Iu = {1, 2, . . . , N|u| − 1}|u| (11)

with order-dependent parameters N|u| ∈ N, |u| = 1, 2, . . . , ds, for every ANOVA term fu, u ∈ U . Using the
projections PuIu = {k ∈ Nd0 : ku ∈ Iu,kuc = 0}, we obtain

fu(x) ≈
∑

k∈PuIu

ck(f)φ
trafo
k (x).

Now, we taking the union I(U) =
⋃

u∈U PuIu yields

f(x) ≈
∑

k∈I(U)

ck(f)φ
trafo
k (x).

5
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The unknown coefficients ck(f) are now to be determined.

We aim to achieve this by solving the regularized least-squares problem

f̂ = (f̂k)k∈I(U) = argmin
ĝ∈R|I(U)|

‖y − F (X , I(U))ĝ‖22 + λ ‖ĝ‖22 , (12)

cf. [21, 23, 2], with the basis matrix F (X , I(U)) = (φtrafok (x))x∈X ,k∈I(U). We solve the problem using the iterative
LSQR solver [19]. In order to apply LSQR, we rewrite (12) by observing the equality

‖y − F (X , I(U))ĝ‖22 + λ ‖ĝ‖22 =

∥∥∥∥(y0
)
−
(
F (X , I(U))√

λI

)
ĝ

∥∥∥∥2
2

(13)

with 0 the zero vector in R|I(U)| and I ∈ R|I(U)|,|I(U)| the identity matrix. Note that we always have a unique solution
in this case since the matrix (

F (X , I(U))√
λI

)
has full column rank. However, the solution depends on the regularization parameter λ.

We apply the matrix-free variant of LSQR, i.e., we never explicitly construct the matrix F (X , I(U)). The grouped
transformations introduced in [2] provide oracle functions for the multiplications of F (X , I(U)) and its transposed
F T(X , I(U)) with vectors. For our specific basis functions φtrafok the grouped transformations are based on the
non-equispaced fast cosine transform or NFCT, see [10, 20]. The transformation uses parallelization to separate our
multiplication into smaller, up to ds-dimensional NFCTs which results in an efficient algorithm. For more details we
refer to [2].

In order to solve the minimization we employ the iterative LSQR solver [19] which needs a method for efficient
multiplication with F (X , I(U)) and its adjoint F ∗(X , I(U)) in the periodic case, otherwise its transposed matrix.
This is realized by the Grouped Transformation idea in [2] based on the NFFT or the NFCT, see [10, 20].

One key fact is that the nodes X have to be distributed according to the probability density ω of the space such that
the Moore–Penrose inverse F †(X , I(U)) is well-conditioned. In our case, ω is the density of the standard normal
distribution, i.e., the nodes X have to be distributed accordingly. For a detailed discussion on the properties of those
matrices we refer to [9, 15] where our basis is a special case.

We use the global sensitivity indices %(u, S(X , I(U))f), u ∈ U , from the approximation S(X , I(U))f(x) to compute
approximations for the global sensitivity indices %(u, f) of the function f . Here, we do not consider the index to be a
good approximation if the values are close together, but rather if there order is identical, i.e., we have

%(u1, f) ≤ %(u2, f) =⇒ %(u1, S(X , I(U))f) ≤ %(u2, S(X , I(U))f)

for any pair u1,u2 ∈ U . We assume that this is the case for our choices of index sets I(U). In particular, the quality of
the approximation corresponds to the accuracy of this assumption.

In order to rank the influence of the variables x1, x2, . . . , xd we use the ranking score

r(i) =

∑
u∈{v∈U : i∈v} |{v ∈ U : |u| = |v| , i ∈ v}|−1 %(u, S(X , I(U))f)∑
u∈U

(∑
i∈u |{v ∈ U : |u| = |v| , i ∈ v}|−1

)
%(u, S(X , I(U))f)

. (14)

for i = 1, 2, . . . , d which was introduced in [22]. Note that this score has order-dependent weight and is normalized
such that

∑
i∈[d] r(i) = 1. Computing every score r(i), i ∈ [d] provides an attribute ranking with respect to U showing

the percentage that every variable adds to the variance of the approximation. We then conclude that if we have a good
approximation S(X , I(U))f , the corresponding attribute ranking will be close to the attribute ranking of the function
f .

