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In this paper we present new regularized Shannon sampling formulas which
use localized sampling with special window functions, namely Gaussian, B–spline,
and sinh-type window functions. In contrast to the classical Shannon sampling
series, the regularized Shannon sampling formulas possess an exponential decay
and are numerically robust in the presence of noise. Several numerical experiments
illustrate the theoretical results.
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1 Introduction

The classical Whittaker–Kotelnikov–Shannon sampling theorem plays a fundamental role in
signal processing, since this result describes the close relation between a bandlimited function
and its equidistant samples. This sampling theorem states that any function f ∈ L2(R) with
bandwidth ≤ N

2 , i. e., the support of the Fourier transform

f̂(v) :=

∫

R
f(x) e−2πixv dx , v ∈ R ,

is contained in
[
− N

2 ,
N
2

]
, can be recovered from its samples f

(
ℓ
L

)
, ℓ ∈ Z, with L ≥ N and

it holds
f(x) =

∑

ℓ∈Z
f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
, x ∈ R , (1.1)

with the sinc function

sincx :=

{
sinx
x x ∈ R \ {0} ,

1 x = 0 .
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Unfortunately, the practical use of this sampling theorem is limited, since it requires infinitely
many samples which is impossible in practice. Further the sinc function decays very slowly
such that the Shannon sampling series

∑

ℓ∈Z
f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
, x ∈ R ,

has rather poor convergence. Moreover, in the presence of noise or quantization in the samples
f
(
ℓ
L

)
, ℓ ∈ Z, the convergence of Shannon sampling series may even break down completely

(see [3]).

To overcome these drawbacks, one can use the following three techniques (see [12, 5, 7, 17]):
1. The function sinc(Lπ ·) is regularized by a truncated window function

φm(x) := φ(x)1[−m/L,m/L](x) , x ∈ R ,

where the window function φ : R → [0, 1] belongs to the set Φm,L (as defined in Section 3)
and where 1[−m/L,m/L] denotes the indicator function of the interval

[
− m

L ,
m
L

]
with some

m ∈ N \ {1}. Then we recover a function f ∈ L2(R) with bandwidth ≤ N
2 by the regularized

Shannon sampling formula

(Rφ,mf)(x) :=
∑

ℓ∈Z
f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
φm

(
x− ℓ

L

)
,

where L ≥ N . Obviously, this is an interpolating approximation of f , since it holds

(Rφ,mf)
(
k
L

)
= f

(
k
L

)
, k ∈ Z .

2. The use of the truncated window function φm with compact support
[
− m

L ,
m
L

]
leads to

localized sampling of f , i. e., the computation of (Rφ,mf)(x) for x ∈ Z \ 1
L Z requires only 2m

samples f
(
k
L

)
, where k ∈ Z fulfills the condition |k − Lx| ≤ m. If f has bandwidth ≤ N/2

and if L ≥ N , then the reconstruction of f on the interval [0, 1] requires only 2m+L samples
f
(
ℓ
L

)
with ℓ = −m, 1−m, . . . , m+ L.

3. In many applications, one usually employs oversampling, i. e., a function f ∈ L2(R) of
bandwidth ≤ N/2 is sampled on a finer grid 1

L Z with L > N .

This concept of regularized Shannon sampling formulas with localized sampling and over-
sampling has already been studied by various authors, e. g. in [12, 15] and references therein
for the Gaussian window function. An improvement of the theoretical error bounds for the
Gaussian window function was made by [5], whereas oversampling was neglected in this work.
Rather, the special case L = N = 1 was studied. The case of erroneous sampling for the
Gaussian window function was examined in [14]. Generalizations of the Gaussian regularized
Shannon sampling formula to holomorphic functions f were introduced by [16] using con-
tour integration and by [18] for the approximation of derivatives of f . A survey of different
approaches for window functions can be found in [13]. Furthermore, in [17] the problem
was approached in Fourier space. Oversampling then is equivalent to continuing the Fourier
transform of the sinc function on the larger interval [−L/2, L/2]. Here the aim is to find a
regularization function whose Fourier transform is smooth. However, the resulting function
does not have an explicit representation and therefore cannot be directly used in spatial do-
main. Nevertheless, the complexity and efficiency of the received methods was not the main
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focus of the aforementioned approaches. On the contrary, we now propose new window func-
tions φ such that smaller truncation parameters m are sufficient for achieving high accuracy,
therefore yielding short sums being evaluable very fast.

In this paper we present new regularized Shannon sampling formulas with localized sam-
pling. We derive new estimates of the uniform approximation error

max
x∈R

∣∣f(x)− (Rφ,mf)(x)
∣∣ ,

where we apply several window functions φ, such as rectangular, Gaussian, B–spline, and sinh-
type window functions. It is shown that the uniform approximation error decays exponentially
with respect to m, if φ ∈ Φm,L is the Gaussian, B–spline, or sinh-type window function.
Otherwise, if φ ∈ Φm,L is chosen as the rectangular window function, then the uniform
approximation error of the regularized Shannon sampling formula has a poor decay of order
m−1/2. Further we show that the regularized Shannon sampling formulas are numerically
robust for noisy samples, i. e., if φ ∈ Φm,L is the Gaussian, B–spline, or sinh-type window
function, then the uniform perturbation error only grows as m1/2.

In our approach we need the Fourier transform of the product of sinc(Lπ ·) and the window
function φ. Since the sinc function belongs to L2(R), but not to L1(R), we present the
convolution property of the Fourier transform for L2(R) functions in the preliminary Section 2
(see Lemma 2.2). In Section 3 we consider regularized Shannon sampling formulas for an
arbitrary window function φ ∈ Φm,L. Here the main results are Theorem 3.2 (with a unified
approach to error estimates for regularized Shannon sampling formulas) and Theorem 3.4
(on the numerical robustness of regularized Shannon sampling formulas). In Section 4 we
consider the Gaussian window function (as in [12, 5]). In Theorem 4.3 it is shown that the
uniform approximation error decays exponentially with respect to m. In Section 5 we use
the B–spline window function and prove in Theorem 5.5 that the uniform approximation
error decays exponentially with respect to m. In Section 6 we discuss the sinh-type window
function. Then in Theorem 6.3 it is proved that the uniform approximation error decays
exponentially with respect to m. Several numerical experiments illustrate the theoretical
results. Finally, in the concluding Section 7, we compare the proposed window functions and
show the superiority of the new proposed sinh-type window function.

2 Convolution property of the Fourier transform

Let C0(R) denote the Banach space of continuous functions f : R → C vanishing as |x| → ∞
with norm

∥f̂∥C0(R) := max
t∈R

|f̂(t)| .

As known, the Fourier transform defined by

f̂(v) :=

∫

R
f(t) e−2πivt dt , v ∈ R , (2.1)

is a continuous mapping from L1(R) into C0(R) with

∥f̂∥C0(R) ≤ ∥f∥L1(R) :=

∫

R
|f(t)| dt .
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Here we are interested in the Hilbert space L2(R) with inner product and norm

⟨f, g⟩L2(R) :=

∫

R
f(t) g(t) dt , ∥f∥L2(R) :=

(
⟨f, f⟩L2(R)

)1/2
.

By the theorem of Plancherel, the Fourier transform is also an invertible, continuous mapping
from L2(R) onto itself with ∥f∥L2(R) = ∥f̂∥L2(R).

For f, g ∈ L1(R), the convolution property of the Fourier transform reads as follows

(f ∗ g)̂ = f̂ ĝ ∈ C0(R) , (2.2)

where the convolution is defined as

(f ∗ g)(x) :=
∫

R
f(x− t) g(t) dt , x ∈ R .

However, for any f , g ∈ L2(R) the convolution property of the Fourier transform is not true in
the form (2.2), since by Young’s inequality f ∗ g ∈ C0(R), by Hölder’s inequality f̂ ĝ ∈ L1(R)
and since the Fourier transform does not map C0(R) into L1(R). Thus, the convolution
property of the Fourier transform in L2(R) has the following form:

Lemma 2.1. For all f, g ∈ L2(R) it holds

f ∗ g = (f̂ ĝ)̌ ∈ C0(R) , (2.3)

where ȟ denotes the inverse Fourier transform of h ∈ L1(R) defined as

ȟ(t) :=

∫

R
h(v) e2πivt dv , t ∈ R .

Proof. For arbitrary f, g ∈ L2(R) it holds f̂ , ĝ ∈ L2(R). Since the Schwartz space S(R) is
dense in L2(R), there exist sequences (fn)

∞
n=1 and (gn)

∞
n=1 in S(R) such that

lim
n→∞

∥fn − f∥L2(R) = lim
n→∞

∥gn − g∥L2(R) = 0 . (2.4)

Since the Fourier transform is a continuous mapping on L2(R), it follows that

lim
n→∞

∥f̂n − f̂∥L2(R) = lim
n→∞

∥ĝn − ĝ∥L2(R) = 0 . (2.5)

If we write

(f ∗ g)− (fn ∗ gn) = (f − fn) ∗ g + fn ∗ (g − gn) ,

we see by the triangle inequality and Young’s inequality that

∥(f ∗ g)− (fn ∗ gn)∥C0(R) ≤ ∥f − fn∥L2(R) ∥g∥L2(R) + ∥fn∥L2(R) ∥g − gn∥L2(R)

and hence by (2.4)

lim
n→∞

∥(f ∗ g)− (fn ∗ gn)∥C0(R) = 0 . (2.6)

If we write

f̂ ĝ − f̂n ĝn = (f̂ − f̂n) ĝ + f̂n (ĝ − ĝn) ,
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we see by the triangle inequality and Hölder’s inequality that

∥f̂ ĝ − f̂n ĝn∥L1(R) ≤ ∥f̂ − f̂n∥L2(R) ∥ĝ∥L2(R) + ∥f̂n∥L2(R) ∥ĝ − ĝn∥L2(R)

and hence by (2.5)
lim
n→∞

∥f̂ ĝ − f̂n ĝn∥L1(R) = 0 . (2.7)

By the convolution property of the Fourier transform in S(R), we have for fn, gn ∈ S(R) that

(fn ∗ gn)̂ = f̂n ĝn .

Note that fn ∗ gn ∈ S(R) and f̂n ĝn ∈ S(R) (see [9, p. 175]). Since the Fourier transform on
S(R) is invertible (see [9, p. 175]), it holds

fn ∗ gn = (f̂n ĝn)̌ . (2.8)

Moreover, since the inverse Fourier transform is a continuous mapping from L1(R) into C0(R),
it holds by [9, pp. 66–67] that

∥(f̂ ĝ)̌− (f̂n ĝn)̌ ∥C0(R) ≤ ∥f̂ ĝ − f̂n ĝn∥L1(R) .

From (2.7) it follows that
lim
n→∞

∥(f̂ ĝ)̌− (f̂n ĝn)̌ ∥C0(R) = 0 . (2.9)

Thus, by (2.8) we conclude that

∥f ∗ g − (f̂ ĝ)̌ ∥C0(R) ≤ ∥f ∗ g − fn ∗ gn∥C0(R) + ∥fn ∗ gn − (f̂ ĝ)̌ ∥C0(R)

= ∥f ∗ g − fn ∗ gn∥C0(R) + ∥(f̂n ĝn)̌− (f̂ ĝ)̌ ∥C0(R) .

For n → ∞ the right hand side of above estimate converges to zero by (2.6) and (2.9). This
implies (2.3).

We obtain the following equivalent formulation of the convolution property in L2(R), if we
replace f ∈ L2(R) by f̂ ∈ L2(R) and g ∈ L2(R) by ĝ ∈ L2(R) in (2.3).

Lemma 2.2. For all f , g ∈ L2(R) it holds

f̂ ∗ ĝ = (f g)̂ ∈ C0(R) . (2.10)

Proof. For any f , g ∈ L2(R) it holds

ˆ̂
f = f(− ·) , ˆ̂g = g(− ·) .