3.2 Active Set

In this section we describe how to obtain a set of ANOVA terms U for approximation. We are sill working with the
scattered data X ⊆ Rd and y ∈ RM , M ∈ N. The values y may also contain noise. Our first step is to limit the variable
interactions by a superposition threshold ds ∈ [d] which may have been estimated by known smoothness properties (or
different a-priori information) or set to a sensible value if nothing is known. It is also possible to determine an optimal
value through cross-validation. We choose the order-dependent parameters N|u|, |u| = 1, 2, . . . , ds, cf. (11), to obtain
I(U(d, ds)) and with the procedure described in Section 3.1, the approximation S(X , I(U(d, ds)))f .

6
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From the approximation S(X , I(U(d, ds)))f we can then calculate the global sensitivity indices
%(u, S(X , I(U(d, ds)))f), u ∈ U(d, ds), and an attribute ranking r(i), i ∈ [d], see (14). Then we are able
to apply the strategies proposed in [22] to truncate terms from the set U(d, ds).

One obvious method is the truncation of an entire variable xi, i ∈ [d], if the attribute ranking r(i) shows that its
influence is insignificant. Specifically, that would translate to an active set U∗ = {u ∈ U(d, ds) : i /∈ u}. This leads to
a reduction in dimensionality of the problem and greatly simplifies our model.

A different method is active set thresholding where we chooses a threshold vector ε ∈ (0, 1)ds and reduce the ANOVA
terms to the set

U∗(ε) :=
{
u ∈ U(d, ds) : %(u, S(X , I(U(d, ds)))f) > ε|u|

}
.

Here, ε|u| denotes the |u|th entry of the vector ε. The parameter vector ε allows control over how much of the variance
may be sacrificed in order to simplify the model function.

In summary, it is necessary to interpret the information from the approximation S(X , I(U(d, ds)))f and decide on
strategies for truncating the set of ANOVA terms. One may also use different strategies to obtain an active set or any
combination of the multiple approaches, see e.g. [23, 22]. Of course, it is also possible to repeat the procedure multiple
times, i.e., through cross-validation.

4 Forest Fire Prevention

We now apply the previously described method to the data set [1] from the UC Irvine machine learning repository. The
dataset contains information about forest fires in the Montesinho national park in the Trás-os-Montes northeast region
of Portugal. The data was collect from 2002 to 2003. Specifically, we have d = 12 attributes about the fires and the
target variable is the area of the forest that was destroyed by it. If we obtain an efficient model, it can be possible to
predict the risk for a future forest fire using parameters that can be easily measured. This information can then be used
to prepare appropriate countermeasures. The data set has been thoroughly considered in [4] and we compare to the
results they obtained.

group name description

spatial (S) X x-coordinate (1 to 9)
Y y-coordinate (1 to 9)

temporal (T) month month of the year (1 to 12)
day day of the week (1 to 7)

FWI

FFMC FFMC code
DMC DMC code
DC DC code
ISI ISI index

meteorological (M)

temp outside temperature in °C
RH outside relative humidity in %

wind outside wind speed in km/h
rain outside rain in mm/m2

Table 1: Attributes and their corresponding groups

We group the 12 attributes into 4 categories as in [4], i.e., spatial, temporal, FWI system, and meteorological data, see
Table 1. The spatial attributes describe the spatial location of the fire in a 9 by 9 grid of our considered region. The
temporal attributes are the month of the year and the day of the week when the fire occurred. The forest fire weather
index (FWI), cf. [27], is the Canadian system for rating fire danger and the datasets collects several components of it.
Moreover, four meteorological attributes which are used by the FWI index were selected. The target variable describes
the are that was burned by the fire.

In terms of pre-processing, we apply a Z-score transformation to the the variables and the logarithmic transformation
log(1 + ·) to the burned area. The Z-score transformation achieves that our data has zero mean and unit variance. The
logarithmic transformation on the target is necessary since it shows a positive skew with a large number of fires that
have a small size. We denote the data (X ,y) with X = {x1,x2, . . . ,xM} ⊆ R12, M = 517, and y ∈ RM . In the
following subsections, we do not use all of the variables, but build models based only on some groups as denoted in
Table 1, e.g., STM says that we use spatial, temporal and meteorological attributes without the FWI.

7
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Table 2 shows the overall results of our experiment (ANOVA) combined with the benchmark data from [4]. Each value,
our ANOVA results as well as the others, were obtained by averaging over executing a 10-fold cross-validation 30
times. This results in a total of 300 experiments. We used a superposition threshold of ds = 2, cf. (10), and therefore
needed to detect optimal choices for the parameters N1 and N2 from (11), see Table 3. Every experiment utilized 90%
of the data as training set (Xtrain,ytrain) and 10% of the data as test set (Xtest,ytest). The best performing model was
selected based on the mean absolute deviation

MAD =
1

|Xtest|

|Xtest|∑
i=1

|(ỹ)i − (ytest)i| (15)

with ỹ the predictions of our model for the data points in the test set Xtest. As a second error measure, we use the root
mean square error

RMSE =
1√
|Xtest|

√√√√|Xtest|∑
i=1

|(ỹ)i − (ytest)i|2. (16)

We are able to outperform the previously applied method for every subset of attributes in both MAD and RMSE error.
Notably, the difference in the RMSE that penalizes larger deviations in the burned area stronger than the MAD is much
more significant.

attribute selection
model S T FWI S T M FWI M

Naive 18.61 (63.7) 18.61 (63.7) 18.61 (63.7) 18.61 (63.7)
MR 13.07 (64.5) 13.04 (64.4) 13.00 (64.5) 13.01 (64.5)
DT 13.46 (64.4) 13.43 (64.6) 13.24 (64.4) 13.18 (64.5)
RF 13.31 (64.3) 13.04 (64.5) 13.38 (64.0) 12.93 (64.4)
NN 13.09 (64.5) 13.92 (68.9) 13.08 (64.6) 13.71 (66.9)

SVM 13.07 (64.7) 13.13 (64.7) 12.86 (64.7) 12.71 (64.7)
ANOVA 12.75 (45.77) 12.81 (46.7) 12.76 (46.09) 12.65 (45.69)

Table 2: MAD and RMSE (in brackets) for the best performing model in the corresponding attribute subset (underline -
overall best result, bold - best result for this selection).

attribute selection N1 N2 |I| λ

S T FWI 2 6 149 e9

S T M 2 10 261 e10

FWI 2 4 23 e8

M 2 8 47 e7

Table 3: Optimal parameter choices for the experiments from Table 2.

While we replicated the setting of [4] for benchmark purposes, it remains our goal to identify the most important
attributes for the detection of forest fires. Therefore, we now use all 12 attributes of the dataset in obtaining our
approximation and subsequently interpret the results. Figure 3 shows the attribute ranking r(i), i = 1, 2, . . . , 12, and
the global sensitivity indices %(u, S(Xtrain, I(U(12, 2)))f), u ∈ U(12, 2), after computing an approximation with
N1 = N2 = 2 and λ = 1.0.

The attributes 3, 7, and 9 are clearly the most important. They represent the month of the year (3), the DC code of the
FWI (7) and the outside temperature (9). Using only these three attributes and superposition threshold ds = 2, we
computed an approximation with N1 = 2, N2 = 10, and λ = e8. The resulting model yielded a MAD of 12.64 and a
RMSE of 45.57 with 30 times of 10-fold cross validation as before. In summary, we know that the most important
information of our problem is contained in only three attributes and we also obtained a better performing model using
only those three attributes.
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