Note that by Hölder’s inequality it holds f g ∈ L1(R). Then by above Lemma 2.1 it follows
that

(f̂ ∗ ĝ)(t) =
( ˆ̂
f ˆ̂g
)
(̌t) =

(
f(− ·) g(− ·)

)
(̌t)

=

∫

R
f(−v) g(−v) e2πivt dv =

∫

R
f(v) g(v) e−2πivt dv = (f g)̂ (t) .

This completes the proof.

Note that Lemma 2.2 improves a corresponding result in [2, p. 209]. There it was remarked
that for f , g ∈ L2(R) it holds (f g)̂ = f̂ ∗ ĝ ∈ L∞(R), but by Lemma 2.2 the function f̂ ∗ ĝ
belongs to C0(R) ⊂ L∞(R).
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3 Regularized Shannon sampling formulas with localized sampling

Let
Bδ(R) := {f ∈ L2(R) : supp f̂ ⊆ [−δ, δ]}

be the Paley–Wiener space. The functions of Bδ(R) are called bandlimited to [−δ, δ], where
δ > 0 is the so-called bandwidth. By definition, the Paley–Wiener space Bδ(R) consists of
equivalence classes of almost equal functions. Each of these equivalence classes contains a
smooth function, since by inverse Fourier transform it holds for each r ∈ N0 that

f (r)(x) =

∫ δ

−δ
f̂(v) (2πiv)r e2πivx dv ,

i. e., f (r) ∈ C0(R), because (2πi·)r f̂ ∈ L1([−δ, δ]). In the following we will always select the
smooth representation of an equivalence class in Bδ(R).

In this paper, we consider bandlimited functions f ∈ Bδ(R) with δ ∈ (0, N/2), where N ∈ N
is fixed. For L := N(1 + λ) with λ ≥ 0, and any m ∈ N \ {1} with 2m≪ L, we introduce the
set Φm,L of all window functions φ : R → [0, 1] with the following properties:
• Each window function φ belongs to L2(R) and is even, positive on (−m/L, m/L) and
continuous on R \ {−m/L, m/L}.
• Each restricted window function φ|[0,∞) is decreasing with φ(0) = 1 .
• For each window function φ, its Fourier transform

φ̂(v) :=

∫

R
φ(t) e−2πivt dt = 2

∫ ∞

0
φ(t) cos(2π vt) dt

is explicitly known.
Examples of such window functions are the rectangular window function

φrect(x) := 1[−m/L,m/L](x) , x ∈ R ,

where 1[−m/L,m/L] is the indicator function of the interval [−m/L, m/L], the modified B-
spline window function

φB(x) :=
1

M2s(0)
M2s

(
Lxs

m

)
, x ∈ R ,

where M2s is the centered cardinal B–spline of even order 2s, the Gaussian window function

φGauss(x) := e−x2/(2σ2) , x ∈ R ,

with some σ > 0, and the sinh-type window function

φsinh(x) :=
1

sinhβ
sinh

(
β
√
1− (Lx/m)2

)
1[−m/L,m/L](x) , x ∈ R ,

with certain β > 0. All these window functions are well-studied in the context of the noneq-
uispaced fast Fourier transform (NFFT), see e. g. [10] and references therein.

Let φ ∈ Φm,L be a given window function. By

φm(x) := φ(x)1[−m/L,m/L](x) , x ∈ R , (3.1)
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we denote the truncated window function of φ ∈ Φm,L. We shall use the regularized Shannon
sampling formula with localized sampling

(Rφ,mf)(t) :=
∑

ℓ∈Z
f
(
ℓ
L

)
sinc

(
Lπ
(
t− ℓ

L

))
φm

(
t− ℓ

L

)
, t ∈ R , (3.2)

to rapidly reconstruct the values f(t) for t ∈ R from given sampling data f
(
ℓ
L

)
, ℓ ∈ Z,

with high accuracy. Obviously, Rφ,mf interpolates f on 1
L Z. For t ∈

(
0, 1

L

)
the regularized

Shannon sampling formula reads as follows

(Rφ,mf)(t) =
∑

ℓ∈I r
2m

f
(
ℓ
L

)
sinc

(
Lπ
(
t− ℓ

L

))
φm

(
t− ℓ

L

)

with the index set I r
2m := {−m+ 1, −m+ 2, . . . , m}.

It is known that {sinc
(
Lπ
(
· − ℓ

L

))
: ℓ ∈ Z} is an orthogonal system in L2(R), since by the

shifting property the Fourier transform of sinc
(
Lπ
(
· − ℓ

L

))
is equal to

1

L
e−2πiℓv/L 1[−L/2, L/2](v) , v ∈ R ,

and since by the Parseval identity it holds for all ℓ, k ∈ Z that

〈
sinc

(
Lπ
(
· − ℓ

L

))
, sinc

(
Lπ
(
· − k

L

))〉
L2(R) =

1

L2

∫ L/2

−L/2
e2πi(k−ℓ) v/L dv =

1

L
δℓ−k

with the Kronecker symbol δℓ−k. Hence, the system {sinc
(
Lπ
(
· − ℓ

L

))
: ℓ ∈ Z} forms an

orthogonal basis of BN/2(R) with
〈
sinc

(
Lπ
(
· − ℓ

L

))
, sinc

(
Lπ
(
· − k

L

))〉
L2(R) =

1
L δℓ−k (3.3)

for all ℓ, k ∈ Z. From (1.1) and (3.3) it follows that for any f ∈ Bδ(R) ⊂ BL/2(R) with
δ ∈ (0, N/2) and L ≥ N it holds

∥f∥2L2(R) =
1
L

∑

ℓ∈Z

∣∣f
(
ℓ
L

)∣∣2 . (3.4)

Firstly, we consider the regularized Shannon sampling formula (3.2) with the simple rectangu-
lar window function φ = φrect, i. e., for some m ∈ N \ {1} we form the rectangular regularized
Shannon sampling formula with localized sampling

(Rrect,mf)(t) :=
∑

ℓ∈Z
f
(
ℓ
L

)
sinc

(
Lπ
(
t− ℓ

L

))
1[−m/L,m/L]

(
t− ℓ

L

)
, t ∈ R . (3.5)

Obviously, the rectangular regularized Shannon sampling formula (3.5) interpolates f on the
grid 1

L Z, i. e., for all m ∈ N \ {1}, the interpolation property

f
(
ℓ
L

)
= (Rrect,mf)

(
ℓ
L

)
, ℓ ∈ Z , (3.6)

is fulfilled. Especially for t ∈
(
0, 1

L

)
, we obtain the rectangular regularized Shannon sampling

formula
(Rrect,mf)(t) =

∑

ℓ∈I r
2m

f
(
ℓ
L

)
sinc

(
Lπ
(
t− ℓ

L

))
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as an approximation to f(t). On any interval
(
k
L ,

k+1
L

)
with k ∈ Z the rectangular regularized

Shannon sampling formula reads as follows

(Rrect,mf)
(
t+ k

L

)
=
∑

ℓ∈I r
2m

f
(
ℓ+k
L

)
sinc

(
Lπ
(
t− ℓ

L

))
, t ∈

(
0, 1

L

)
. (3.7)

Since the sinc function decays slowly at infinity, (3.5) is not a good approximation to f on
R. The convergence rate of the sequence

(
f −Rrect,mf

)∞
m=1

is only O(m−1/2) for sufficiently
large m. The following lemma is a consequence of a result in [7].

Lemma 3.1. Let f ∈ BN/2(R) with fixed N ∈ N, L := N(1 + λ) with λ ≥ 0 and m ∈ N \ {1}
be given. Then it holds

∥f −Rrect,mf∥C0(R) ≤
L

π

√
2

m
+

1

m2
∥f∥L2(R) .

Proof. Since Rrect,mf possesses similar representations (3.7) on each interval
(
k
L ,

k+1
L

)
,

k ∈ Z, we consider f(t)− (Rm,rectf)(t) only for t ∈
[
0, 1

L

]
and show that

max
t∈[0, 1/L]

|f(t)− (Rrect,mf)(t)| ≤
L

π

√
2

m
+

1

m2
∥f∥L2(R) . (3.8)

For f ∈ BN/2(R) it holds the equality (3.4). The Whittaker–Kotelnikov–Shannon sampling
theorem (see (1.1)) implies that

f(t)− (Rrect,mf)(t) =
∑

ℓ∈Z\I r
2m

f
(
ℓ
L

)
sinc

(
Lπ
(
t− ℓ

L

))
.

We introduce the auxiliary function

hm(t) :=
∑

ℓ∈Z\I r
2m

[
sinc

(
Lπ
(
t− ℓ

L

))]2 ≥ 0 , t ∈
[
0, 1

L

]
.

Then by the Cauchy–Schwarz inequality and (3.4) it follows that

∣∣f(t)− (Rrect,mf)(t)
∣∣ =

∣∣∣∣
∑

ℓ∈Z\I r
2m

f
(
ℓ
L

)
sinc

(
Lπ
(
t− ℓ

L

))∣∣∣∣

≤
( ∑

ℓ∈Z\I r
2m

∣∣f
(
ℓ
L

)∣∣2
)1/2 ( ∑

ℓ∈Z\I r
2m

[
sinc

(
Lπ
(
t− ℓ

L

))]2)1/2

≤ L
√
hm(t) ∥f∥L2(R) . (3.9)

By the integral test for convergence of series we estimate the function

hm(t) =
(sin(Lπt))2

π2

∑

ℓ∈Z\I r
2m

1

(Lt− ℓ)2
≤ 1

π2

∑

k∈Z\I r
2m

1

k2

≤ 1

π2

(
1

m2
+ 2

∫ ∞

m

1

t2
dt

)
=

1

π2

(
1

m2
+

2

m

)
(3.10)
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for t ∈
(
0, 1

L

)
. Then from (3.9) and (3.10) it follows for each t ∈

(
0, 1

L

)
that

∣∣f(t)− (Rrect,mf)(t)
∣∣ ≤ L

π

√
2

m
+

1

m2
∥f∥L2(R) .

This inequality is also true for t = 0 and t = 1
L by (3.6). Hence, this implies the estimate

(3.8).

By the same technique, the above estimate of the approximation error

max
t∈[k/L, (k+1)/L]

∣∣f(t)− (Rrect,mf)(t)
∣∣

can be shown for each k ∈ Z. This completes the proof.

In view of the slow convergence of the sequence
(
Rrect,mf(t)

)∞
m=1

, it has been proposed
to modify the rectangular regularized Shannon sampling sum (3.5) by multiplying the sinc
function with a more convenient truncated window function φ ∈ Φm,L (see [12] and [5]). For
any m ∈ N \ {1} the regularized Shannon sampling formula with localized sampling is given
by

(Rφ,mf)(t) =
∑

ℓ∈Z
f
(
ℓ
L

)
sinc

(
Lπ
(
t− ℓ

L

))
φm

(
t− ℓ

L

)
, t ∈ R , (3.11)

with the truncated window function φm(x) = φ(x)1[−m/L,m/L](x). Note that it holds the
interpolation property

f
(
ℓ
L

)
= (Rφ,mf)

(
ℓ
L

)
, ℓ ∈ Z . (3.12)

We reconstruct f by Rφ,mf for each open interval
(
k
L ,

k+1
L

)
, k ∈ Z. Especially for t ∈

(
0, 1

L

)
,

we obtain the regularized Shannon sampling formula

(Rφ,mf)(t) =
∑

ℓ∈I r
2m

f
(
ℓ
L

)
ψ
(
t− ℓ

L

)
,

where

ψ(x) := sinc(Lπx)φ(x) (3.13)

is the regularized sinc function. For the reconstruction of f on any interval
(
k
L ,

k+1
L

)
with

k ∈ Z, we use

(Rφ,mf)
(
t+ k

L

)
=
∑

ℓ∈I r
2m

f
(
ℓ+k
L

)
ψ
(
t− ℓ

L

)
, t ∈

(
0, 1

L

)
. (3.14)

Now we estimate the uniform approximation error

∥f −Rφ,mf∥C0(R) := max
t∈R

∣∣f(t)− (Rφ,mf)(t)
∣∣ (3.15)

of the regularized Shannon sampling formula.
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Theorem 3.2. Let f ∈ Bδ(R) with δ = τN , τ ∈ (0, 1/2), N ∈ N, L = N(1 + λ) with λ ≥ 0
and m ∈ N \ {1} be given. Further let φ ∈ Φm,L with the truncated window function (3.1) be
given.
Then the regularized Shannon sampling formula (3.11) with localized sampling satisfies

∥f −Rφ,mf∥C0(R) ≤
(
E1(m, δ, L) + E2(m, δ, L)

)
∥f∥L2(R) , (3.16)

where the corresponding error constants are defined by

E1(m, δ, L) :=
√
2δ max

v∈[−δ,δ]

∣∣∣∣∣1−
∫ v+L

2

v−L
2

φ̂(u) du

∣∣∣∣∣ , (3.17)

E2(m, δ, L) :=

√
2L

πm

(
φ2
(
m
L

)
+ L

∫ ∞

m
L

φ2(t) dt

)1/2

. (3.18)

Proof. Initially, we only consider the error on the interval
[
0, 1

L

]
. Here we split the appro-

ximation error

f(t)− (Rφ,mf)(t) = e1(t) + e2,0(t) , t ∈
[
0, 1

L

]
,

into the regularization error

e1(t) := f(t)−
∑

ℓ∈Z
f
(
ℓ
L

)
ψ
(
t− ℓ

L

)
, t ∈ R , (3.19)

and the truncation error

e2,0(t) :=
∑

ℓ∈Z
f
(
ℓ
L

)
ψ
(
t− ℓ

L

)
− (Rmf)(t) , t ∈

[
0, 1

L

]
, (3.20)

where ψ denotes the regularized sinc function (3.13).

We start with the regularization error (3.19). By Lemma 2.2, the Fourier transform of ψ
reads as

ψ̂(v) =
1

L

∫

R
1[−L/2, L/2](v − u) φ̂(u) du =

1

L

∫ v+L/2

v−L/2
φ̂(u) du .

Hence, using the shifting property of the Fourier transform, the Fourier transform of ψ
(
· − ℓ

L

)

reads as

1

L
e−2πivℓ/L

∫ v+L/2

v−L/2
φ̂(u) du .

Therefore, the Fourier transform of the regularization error e1 has the form

ê1(v) = f̂(v)−
(∑

ℓ∈Z
f
(
ℓ
L

) 1

L
e−2πivℓ/L

) ∫ v+L/2

v−L/2
φ̂(u) du . (3.21)

By the assumption f ∈ Bδ(R) with δ ∈ (0, N/2) and L ≥ N , it holds

supp f̂ ⊆ [−δ, δ] ⊂ [−L/2, L/2]
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and hence the restricted function f̂ |[−L/2, L/2] belongs to L
2([−L/2, L/2]). Thus, this function

possesses the L-periodic Fourier expansion

f̂(v) =
∑

k∈Z
ck(f̂) e

−2πikv/L , v ∈ [−L/2, L/2] ,

with the Fourier coefficients

ck(f̂) =
1

L

∫ L/2

−L/2
f̂(u) e2πiku/L du =

1

L
f
(
k
L

)
, k ∈ Z .

Then f̂ can be represented as

f̂(v) = f̂(v)1[−δ, δ](v) =
(∑

k∈Z

1
L f
(
k
L

)
e−2πikv/L

)
1[−δ, δ](v) , v ∈ R . (3.22)

Introducing the function

η(v) := 1[−δ, δ](v)−
∫ v+L/2

v−L/2
φ̂(u) du , v ∈ R , (3.23)

we see by inserting (3.22) into (3.21) that ê1(v) = f̂(v) η(v) and thereby |ê1(v)| ≤ |f̂(v)| |η(v)|.
Thus, by inverse Fourier transform we get

|e1(t)| =
∣∣∣∣
∫

R
ê1(v) e

2πitv dv

∣∣∣∣ ≤
∫

R
|ê1(v)|dv ≤

∫ δ

−δ
|f̂(v)| |η(v)|dv

≤ max
v∈[−δ,δ]

|η(v)|
∫ δ

−δ
|f̂(v)| dv .

Using Cauchy–Schwarz inequality and Parseval identity, we see that

∫ δ

−δ
|f̂(v)|dv ≤

(∫ δ

−δ
12 dv

)1/2(∫ δ

−δ
|f̂(v)|2 dv

)1/2

=
√
2δ ∥f̂∥L2(R) =

√
2δ ∥f∥L2(R).

In summary, using the error constant (3.17) this yields

∥e1∥C0(R) ≤ E1(m, δ, L) ∥f∥L2(R) .

Now we estimate the truncation error. By (3.20) it holds for t ∈
(
0, 1

L

)
that

e2,0(t) =
∑

ℓ∈Z
f
(
ℓ
L

)
ψ
(
t− ℓ

L

) [
1− 1[−m/L,m/L]

(
t− ℓ

L

)]
=

∑

ℓ∈Z\I r
2m

f
(
ℓ
L

)
ψ
(
t− ℓ

L

)
.

Using (3.13) and the non-negativity of φ, we receive

|e2,0(t)| ≤
∑

ℓ∈Z\I r
2m

∣∣f
(
ℓ
L

)∣∣ ∣∣sinc
(
Lπ
(
t− ℓ

L

))∣∣φ
(
t− ℓ

L

)
.

For t ∈
(
0, 1

L

)
and ℓ ∈ Z \ I r

2m we obtain

∣∣sinc
(
Lπ
(
t− ℓ

L

))∣∣ ≤ 1

π |Lt− ℓ| ≤
1

πm

11



and hence

|e2,0(t)| ≤
1

πm

∑

ℓ∈Z\I r
2m

∣∣f
(
ℓ
L

)∣∣φ
(
t− ℓ

L

)
.

Then the Cauchy–Schwarz inequality implies that

|e2,0(t)| ≤
1

πm

( ∑

ℓ∈Z\I r
2m

∣∣f
(
ℓ
L

)∣∣2
)1/2( ∑

ℓ∈Z\I r
2m

φ2
(
t− ℓ

L

))1/2

.

By (3.4) it holds ( ∑

ℓ∈Z\I r
2m

∣∣f
(
ℓ
L

)∣∣2
)1/2

≤
√
L ∥f∥L2(R) .

Since φ|[0,∞) decreases monotonously by assumption, for t ∈
(
0, 1

L

)
we can estimate the series

as follows

∑

ℓ∈Z\I r
2m

φ2
(
t− ℓ

L

)
=

( −m∑

ℓ=−∞
+

∞∑

ℓ=m+1

)
φ2
(
t− ℓ

L

)
=

∞∑

ℓ=m

φ2
(
t+ ℓ

L

)
+

∞∑

ℓ=m+1

φ2
(
t− ℓ

L

)

≤
∞∑

ℓ=m

φ2
(
ℓ
L

)
+

∞∑

ℓ=m+1

φ2
(
1
L − ℓ

L

)
= 2

∞∑

ℓ=m

φ2
(
ℓ
L

)
.

Using the integral test for convergence of series, we obtain that

∞∑

ℓ=m

φ2
(
ℓ
L

)
= φ2

(
m
L

)
+

∞∑

ℓ=m+1

φ2
(
ℓ
L

)
< φ2

(
m
L

)
+

∫ ∞

m
φ2
(
t
L

)
dt = φ2

(
m
L

)
+ L

∫ ∞

m/L
φ2(t) dt .

By the interpolation property of Rφ,mf , it holds e2,0(0) = e2,0
(
1
L

)
= 0. Hence, we obtain by

(3.18) that

max
t∈[0,1/L]

|e2,0(t)| ≤
√
L

πm
∥f∥L2(R)

(
2φ2

(
m
L

)
+ 2L

∫ ∞

m/L
φ2(t) dt

)1/2

= E2(m, δ, L) ∥f∥L2(R) .

By the same technique, this error estimate can be shown for each interval
[
k
L ,

k+1
L

]
with

k ∈ Z. On the open interval
(
k
L ,

k+1
L

)
with k ∈ Z, we split the error by (3.14) in the form

f
(
t+ k

L

)
− (Rφ,mf)

(
t+ k

L

)
= e1

(
t+ k

L

)
+ e2,k(t) , t ∈

(
0, 1

L

)
,

with

e1
(
t+ k

L

)
= f

(
t+ k

L

)
−
∑

ℓ∈Z
f
(
ℓ
L

)
ψ
(
t− ℓ−k

L

)
= f

(
t+ k

L

)
−
∑

ℓ∈Z
f
(
ℓ+k
L

)
ψ
(
t− ℓ

L

)
,

e2,k(t) :=
∑

ℓ∈Z\I r
2m

f
(
ℓ+k
L

)
ψ
(
t− ℓ

L

)
.

As above shown, it holds

∥∥e1
(
·+ k

L

)∥∥
C0(R)

= ∥e1∥C0(R) ,
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|e2,k(t)| ≤ E2(m, δ, L) ∥f∥L2(R) , t ∈
(
0, 1

L

)
.

By the interpolation property of Rφ,mf , it holds e2,0
(
k
L

)
= e2,0

(
k+1
L

)
= 0 for each k ∈ Z.

Hence, it follows that

max
t∈[k/L, (k+1)/L]

|f(t)− (Rφ,mf)(t)| ≤ ∥e1∥C0(R) + max
t∈[0, 1/L]

|e2,k(t)|

≤
(
E1(m, δ, L) + E2(m, δ, L)

)
∥f∥L2(R) .

This completes the proof.

Remark 3.3. Theorem 3.2 can be simplified, if the window function φ ∈ Φm,L is continuous
on R and vanishes on R \

[
− m

L ,
m
L

]
. Then the truncation errors e2,k(t) are equal to zero for

all t ∈
(
0, 1

L

)
and k ∈ Z, such that E2(m, δ, L) = 0. For such window functions φ ∈ Φm,L we

obtain the simple error estimate

∥f −Rφ,mf∥C0(R) ≤ E1(m, δ, L) ∥f∥L2(R) .

We remark that this is the case for the B–spline as well as the sinh-type window function, but
not for the Gaussian window function since φGauss does not vanish on R\

[
− m

L ,
m
L

]
. Also the

rectangular window function does not fit into this setting since φrect is not continuous on R.

If the samples f
(
ℓ
L

)
, ℓ ∈ Z, of a bandlimited function f ∈ Bδ(R) are not known exactly, i. e.,

only erroneous samples f̃ℓ := f
(
ℓ
L

)
+εℓ with |εℓ| ≤ ε, ℓ ∈ Z, are known, then the corresponding

Shannon sampling series may differ appreciably from f (see [3]). In contrast to the Shannon
sampling series, the regularized Shannon sampling formula is numerically robust. Here we
denote the regularized Shannon sampling formula with erroneous samples f̃ℓ by

(Rφ,mf̃)(t) =
∑

ℓ∈Z
f̃ℓ sinc

(
Lπ
(
t− ℓ

L

))
φm

(
t− ℓ

L

)
, t ∈ R . (3.24)

Theorem 3.4. Let f ∈ Bδ(R) with δ = τN , τ ∈ (0, 1/2), N ∈ N, L = N(1 + λ) with λ ≥ 0
and m ∈ N \ {1} be given. Further let φ ∈ Φm,L with the truncated window function (3.1) as
well as f̃ℓ = f(ℓ/L) + εℓ, where |εℓ| ≤ ε for all ℓ ∈ Z, be given.
Then the regularized Shannon sampling sum (3.11) with localized sampling is numerically
robust and satisfies

∥Rφ,mf̃ −Rφ,mf∥C0(R) ≤ ε
(
2 + L φ̂(0)

)
, (3.25)

∥f −Rφ,mf̃∥C0(R) ≤ ∥f −Rφ,mf∥C0(R) + ε
(
2 + L φ̂(0)

)
. (3.26)

Proof. Initially, we only consider the error on the interval
[
0, 1

L

]
. By (3.11) it holds

ẽ0(t) := (Rφ,mf̃)(t)− (Rφ,mf)(t)

=
∑

ℓ∈Z

(
f̃ℓ − f

(
ℓ
L

))
ψ
(
t− ℓ

L

)
=
∑

ℓ∈Z
εℓ ψ

(
t− ℓ

L

)
, t ∈

(
0, 1

L

)
.

Using (3.13), the non-negativity of φ and |εℓ| ≤ ε, we receive

|ẽ0(t)| ≤
∑

ℓ∈I r
2m

|εℓ|
∣∣sinc

(
Lπ
(
t− ℓ

L

))∣∣φ
(
t− ℓ

L

)
≤ ε

∑

ℓ∈I r
2m

φ
(
t− ℓ

L

)
.
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Since φ|[0,∞) decreases monotonously by assumption, we can estimate the sum for t ∈
(
0, 1

L

)

as follows

∑

ℓ∈I r
2m

φ
(
t− ℓ

L

)
=
( 0∑

ℓ=−m+1

+

m∑

ℓ=1

)
φ
(
t− ℓ

L

)
=

m−1∑

ℓ=0

φ
(
t+ ℓ

L

)
+

m∑

ℓ=1

φ
(
t− ℓ

L

)

≤
m−1∑

ℓ=0

φ
(
ℓ
L

)
+

m∑

ℓ=1

φ
(
1
L − ℓ

L

)
= 2

m−1∑

ℓ=0

φ
(
ℓ
L

)
.

Using the integral test for convergence of series, we obtain that

m−1∑

ℓ=0

φ
(
ℓ
L

)
< φ(0) +

∫ m−1

0
φ
(
t
L

)
dt = φ(0) + L

∫ (m−1)/L

0
φ(t) dt .

By the definition of the Fourier transform (2.1) it holds for φ ∈ Φm,L that

φ̂(0) =

∫

R
φ(t) dt ≥

∫ m/L

−m/L
φ(t) dt = 2

∫ m/L

0
φ(t) dt ≥ 2

∫ (m−1)/L

0
φ(t) dt ,

and therefore

|ẽ0(t)| ≤ 2 ε

m−1∑

ℓ=0

φ
(
ℓ
L

)
≤ 2 ε

(
φ(0) + L

2 φ̂(0)
)
= ε
(
2φ(0) + L φ̂(0)

)
, t ∈

(
0, 1

L

)
.

Additionally, by the interpolation property (3.12), it holds |ẽ0(0)| = |ε0| ≤ ε as well as∣∣ẽ0
(
1
L

)∣∣ = |ε1| ≤ ε. Hence, by φ ∈ Φm,L we have φ(0) = 1 and therefore we obtain that

max
t∈[0,1/L]

|ẽ0(t)| ≤ ε
(
2 + L φ̂(0)

)
.

By the same technique, this error estimate can be shown for each interval
[
k
L ,

k+1
L

]
with

k ∈ Z. On the open interval
(
k
L ,

k+1
L

)
with k ∈ Z, we use (3.14) to denote the error in the

form

ẽk(t) := (Rφ,mf̃)
(
t+ k

L

)
− (Rφ,mf)

(
t+ k

L

)
=
∑

ℓ∈I r
2m

εℓ+k ψ
(
t− ℓ

L

)
, t ∈

(
0, 1

L

)
.

As above shown, it holds

|ẽk(t)| ≤ ε
(
2φ(0) + L φ̂(0)

)
, t ∈

(
0, 1

L

)
.

By the interpolation property (3.12), it holds
∣∣ẽ0
(
k
L

)∣∣ = |εk| ≤ ε ,
∣∣ẽ0
(
k+1
L

)∣∣ = |εk+1| ≤ ε

for each k ∈ Z. Hence, by φ ∈ Φm,L we have φ(0) = 1 and therefore we obtain that

max
t∈[k/L, (k+1)/L]

|(Rφ,mf̃)(t)− (Rφ,mf)(t)| ≤ ε
(
2 + L φ̂(0)

)
.

From the triangle inequality it follows (3.26). This completes the proof.

Now it merely remains to estimate the error constants Ej(m, δ, L), j = 1, 2, for the different
window functions, which shall be done in the following sections.
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4 Gaussian regularized Shannon sampling formula

Firstly, we consider the Gaussian window function

φGauss(x) := e−x2/(2σ2) , x ∈ R , (4.1)

with some σ > 0 and introduce the Gaussian regularized sinc function

ψGauss(x) := sinc(Lπx) e−x2/(2σ2) , x ∈ R . (4.2)

Lemma 4.1. Let L ∈ N and σ > 0 be given. Then the Fourier transform of the Gaussian
regularized sinc function (4.2) reads as follows

ψ̂Gauss(v) =
1

L
√
π

∫ √
2πσ(v+L/2)

√
2πσ(v−L/2)

e−t2 dt (4.3)

=
1

2L

[
erf
(√

2πσ (v + L/2)
)
− erf

(√
2πσ (v − L/2)

)]
,

where

erf x :=
2√
π

∫ x

0
e−t2 dt , x ∈ R ,

denotes the error function. The function ψ̂Gauss is even, smooth, and positive on R. Further
ψ̂Gauss decreases on [0, ∞) and it holds

max
v∈R

ψ̂Gauss(v) =
1

L
erf(

√
2πσL/2) <

1

L
.

Proof. We apply the equality (2.10) for the sinc function

f(x) := sinc(Lπx) , x ∈ R ,

and the Gaussian window function

g(x) := e−x2/(2σ2) , x ∈ R ,

with certain σ > 0. These functions possess the Fourier transforms

f̂(v) =
1

L
1[−L/2, L/2](v) , v ∈ R ,

ĝ(v) =
√
2π σ e−2π2σ2v2 , v ∈ R . (4.4)

Thus, we obtain

(f̂ ∗ ĝ)(v) =
∫

R
f̂(v − u) ĝ(u) du =

√
2π σ

L

∫ v+L/2

v−L/2
e−2π2σ2u2

du

and by substitution t =
√
2πσu

(f̂ ∗ ĝ)(v) =
1

L
√
π

∫ √
2πσ(v+L/2)

√
2πσ(v−L/2)

e−t2 dt
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=
1

2L

[
erf
(√

2πσ (v + L/2)
)
− erf

(√
2πσ (v − L/2)

)]
.

On the other hand, it holds

(f g)̂ (v) =

∫

R
sinc(Lπx) e−x2/(2σ2) e−2πivx dx .

Hence, from (2.10) it follows the equality (4.3). By (4.3) we see that ψ̂Gauss is even, smooth,
and positive on R. Since the error function increases on R, the function (4.3) decreases on
[0, ∞).

A visualization of the Gaussian regularized sinc function (4.2) and its Fourier transform
(4.3) can be found in Figure 4.1. We remark that the function (4.2) belongs to C∞(R), but
it is not bandlimited.

−2m
L

−m
L

0 m
L

2m
L

0

0.5

1

x

sinc(Lπx)

φGauss(x)

ψGauss(x)

(a) ψGauss from (4.2)

−L −L
2

0 L
2

L

0

1
2L

1
L

v

1
L 1[−L

2 ,L2 ](v)

ψ̂Gauss(v)

(b) ψ̂Gauss from (4.3)

Figure 4.1: The Gaussian regularized sinc function ψGauss as well as its Fourier transform

ψ̂Gauss with m = 5 and σ = 1
L

√
8
π .

Lemma 4.2. The function (4.2) is essentially bandlimited on the larger interval
[
− L

2 (1 +

ε), L
2 (1+ ε)

]
with certain ε ∈ (0, 1), i. e., it holds for all v ∈ R \

[
− L

2 (1+ ε), L
2 (1+ ε)

]
that

0 < ψ̂Gauss(v) ≤
1√

2π L2πσε
e−π2σ2L2ε2/2 .

For v ∈
[
− L

2 (1− ε), L
2 (1− ε)

]
it holds

0 <
1

L
− ψ̂Gauss(v) ≤

2√
2πL2πσε

e−π2σ2L2ε2/2 .

Proof. For v ∈ R \
[
− L

2 (1 + ε), L
2 (1 + ε)

]
, we can estimate the Fourier transform (4.3) in

the following form

0 < ψ̂Gauss(v) =
1

L
√
π

∫ √
2πσ(v+L/2)

√
2πσ(v−L/2)

e−t2 dt ≤ 1

L
√
π

∫ ∞
√
2πσ(|v|−L/2)

e−t2 dt .
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By [1, p. 298, Formula 7.1.13], for x ≥ 0 it holds the inequality

1

x+
√
x2 + 2

e−x2 ≤
∫ ∞

x
e−t2 dt ≤ 1

x+
√
x2 + 4/π

e−x2
,

which can be simplified to

∫ ∞

x
e−t2 dt ≤ 1

2x
e−x2

, x > 0 . (4.5)

Note that the upper bound in (4.5) decreases for x > 0. Using the inequality (4.5), it follows
for v ∈ R \

[
− L

2 (1 + ε), L
2 (1 + ε)

]
that

0 < ψ̂Gauss(v) ≤
1

2
√
2π Lπσ (|v| − L/2)

e−2π2σ2 (|v|−L/2)2 ≤ 1√
2π L2πσε

e−π2σ2L2ε2/2 .

Thus, for fixed σ > 0 and convenient ε > 0, the Fourier transform ψ̂Gauss is negligible for
|v| ≥ L

2 (1 + ε).

Later we will choose σ =
√

m
πL (L−2δ) with m ∈ N \ {1} and δ = τN , where 0 < τ < 1

2 .

Hence, it holds σ = 1
N

√
m

π (1+λ)(1+λ−2τ) . Then for v ∈ R \
[
− L

2 (1 + ε), L
2 (1 + ε)

]
we obtain

0 < ψ̂Gauss(v) ≤
√
1 + λ− 2τ√

2mπNε
√

(1 + λ)3
e−πm(1+λ) ε2/(2+2λ−4τ) .

For v ∈
[
− L

2 (1− ε), L
2 (1− ε)

]
we consider

1

L
− ψ̂Gauss(v) =

1

L
√
π

[ ∫

R
e−t2 dt−

∫ √
2πσ(v+L/2)

√
2πσ(v−L/2)

e−t2 dt
]

=
1

L
√
π

[ ∫ √
2πσ(v−L/2)

−∞
e−t2 dt+

∫ ∞
√
2πσ(v+L/2)

e−t2 dt
]

=
1

L
√
π

[ ∫ ∞
√
2πσ(L/2−v)

e−t2 dt+

∫ ∞
√
2πσ(v+L/2)

e−t2 dt
]
> 0 .

Hence, it holds

0 <
1

L
− ψ̂Gauss(v) ≤

2

L
√
π

∫ ∞
√
2πσ(L/2−|v|)

e−t2 dt .

Using (4.5) and L/2− |v| ≥ Lε/2, it follows that

0 <
1

L
− ψ̂Gauss(v) ≤ 1√

2πLπσ (L/2− |v|)
e−2π2σ2 (L/2−|v|)2

≤ 2√
2πL2πσε

e−π2σ2L2ε2/2 .

This completes the proof.

Now we show that for the Gaussian regularized sinc function (4.2) the uniform approxima-
tion error (3.15) decays exponentially with respect to m.
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Theorem 4.3. Let f ∈ Bδ(R) with δ ∈ (0, N/2), N ∈ N, L = N(1 + λ) with λ ≥ 0, and
m ∈ N \ {1} be given.
Then the regularized Shannon sampling formula (3.2) with the Gaussian window function

(4.1) and σ =
√

m
πL (L−2δ) satisfies the error estimate

∥f −RGauss,mf∥C0(R) ≤
2
√
πδL+ L(m+ 1)/

√
m

π
√
mπ(L− 2δ)

e−πm(L/2−δ)/L ∥f∥L2(R) . (4.6)

Proof (cf. [12] and [5]). By Theorem 3.2 we have to compute the error constants Ej(m, δ, L),
j = 1, 2, for the Gaussian window function (4.1). First we study the regularization error
constant (3.17). By (4.3) we recognize that the auxiliary function (3.23) is given by

η(v) = 1[−δ, δ](v)−
1√
π

∫ √
2πσ(v+L/2)

√
2πσ(v−L/2)

e−t2 dt .

For v ∈ [−δ, δ], the function η can be evaluated as

η(v) =
1√
π

[∫

R
e−t2 dt−

∫ √
2πσ(v+L/2)

√
2πσ(v−L/2)

e−t2 dt

]

=
1√
π

[∫ √
2πσ(v−L/2)

−∞
e−t2 dt+

∫ ∞
√
2πσ(v+L/2)

e−t2 dt

]

=
1√
π

[∫ ∞
√
2πσ(L/2−v)

e−t2 dt+

∫ ∞
√
2πσ(v+L/2)

e−t2 dt

]
.

Using (4.5), η(v) can be estimated by

η(v) <
1√
π

(
e−2π2σ2(L/2−v)2

2
√
2πσ(L/2− v)

+
e−2π2σ2(L/2+v)2

2
√
2πσ(L/2 + v)

)
.

Since the function 1
x e

−σ2x2/2 decreases for x > 0, and L/2− v, L/2 + v ∈ [L/2− δ, L/2 + δ]
by v ∈ [−δ, δ] with 0 < δ < L/2, we conclude that

η(v) <
e−2π2σ2(L/2−v)2

√
2π πσ(L/2− v)

≤ e−2π2σ2(L/2−δ)2

√
2π σ(Lπ − δ)

.

Hence, by (3.17) and (3.23) we receive

E1(m, δ, L) ≤
√
δ√

π πσ(L/2− δ)
e−2π2σ2(L/2−δ)2 . (4.7)

Now we examine the truncation error constant (3.18). Here it holds

φ2
Gauss(

m
L

)
+ L

∫ ∞

m/L
φ2
Gauss(t) dt = e−m2/(L2σ2) + Lσ

∫ ∞

m/(Lσ)
e−t2 dt .
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From (4.5) it follows

e−m2/(L2σ2) + Lσ

∫ ∞

m/(Lσ)
e−t2 dt ≤ 2m+ L2σ2

2m
e−m2/(L2σ2) .

Thus, by (3.17) we obtain

E2(m, δ, L) ≤
√
2L

πm

√
2m+ L2σ2

2m
e−m2/(2L2σ2) . (4.8)

For the special parameter σ =
√

m
πL (L−2δ) , both error terms (4.7) and (4.8) have the same

exponential decay such that

E1(m, δ, L) ≤
2

π

√
δL

m (L− 2δ)
e−πm(L/2−δ)/L ,

E2(m, δ, L) ≤
1

π

√
L(2π(L− 2δ) + 1)/m

mπ(L− 2δ)
e−πm(L/2−δ)/L .

For δ ∈ (0, N/2) and m ∈ N \ {1} it additionally holds

√
2π(L− 2δ) + 1 ≤

√
L
√
2π + 1 ≤

√
L(m+ 1) .

This completes the proof.

We remark that Theorem 4.3 improves the corresponding results in [12] and [5] in such
a way that there it was stated an exponential decay in (m − 1), while this rate could be
improved in Theorem 4.3 to m.

Example 4.4. We aim to visualize the error bound from Theorem 4.3. For a given func-
tion f ∈ Bδ(R) with δ = τN ∈ (0, N/2) and L = N(1 + λ), where 0 < τ < 1

2 and λ ≥ 0, we
consider the approximation error

em,τ,λ(f) := max
t∈[−1, 1]

|f(t)− (Rφ,mf)(t)| . (4.9)

For φ = φGauss we show that by (4.6) it holds em,τ,λ(f) ≤ Em,τ,λ ∥f∥L2(R) where

E1(m, δ, L) + E2(m, δ, L) ≤ Em,τ,λ :=
2
√
πδL+ L(m+ 1)/

√
m

π
√
mπ(L− 2δ)

e−πm(L/2−δ)/L , (4.10)

with σ =
√

m
πL (L−2δ) . The error (4.9) shall here be approximated by evaluating a given

function f and its approximation Rφ,mf at S = 105 equidistant points ts ∈ [−1, 1], s ∈ IS .
By the definition of the regularized Shannon sampling formula in (3.2) it can be seen that for
t ∈ [−1, 1] we have

(Rφ,mf)(t) =
L+m∑

ℓ=−L−m

f( ℓ
L)ψ(t− ℓ

L) .

Here we study the function f(t) =
√
2δ sinc(2δπt), t ∈ R, such that it holds ∥f∥L2(R) = 1. We

fix N = 128 and consider the evolution for different values m ∈ N \ {1}, i. e., we are still free
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to make a choice for the parameters τ and λ. In a first experiment we fix λ = 1 and choose
different values for τ < 1

2 , namely we consider τ ∈ {1/20, 1/10, 1/4, 1/3, 9/20}. The corresponding
results are depicted in Figure 4.2 (a). We recognize that the smaller the factor τ can be chosen,
the better the error results are. As a second experiment we fix τ = 1

3 , but now choose different
λ ∈ {0, 0.5, 1, 2}. The associated results are displayed in Figure 4.2 (b). It can clearly be seen
that the higher the oversampling parameter λ is chosen, the better the error results get. We
remark that for larger choices of N , the line plots in Figure 4.2 would only be shifted slightly
upwards, such that for all N we receive almost the same error results.

2 4 6 8 10

10−7

10−5

10−3

10−1

m

Em,1/20,1

em,1/20,1(f)
Em,1/10,1

em,1/10,1(f)
Em,1/4,1

em,1/4,1(f)
Em,1/3,1

em,1/3,1(f)
Em,9/20,1

em,9/20,1(f)

(a) λ = 1 and various τ < 1
2

2 4 6 8 10

10−6

10−4

10−2

100

m

Em,1/3,0

em,1/3,0(f)
Em,1/3,0.5

em,1/3,0.5(f)
Em,1/3,1

em,1/3,1(f)
Em,1/3,2

em,1/3,2(f)

(b) τ = 1
3 and various λ ≥ 0

Figure 4.2: Maximum approximation error (4.9) and error constant (4.10) using φGauss

in (4.1) and σ =
√

m
πL (L−2δ) for the function f(x) =

√
2δ sinc(2δπx) with

N = 128, m = 2, 3, . . . , 10, as well as τ ∈ {1/20, 1/10, 1/4, 1/3, 9/20}, δ = τN , and
λ ∈ {0, 0.5, 1, 2}, respectively.

Now we show that for the regularized Shannon sampling formula with the Gaussian window
function (4.1) the uniform perturbation error (3.25) only grows as O(

√
m). We remark that

a similar result can also be found in [14].

Theorem 4.5. Let f ∈ Bδ(R) with δ = τN , τ ∈ (0, 1/2), N ∈ N, L = N(1 + λ) with λ ≥ 0
and m ∈ N \ {1} be given. Further let RGauss,mf̃ be as in (3.24) with the noisy samples
f̃ℓ = f

(
ℓ
L

)
+ εℓ, where |εℓ| ≤ ε for all ℓ ∈ Z.

Then the regularized Shannon sampling formula (3.2) with the Gaussian window function

(4.1) and σ =
√

m
πL (L−2δ) is numerically robust and satisfies

∥RGauss,mf̃ −RGauss,mf∥C0(R) ≤ ε

(
2 +

√
2 + 2λ

λ+ 1− 2τ

√
m

)
. (4.11)

Proof. By Theorem 3.4 we only have to compute φ̂Gauss(0) for the Gaussian window
function (4.1). By (4.4) we recognize that

φ̂Gauss(0) =
√
2π σ =

√
2m

L (L− 2δ)
=

1

L

√
2 + 2λ

λ+ 1− 2τ

√
m

such that (3.25) yields the assertion.
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Example 4.6. Now we aim to visualize the error bound from Theorem 4.5. Similar to
Example 4.4, we consider the perturbation error

ẽm,τ,λ(f) := max
t∈[−1, 1]

|(Rφ,mf̃)(t)− (Rφ,mf)(t)| . (4.12)

For φ = φGauss we show that by (4.11) it holds ẽm,τ,λ(f) ≤ Ẽm,τ,λ, where

Ẽm,τ,λ := ε

(
2 +

√
2 + 2λ

λ+ 1− 2τ

√
m

)
. (4.13)

We conduct the same experiments as in Example 4.4 and introduce a maximum perturbation
of ε = 10−3 as well as uniformly distributed random numbers εℓ in (−ε, ε). Due to the
randomness we perform the experiments 100 times and then take the maximum error over all
runs. The associated results are displayed in Figure 4.3.

2 4 6 8 10

10−3

10−2

m

Ẽm,1/20,1

ẽm,1/20,1(f)

Ẽm,1/10,1

ẽm,1/10,1(f)

Ẽm,1/4,1

ẽm,1/4,1(f)

Ẽm,1/3,1

ẽm,1/3,1(f)

Ẽm,9/20,1

ẽm,9/20,1(f)

(a) λ = 1 and various τ < 1
2

2 4 6 8 10
10−3

10−2

m

Ẽm,1/3,0

ẽm,1/3,0(f)

Ẽm,1/3,0.5

ẽm,1/3,0.5(f)

Ẽm,1/3,1

ẽm,1/3,1(f)

Ẽm,1/3,2

ẽm,1/3,2(f)

(b) τ = 1
3 and various λ ≥ 0

Figure 4.3: Maximum perturbation error (4.12) over 100 runs and error constant (4.13) us-

ing φGauss in (4.1) and σ =
√

m
πL (L−2δ) for the function f(x) =

√
2δ sinc(2δπx)

with ε = 10−3, N = 128, m = 2, 3, . . . , 10, as well as τ ∈ {1/20, 1/10, 1/4, 1/3, 9/20},
δ = τN , and λ ∈ {0, 0.5, 1, 2}, respectively.

5 B–spline regularized Shannon sampling formula

Now we consider the modified B–spline window function

φB(x) :=
1

M2s(0)
M2s

(
Lxs

m

)
(5.1)

with s, m ∈ N \ {1} and L = N (1 + λ), λ ≥ 0, where M2s denotes the centered cardinal
B–spline of even order 2s. Note that (5.1) is supported on

[
− m

L ,
m
L

]
. According to (3.13)

we form the B–spline regularized sinc function

ψB(x) := sinc(Lπx)φB(x) , x ∈ R . (5.2)
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Lemma 5.1. The Fourier transform of the B–spline regularized sinc function (5.2) reads as
follows

ψ̂B(v) =
m

sL2M2s(0)

∫ v+L/2

v−L/2

(
sinc

πum

sL

)2s
du . (5.3)

The function (5.3) is even, smooth, and positive on R, where

ψ̂B(0) = max
v∈R

ψ̂B(v) <
1

L
.

Proof. We apply the equation (2.10) for f(x) = sinc(Lπx) and the modified B–spline
window function g(x) = φB(x). These functions possess the Fourier transforms

f̂(v) =
1

L
1[−L/2, L/2](v) ,

ĝ(v) =
m

sLM2s(0)

(
sinc

πvm

sL

)2s
, v ∈ R , (5.4)

(see [9, 10]). Thus, we obtain

(f̂ ∗ ĝ)(v) =

∫

R
f̂(v − u) ĝ(u) du =

1

L

∫ v+L/2

v−L/2
ĝ(u) du

=
m

sL2M2s(0)

∫ v+L/2

v−L/2

(
sinc

πum

sL

)2s
du .

Since it holds

(f g)̂(v) =

∫

R
sinc(Lπ x) g(x) e−2πivx dx = ψ̂B(v) ,

equation (2.10) yields the assertion (5.3).

Obviously, the function (5.3) is even, smooth and positive on whole R. By inverse Fourier
transform it holds

1 = φB(0) =

∫

R
φ̂B(v) dv =

m

sLM2s(0)

∫

R

(
sinc

πvm

sL

)2s
dv

such that ∫

R

(
sinc

πvm

sL

)2s
dv =

sL

m
M2s(0) . (5.5)

Then from (5.3) and (5.5) it follows that

ψ̂B(0) =
m

sL2M2s(0)

∫ L/2

−L/2

(
sinc

πum

sL

)2s
du <

1

L
.

This completes the proof.

A visualization of the B–spline regularized sinc function (5.2) and its Fourier transform
(5.3) can be found in Figure 5.1.
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−2m
L

−m
L

0 m
L

2m
L

0

0.5

1

x

sinc(Lπx)

φB(x)

ψB(x)

(a) ψB from (5.2)

−L −L
2

0 L
2

L

0

1
2L

1
L

v

1
L 1[−L

2 ,L2 ](v)

ψ̂B(v)

(b) ψ̂B from (5.3)

Figure 5.1: The B–spline regularized sinc function ψB as well as its Fourier transform ψ̂B with
m = 5 and s = 3.

Lemma 5.2. The B–spline regularized sinc function (5.2) is essentially bandlimited on the
larger interval

[
− L

2 (1+ε), L
2 (1+ε)

]
with ε > 2s

mπ , i. e., for all v ∈ R\
[
− L

2 (1+ε), L
2 (1+ε)

]

it holds

0 < ψ̂B(v) <
1

(2s− 1)π LM2s(0)

(
2s

εmπ

)2s−1

.

Proof. Since (5.3) is even, we consider ψ̂B(v) only for v > L
2 (1 + ε). Then by (5.3) we

estimate

0 < ψ̂B(v) =
m

sL2M2s(0)

∫ v+L/2

v−L/2

(
sinc

πum

sL

)2s
du

<
m

sL2M2s(0)

∫ ∞

Lε/2

(
sinc

πum

sL

)2s
du <

s2s−1 L2s−2

m2s−1 π2sM2s(0)

∫ ∞

Lε/2
u−2s du

=
1

(2s− 1)π LM2s(0)

(
2s

εmπ

)2s−1

.

This completes the proof.

Lemma 5.3. For the value M2s(0), s ∈ N, it holds the formula

M2s(0) =
1

(2s− 1)!

s−1∑

j=0

(−1)j
(
2s

j

)
(s− j)2s−1 . (5.6)

The sequence
(√

2sM2s(0)
)∞
s=2

increases monotonously and has the limit

lim
s→∞

√
2sM2s(0) =

√
6

π
= 1.381976 . . . (5.7)

such that for s ∈ N \ {1} it holds

4

3
≤

√
2sM2s(0) <

√
6

π
. (5.8)
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Proof. By inverse Fourier transform of φ̂B it holds

φB(x) =

∫

R
φ̂B(v) e

2πivx dv , x ∈ R .

Hence, for x = 0 it follows that

M2s(0) =

∫

R

(
sinc(πv)

)2s
dv =

2

π

∫ ∞

0

(
sincw

)2s
dw .

The above integral can be determined in explicit form (see [8, p. 20, 5.12] or [6]) as

∫ ∞

0

(
sincw

)2s
dw =

π

2 (2s− 1)!

s−1∑

j=0

(−1)j
(
2s

j

)
(s− j)2s−1

such that (5.6) is shown. Especially, it holdsM2(0) = 1,M4(0) =
2
3 ,M6(0) =

11
20 ,M8(0) =

151
315 ,

M10(0) = 15619
36288 , and M12(0) = 655177

1663200 . A table with the decimal values of M2s(0) for
m = 15, . . . , 50, can be found in [6]. For example, it holds M100(0) ≈ 0.137990.

By [19], there exists the pointwise limit

lim
s→∞

√
s

6
M2s

(√
s

6
x

)
=

1√
2π

e−x2/2

such that for x = 0 we obtain (5.7). By numerical computations we can see that the se-

quence
(√

2sM2s(0)
)50
s=2

increases monotonously (see Figure 5.2). For large s we can use the

2 10 20 30 40 50

4
3

√
6
π

s

√
2sM2s(0)

Figure 5.2: The sequence
(√

2sM2s(0)
)50
s=2

.

asymptotic expansion (see [6])

√
2sM2s(0) ≈

√
6

π

[
1− 3

40 s
− 13

4480 s2
+

27

25600 s3
+

52791

63078400 s4
+

482427

2129920000 s5

]

such that the whole sequence
(√

2sM2s(0)
)∞
s=2

increases monotonously. Hence, it holds (5.8).

24



Remark 5.4. The value M2s(0) is closely related to the Eulerian number in combinatorics.
For any n, k ∈ N with k ≤ n, the Eulerian number E(n, k − 1) denotes the number of
permutations of 1 to n in which exactly k−1 elements are greater than the previous element.
Then it holds

E(n, k − 1) =
k−1∑

j=0

(−1)j
(
n+ 1

j

)
(k − j)n .

Thus, from (5.6) it follows that

M2s(0) =
1

(2s− 1)!
E(2s− 1, s− 1) .

Now we show that for the B–spline regularized sinc function (5.2) the uniform approxima-
tion error (3.15) decays exponentially with respect to m.

Theorem 5.5. Let f ∈ Bδ(R) with δ = τN , τ ∈ (0, 1/2), N ∈ N, L = N (1 + λ), λ ≥ 0, and
m ∈ N \ {1} be given. Assume that

τ

1 + λ
<

1

2
− 1

π
. (5.9)

Then the regularized Shannon sampling formula (3.2) with the B–spline window function (5.1)
and s =

⌈
m+1
2

⌉
satisfies the error estimate

∥f −RB,mf∥C0(R) ≤
3
√
δs

(2s− 1)π
e−m (ln(πm (1+λ−2τ))−ln(2s(1+λ))) ∥f∥L2(R) . (5.10)

Proof. By Theorem 3.2 we only have to estimate the regularization error constant (3.17),
since it holds φB(x) = φB(x)1[−m/L,m/L](x) for all x ∈ R and therefore the truncation error
constant (3.18) vanishes for the B–spline window function (5.1) by Remark 3.3.
By (5.4) we recognize that the auxiliary function (3.23) is given by

η(v) = 1[−δ, δ](v)−
m

sLM2s(0)

∫ v+L/2

v−L/2

(
sinc

πum

sL

)2s
du , v ∈ R .

For v ∈ [−δ, δ], the function η can be determined by (5.5) in the following form

η(v) =
m

sLM2s(0)

[∫

R

(
sinc

πum

sL

)2s
du−

∫ v+L/2

v−L/2

(
sinc

πum

sL

)2s
du

]

=
m

sLM2s(0)

[∫ v−L/2

−∞

(
sinc

πum

sL

)2s
du+

∫ ∞

v+L/2

(
sinc

πum

sL

)2s
du

]

=
m

sLM2s(0)

[∫ ∞

L/2−v

(
sinc

πum

sL

)2s
du+

∫ ∞

v+L/2

(
sinc

πum

sL

)2s
du

]
.

Applying the simple estimates

∫ ∞

L/2−v

(
sinc

πum

sL

)2s
du ≤ s2s L2s

m2s π2s

∫ ∞

L/2−v
u−2s du =

s2s L2s

(2s− 1)m2s π2s (L/2− v)2s−1
,
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∫ ∞

v+L/2

(
sinc

πum

sL

)2s
du ≤ s2s L2s

m2s π2s

∫ ∞

v+L/2
u−2s du =

s2s L2s

(2s− 1)m2s π2s (v + L/2)2s−1
,

the function η can be estimated for v ∈ [−δ, δ] by

η(v) ≤ s2s−1 L2s−1

(2s− 1)m2s−1 π2sM2s(0)

[
1

(L/2− v)2s−1
+

1

(L/2 + v)2s−1

]
.

By v ∈ [−δ, δ] with 0 < δ < N/2 ≤ L/2, it holds L/2− v, L/2+ v ∈ [L/2− δ, L/2+ δ]. Since
the function x1−2s decreases for x > 0, we conclude that

max
v∈[−δ,δ]

|η(v)| ≤ 2 s2s−1 L2s−1

(2s− 1)m2s−1 π2sM2s(0) (L/2− δ)2s−1
.

Hence, by (3.17), (3.23) and (5.8) we receive

E1(m, δ, L) ≤
2
√
2δ

(2s− 1)πM2s(0)

(
2sL

πmL− 2πmδ

)2s−1

≤ 3
√
δs

(2s− 1)π

(
2sL

πmL− 2πmδ

)2s−1

. (5.11)

For achieving convergence we have to satisfy

2sL

πmL− 2πmδ
=

2s(1 + λ)

πm (1 + λ− 2τ)
=: c < 1 .

This condition holds if (5.9) is fulfilled. By means of logarithmic laws we recognize that
c 2s−1 = eln(c

2s−1) = e(2s−1) ln c. Thus, the condition c < 1 yields ln c < 0 and therefore an
exponential decay of (5.11) with respect to (2s−1). Since the aim is achieving an exponential
decay with a rate of at least m, the condition 2s− 1 ≥ m can now be used to pick a suitable
parameter s ∈ N in the form s =

⌈
m+1
2

⌉
. Then

c 2s−1 = e(2s−1) ln c = e(2s−1) (ln(2s(1+λ))−ln(πm (1+λ−2τ)))

= e−(2s−1) (ln(πm (1+λ−2τ))−ln(2s(1+λ))) ≤ e−m (ln(πm (1+λ−2τ))−ln(2s(1+λ)))

yields the assertion. We remark that it holds πm (1 + λ− 2τ) > 2s(1 + λ) since c < 1.

Example 5.6. Analogous to Example 4.4, we now aim to visualize the error bound from
Theorem 5.5, i. e., for φ = φB we show that for the approximation error (4.9) it holds by
(5.10) that em,τ,λ(f) ≤ Em,τ,λ ∥f∥L2(R), where

E1(m, δ, L) ≤ Em,τ,λ :=
3
√
δs

(2s− 1)π
e−m (ln(πm (1+λ−2τ))−ln(2s(1+λ))) (5.12)

with s =
⌈
m+1
2

⌉
. Additionally, we now have to observe the condition (5.9). For the first

experiment in Example 4.4 with λ = 1 this leads to τ < 1− 2
π ≈ 0.3634, while in the second

experiment we fixed τ = 1
3 and therefore have to satisfy λ > 2π

3π−6 − 1 ≈ 0.8346. Thus,
only in these settings the requirements of Theorem 5.5 are fulfilled, and therefore only those
error bounds are plotted in Figure 5.3 while the approximation error (4.9) is computed for all
constellations of parameters as given in Example 4.4. We recognize that we have almost the
same behavior as in Figure 4.2, which means that there is hardly any improvement using the
B–spline window function in comparison to the well-studied Gaussian window function.

Now we show that for the regularized Shannon sampling formula with the B–spline window
function (5.1) the uniform perturbation error (3.25) only grows as O(

√
m).
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m
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em,1/20,1(f)
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em,1/10,1(f)
Em,1/4,1

em,1/4,1(f)
Em,1/3,1

em,1/3,1(f)
em,9/20,1(f)

(a) λ = 1 and various τ < 1
2

2 4 6 8 10

10−6

10−4

10−2

100

m

em,1/3,0(f)
em,1/3,0.5(f)
Em,1/3,1

em,1/3,1(f)
Em,1/3,2

em,1/3,2(f)

(b) τ = 1
3 and various λ ≥ 0

Figure 5.3: Maximum approximation error (4.9) and error constant (5.12) using
φB in (5.1) and s =

⌈
m+1
2

⌉
for the function f(x) =

√
2δ sinc(2δπx) with

N = 128, m = 2, 3, . . . , 10, as well as τ ∈ {1/20, 1/10, 1/4, 1/3, 9/20}, δ = τN , and
λ ∈ {0, 0.5, 1, 2}, respectively.

Theorem 5.7. Let f ∈ Bδ(R) with δ = τN , τ ∈ (0, 1/2), N ∈ N, L = N(1 + λ) with λ ≥ 0
and m ∈ N \ {1} be given. Let s ∈ N be defined by s =

⌈
m+1
2

⌉
. Further let RB,mf̃ be as in

(3.24) with the noisy samples f̃ℓ = f
(
ℓ
L

)
+ εℓ, where |εℓ| ≤ ε for all ℓ ∈ Z.

Then the regularized Shannon sampling formula (3.2) with the B–spline window function (5.1)
and s =

⌈
m+1
2

⌉
is numerically robust and satisfies

∥RB,mf̃ −RB,mf∥C0(R) ≤ ε

(
2 +

3

2

√
m

)
. (5.13)

Proof. By Theorem 3.4 we only have to compute φ̂B(0) for the B–spline window function
(5.1). By (5.4) we recognize that

φ̂B(0) =
m

sLM2s(0)
.

From (5.8) it follows that

1

M2s(0)
≤ 3

√
2

4

√
s .

Due to s =
⌈
m+1
2

⌉
it holds

√
s ≥

√
m√
2
such that (3.25) yields the assertion.

Example 5.8. Now we aim to visualize the error bound from Theorem 5.7. Similar to
Example 4.6, we show that for the perturbation error (4.12) with φ = φB it holds by (5.13)
that ẽm,τ,λ(f) ≤ Ẽm,τ,λ, where

Ẽm,τ,λ := ε

(
2 +

3

2

√
m

)
. (5.14)

We conduct the same experiments as in Example 4.6 using a maximum perturbation of
ε = 10−3 as well as uniformly distributed random numbers εℓ in (−ε, ε). Due to the random-
ness we perform the experiments 100 times and then take the maximum error over all runs.
The corresponding outcomes are depicted in Figure 5.4.
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2 4 6 8 10

10−3

10−2

m

Ẽm,τ,1

ẽm,1/20,1(f)
ẽm,1/10,1(f)
ẽm,1/4,1(f)
ẽm,1/3,1(f)
ẽm,9/20,1(f)

(a) λ = 1 and various τ < 1
2

2 4 6 8 10

10−3

10−2

m

Ẽm,1/3,λ

ẽm,1/3,0(f)
ẽm,1/3,0.5(f)
ẽm,1/3,1(f)
ẽm,1/3,2(f)

(b) τ = 1
3 and various λ ≥ 0

Figure 5.4: Maximum perturbation error (4.12) over 100 runs and error constant (5.14) using
φB in (5.1) and s =

⌈
m+1
2

⌉
for the function f(x) =

√
2δ sinc(2δπx) with ε = 10−3,

N = 128, m = 2, 3, . . . , 10, as well as τ ∈ {1/20, 1/10, 1/4, 1/3, 9/20}, δ = τN , and
λ ∈ {0, 0.5, 1, 2}, respectively.

6 sinh-type regularized Shannon sampling formula

We consider the sinh-type window function

φsinh(x) :=

{
1

sinhβ sinh
(
β
√

1− (Lx/m)2
)

: x ∈ [−m/L, m/L] ,
0 : x ∈ R \ [−m/L, m/L] ,

(6.1)

with the parameter β := sπ (1+2λ)
1+λ for s > 0, m ∈ N \ {1}, and L = N (1 + λ), λ ≥ 0. Later

we will see that the values s = m (1+λ±2τ)
1+2λ are of special interest. Then we form the sinh-type

regularized sinc function

ψsinh(x) := sinc(Lπx)φsinh(x) , x ∈ R . (6.2)

Lemma 6.1. The Fourier transform of the sinh-type regularized sinc function (6.2) reads as
follows

ψ̂sinh(v) =
mβ

2L2 sinhβ

∫ v+L/2

v−L/2

J1
(
2π
√
m2u2/L2 − s2(1 + 2λ)2/(2 + 2λ)2

)
√
m2u2/L2 − s2(1 + 2λ)2/(2 + 2λ)2

du . (6.3)

Note that the integrand of (6.3) is real-valued, since J1(i z) = i I1(z) for z ∈ C. Here Jα
denotes the Bessel function of first kind and Iα is the modified Bessel function of first kind.

Proof. We apply the equation (2.10) for f(x) = sinc(Lπx) and the sinh-type window
function g(x) = φsinh(x). These functions possess the Fourier transforms

f̂(v) =
1

L
1[−L/2, L/2](v) ,

ĝ(v) =
2

sinhβ

∫ m/L

0
sinh

(
β
√

1− (Lx/m)2
)
cos(2πxv) dx

=
πmβ

L sinhβ
·
{

(w2 − β2)−1/2 J1
(√

w2 − β2
)

w ∈ R \ {−β, β} ,
1/2 w = ±β (6.4)

28



(see [8, p. 38, 7.58] or [11]), where w := 2πmv/L denotes a scaled frequency. Thus, we obtain

(f̂ ∗ ĝ)(v) =

∫

R
f̂(v − u) ĝ(u) du =

1

L

∫ v+L/2

v−L/2
ĝ(u) du

=
mβ

2L2 sinhβ

∫ v+L/2

v−L/2

J1
(
2π
√
m2u2/L2 − s2(1 + 2λ)2/(2 + 2λ)2

)
√
m2u2/L2 − s2(1 + 2λ)2/(2 + 2λ)2

du .

On the other hand, it holds

(f g)̂(v) =

∫

R
sinc(Lπ x) g(x) e−2πi vx dx = ψ̂sinh(v) .

From (2.10) it follows the assertion (6.3).

A visualization of the sinh-type regularized sinc function (6.2) and its Fourier transform
(6.3) can be found in Figure 6.1.

−2m
L

−m
L

0 m
L

2m
L

0

0.5

1

x

sinc(Lπx)

φsinh(x)

ψsinh(x)

(a) ψsinh from (6.2)

−L −L
2

0 L
2

L

0

1
2L

1
L

v

1
L 1[−L

2 ,L2 ](v)

ψ̂sinh(v)

(b) ψ̂sinh from (6.3)

Figure 6.1: The sinh-type regularized sinc function ψsinh as well as its Fourier transform ψ̂sinh

with m = 5 and β = 55
8 π.

Lemma 6.2. Assume that τ ∈ (0, 12), N ∈ N, L = N(1 + λ) with λ ≥ 0, s > 0, and
m ∈ N \ {1}. Let ε ≥ 4s

m be given.

Then the sinh-type regularized sinc function (6.2) with β = sπ (1+2λ)
1+λ is essentially bandlimited,

i. e., for all v ∈ R \
[
− L

2 (1 + ε), L
2 (1 + ε)

]
it holds

|ψ̂sinh(v)| <
5
√
2sβ

4L
√
mε sinhβ

.

Proof. Since (6.3) is even, we consider ψ̂sinh(v) only for v > L
2 (1 + ε). Then for all

u ∈
[
v − L

2 , v +
L
2

]
it holds

m2u2

L2
− s2 (1 + 2λ)2

(2 + 2λ)2
> 0

such that from (6.3) it follows that

|ψ̂sinh(v)| ≤
mβ

2L2 sinhβ

∫ v+L/2

v−L/2

|J1
(
2π
√
m2u2/L2 − s2(1 + 2λ)2/(2 + 2λ)2

)
|√

m2u2/L2 − s2(1 + 2λ)2/(2 + 2λ)2
du .
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Since it holds |J1(x)| < 1√
x
for all x > 0, we obtain

|ψ̂sinh(v)| ≤ mβ

2L2
√
2π sinhβ

∫ v+L/2

v−L/2

(
m2 u2

L2
− s2 (1 + 2λ)2

(2 + 2λ)2

)−3/4

du

<
mβ

2L2
√
2π sinhβ

∫ ∞

εL/2

(
m2 u2

L2
− s2 (1 + 2λ)2

(2 + 2λ)2

)−3/4

du .

Substituting u = sL (1+2λ)
m(2+2λ) w, we conclude

|ψ̂sinh(v)| <
√
β

2L sinhβ

∫ ∞

εm (1+λ)/(s+2sλ)
(w2 − 1)−3/4 dw ≤

√
β

2L sinhβ

∫ ∞

εm/(2s)
(w2 − 1)−3/4 dw ,

because εm (1+λ)
s+2sλ ≥ εm

2s for λ ≥ 0. Since ε ≥ 4s
m by assumption and

max
w≥2

w3/2

(w2 − 1)3/4
<

5

4
,

we obtain

|ψ̂sinh(v)| <
5
√
β

8L sinhβ

∫ ∞

εm/(2s)
w−3/2 dw =

5
√
2sβ

4L
√
mε sinhβ

.

This completes the proof.

Now we show that for the sinh-type regularized sinc function (6.2) the uniform approxima-
tion error (3.15) decays exponentially with respect to m.

Theorem 6.3. Let f ∈ Bδ(R) with δ = τN , τ ∈
(
0, 1

2

)
, N ∈ N, L = N (1 + λ), λ ≥ 0, and

m ∈ N \ {1} be given.
Then the regularized Shannon sampling formula (3.2) with the sinh-type window function (6.1)

and β = πm (1+λ+2τ)
1+λ satisfies the error estimate

∥f −Rsinh,mf∥C0(R) ≤
( √

β πδ

(1− 2 e−β)(1− w2
0)

1/4
e−β
(
1−
√

1−w2
0

)
+

2
√
2δ

1− e−2β
e−β

)
∥f∥L2(R) ,

where w0 = 1+λ−2τ
1+λ+2τ ∈ (0, 1). Further, the regularized Shannon sampling formula (3.2) with

the sinh-type window function (6.1) and β = πm (1+λ−2τ)
1+λ fulfills

∥f −Rsinh,mf∥C0(R) ≤ 3
√
2δ e−β ∥f∥L2(R) .

Proof. By Theorem 3.2 we only have to estimate the regularization error constant (3.17),
since it holds φsinh(x) = φsinh(x)1[−m/L,m/L](x) for all x ∈ R and therefore the truncation
error constant (3.18) vanishes for the sinh-type window function (6.1) by Remark 3.3.

By (6.4) we recognize that the auxiliary function (3.23) is given by

η(v) = 1[−δ, δ](v)−
mβ

2L sinhβ

∫ v+L/2

v−L/2

J1
(
2π
√
m2u2/L2 − s2(1 + 2λ)2/(2 + 2λ)2

)
√
m2u2/L2 − s2(1 + 2λ)2/(2 + 2λ)2

du , v ∈ R .
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Substituting u = sL (1+2λ)
m(2+2λ) w, we obtain for v ∈ [−δ, δ] that

η(v) = 1− β

2 sinhβ

∫ w1(v)

−w1(−v)

J1
(
β
√
w2 − 1

)
√
w2 − 1

dw (6.5)

with

w1(v) :=
m(v + L/2)(2 + 2λ)

sL (1 + 2λ)
> 0 , v ∈ [−δ, δ] . (6.6)

Since the integrand of (6.5) behaves differently for w ∈ [−1, 1] and w ∈ R \ (−1, 1) we have to
distinguish between the cases w1(v) ≤ 1 and w1(v) ≥ 1 for all v ∈ [−δ, δ]. By definition w1(v)
is linear and monotonously increasing. Thus, we have min{w1(v) : v ∈ [−δ, δ]} = w1(−δ)
and max{w1(v) : v ∈ [−δ, δ]} = w1(δ). In the following we can choose an optimal parameter
s = s(m, τ, λ) > 0 such that either w1(δ) ≤ 1 or w1(−δ) ≥ 1 is fulfilled.

Case 1 (w1(δ) ≤ 1): Note that by [4, 6.681–3] and [1, 10.2.13] as well as J1(i z) = i I1(z)
for z ∈ C it holds

∫ 1

−1

J1
(
β
√
w2 − 1

)
√
w2 − 1

dw =

∫ 1

−1

I1
(
β
√
1− w2

)
√
1− w2

dw =

∫ π/2

−π/2
I1(β cos s) ds

= π

(
I1/2

(β
2

))2

=
4

β

(
sinh

β

2

)2

. (6.7)

Then from (6.5) and (6.7) it follows that

η(v) =
β

4
(
sinh β

2

)2
∫ 1

−1

I1
(
β
√
1− w2

)
√
1− w2

dw − β

2 sinhβ

∫ w1(v)

−w1(−v)

I1
(
β
√
1− w2

)
√
1− w2

dw (6.8)

= η1(v) + η2(v)

with

η1(v) :=

(
β

4
(
sinh β

2

)2 − β

2 sinhβ

) ∫ w1(v)

−w1(−v)

I1
(
β
√
1− w2

)
√
1− w2

dw ,

η2(v) :=
β

4
(
sinh β

2

)2
(∫ 1

−1
−
∫ w1(v)

−w1(−v)

)
I1
(
β
√
1− w2

)
√
1− w2

dw .

By 2
(
sinh β

2

)2
< sinhβ we have

β

4
(
sinh β

2

)2 − β

2 sinhβ
> 0 . (6.9)

Since the integrand of (6.8) is positive, it is easy to find an upper bound of η1(v) for all
v ∈ [−δ, δ], because by (6.7) it holds

0 ≤ η1(v) ≤
(

β

4
(
sinh β

2

)2 − β

2 sinhβ

) ∫ 1

−1

I1
(
β
√
1− w2

)
√
1− w2

dw
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= 1− 2
(
sinh β

2

)2

sinhβ
=

2− 2 e−β

eβ − e−β
<

2

1− e−2β
e−β .

Further, for arbitrary v ∈ [−δ, δ] we obtain

0 ≤ η2(v) =
β

4
(
sinh β

2

)2
(∫ −w1(−v)

−1
+

∫ 1

w1(v)

)
I1
(
β
√
1− w2

)
√
1− w2

dw

=
β

4
(
sinh β

2

)2
(∫ 1

w1(−v)
+

∫ 1

w1(v)

)
I1
(
β
√
1− w2

)
√
1− w2

dw

≤ β

2
(
sinh β

2

)2
∫ 1

w0

I1
(
β
√
1− w2

)
√
1− w2

dw , (6.10)

since the integrand is positive and w0 := w1(−δ) = min{w1(v) : v ∈ [−δ, δ]}. Substituting
w = sin t in (6.10), for all v ∈ [−δ, δ] we can estimate

η2(v) ≤
β

2
(
sinh β

2

)2
∫ π/2

arcsinw0

I1(β cos t) dt

with arcsinw0 ∈
(
0, π

2

)
. The above integral can now be approximated by the rectangular rule

(see Figure 6.2) such that

η2(v) ≤
β

2
(
sinh β

2

)2
(π
2
− arcsinw0

)
I1

(
β
√
1− w2

0

)
.

Further it holds 4 (sinh β
2 )

2 = eβ − 2 + e−β > eβ − 2. Since by [10, Lemma 7] we have√
2πx e−x I1(x) < 1, it holds

I1

(
β
√
1− w2

0

)
<

1√
2πβ

(
1− w2

0

)−1/4
eβ

√
1−w2

0 ,

and therefore we obtain

η2(v) ≤
√
β (π − 2 arcsinw0)√

2π (1− w2
0)

1/4 (1− 2 e−β)
e−β

(
1−
√

1−w2
0

)
.

Additionally using (3.17) and (3.23) as well as arcsinw0 ∈
(
0, π

2

)
this yields

E1(m, δ, L) ≤
√
β πδ

(1− 2 e−β)(1− w2
0)

1/4
e−β

(
1−
√

1−w2
0

)
+

2
√
2δ

1− e−2β
e−β . (6.11)

What remains is the choice of the optimal parameter s > 0, where we have to fulfill
w1(δ) ≤ 1. To obtain the smallest error bound we are looking for an s > 0 that minimizes the
error term maxv∈[−δ, δ] |η(v)|. By (6.8) and (6.9) we maximize the second integral in (6.8).
Since the integrand of (6.8) is positive, the integration limit w1(v) should be as large as pos-
sible for all v ∈ [−δ, δ] and therefore w1(δ) = 1. Rearranging this by (6.6) in terms of s we
see immediately that

s =
m (1 + λ+ 2τ)

1 + 2λ
and hence

β =
πm (1 + λ+ 2τ)

1 + λ
, w0 = w1(−δ) =

1 + λ− 2τ

1 + λ+ 2τ
∈ (0, 1)

such that β depends linearly on m by definition.
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arcsinw0 π/2

0

t

I1(β cos t)

Figure 6.2: The integrand I1(β cos t) on the interval [arcsin w0, π/2].

Case 2 (w1(−δ) ≥ 1): From (6.5) it follows that

η(v) = η3(v)− η4(v) , v ∈ [−δ, δ] ,

with

η3(v) := 1− β

2 sinhβ

∫ 1

−1

I1
(
β
√
1− w2

)
√
1− w2

dw ,

η4(v) :=
β

2 sinhβ

(∫ −1

−w1(−v)
+

∫ w1(v)

1

)
J1
(
β
√
w2 − 1

)
√
w2 − 1

dw .

By (6.7) we obtain

η3(v) = 1− 2
(
sinh β

2

)2

sinh β
=

2 e−β

1 + e−β
> 0 .

Further it holds

η4(v) =
β

2 sinhβ

(∫ w1(−v)

1
+

∫ w1(v)

1

)
J1
(
β
√
w2 − 1

)
√
w2 − 1

dw .

Substituting w = cosh t in above integrals, we have

η4(v) =
β

2 sinhβ

(∫ arcosh(w1(−v))

0
+

∫ arcosh(w1(v))

0

)
J1(β sinh t) dt .

In order to estimate these integrals properly we now have a closer look at the integrand.
As known, the Bessel function J1 oscillates on [0, ∞) and has the non-negative simple zeros
j1,n, n ∈ N0, with j1,0 = 0. The zeros j1,n, n = 1, . . . , 40, are tabulated in [20, p. 748].

On each interval
[
arsinh

j1,2n
β , arsinh

j1,2n+2

β

]
, n ∈ N0, the integrand J1(β sinh t) is firstly

non-negative and then non-positive, see Figure 6.3. Due to this properties and the fact
that the amplitude is decreasing when x → ∞, the integrals are positive on each interval[
arsinh

j1,2n
β , arsinh

j1,2n+2

β

]
, n ∈ N0. Note that by [4, 6.645–1] it holds

∫ ∞

0
J1(β sinh t) dt = I1/2

(β
2

)
K1/2

(β
2

)
=

2√
πβ

sinh
β

2
·
√
π

β
e−β/2 =

1− e−β

β
,
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0 arcosh(w1(δ))

0

t

J1(β sinh t)

Figure 6.3: The integrand J1(β sinh t) on the interval [0, arcosh(w1(δ))].

where Kα denotes the modified Bessel function of second kind and I1/2, K1/2 denote modified
Bessel functions of half order (see [1, 10.2.13, 10.2.14, and 10.2.17]). In addition, numerical
experiments have shown that for all T ≥ 0 it holds

0 ≤
∫ T

0
J1(β sinh t) dt ≤

3 (1− e−β)

2β
.

Therefore, we obtain

0 ≤ η4(v) ≤
β

2 sinhβ
· 3 (1− eβ)

β
=

3 e−β

1 + e−β
< 3 e−β

and hence

max
v∈[−δ, δ]

|η(v)| = max
v∈[−δ, δ]

|η3(v)− η4(v)| < 3 e−β . (6.12)

Thus, by (3.17) and (3.23) we conclude that

E1(m, δ, L) ≤ 3
√
2δ e−β . (6.13)

What remains is the choice of the optimal parameter s > 0, where we have to fulfill
w1(−δ) = c with c ≥ 1. Rearranging this by (6.6) in terms of s we see that

s = s(c) =
m (1 + λ− 2τ)

c (1 + 2λ)
, β = β(c) =

πm (1 + λ− 2τ)

c (1 + λ)
.

To obtain the smallest error bound we are looking for a constant c ≥ 1 that minimizes the
error term maxv∈[−δ, δ] |η(v)|. By (6.12) we minimize the upper bound 3 e−β(c). Since 3 e−β(c)

is monotonously increasing for c ≥ 1 we recognize that the minimum value is c = 1. Hence,
the suggested parameters are

s =
m (1 + λ− 2τ)

1 + 2λ
, β =

πm (1 + λ− 2τ)

1 + λ

such that β depends linearly on m by definition. This completes the proof.
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Now we compare the actual decay rates of the error constants (6.11) with β = πm (1+λ+2τ)
1+λ

and (6.13) with β = πm (1+λ−2τ)
1+λ . It can be seen that the decay rate of (6.11) reads as

πm (1 + λ+ 2τ)

1 + λ

(
1−

√
1− w2

0

)

with w0 =
1+λ−2τ
1+λ+2τ . On the other hand, the decay rate of (6.13) is πm (1+λ−2τ)

1+λ . Since 1+λ > 2τ

for all λ ≥ 0 and τ ∈
(
0, 1

2

)
, simple calculation shows that

πm (1 + λ− 2τ)

1 + λ
>
πm (1 + λ+ 2τ)

1 + λ

(
1−

√
1− w2

0

)
.

Hence, the error constant (6.13) decays faster than the error constant (6.11). Therefore,
we always use the regularized Shannon sampling formula (3.2) with the sinh-type window

function (6.1) with β = πm (1+λ−2τ)
1+λ .

Example 6.4. Analogous to Example 4.4, we now aim to visualize the error bound from
Theorem 6.3, i. e., for φ = φsinh we show that for the approximation error (4.9) it holds by
(6.13) that em,τ,λ(f) ≤ Em,τ,λ ∥f∥L2(R), where

E1(m, δ, L) ≤ Em,τ,λ := 3
√
2δ e−β , (6.14)

with β = πm (1+λ−2τ)
1+λ . The associated results are displayed in Figure 6.4. In both parts we

see a substantial improvement in the results compared to both Figure 4.2 and 5.3. We also
remark that for larger choices of N , the line plots in Figure 6.4 would only be shifted slightly
upwards, such that for all N we receive almost the same error results. This is to say, we can
see that the sinh-type window function is by far the best choice as a regularization function
for regularized Shannon sampling sums.

2 4 6 8 10
10−14

10−11

10−8

10−5

10−2

101

m

Em,1/20,1
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em,1/4,1(f)
Em,1/3,1

em,1/3,1(f)
Em,9/20,1

em,9/20,1(f)

(a) λ = 1 and various τ < 1
2

2 4 6 8 10
10−11

10−8

10−5

10−2

101

m

Em,1/3,0

em,1/3,0(f)
Em,1/3,0.5

em,1/3,0.5(f)
Em,1/3,1

em,1/3,1(f)
Em,1/3,2

em,1/3,2(f)

(b) τ = 1
3 and various λ ≥ 0

Figure 6.4: Maximum approximation error (4.9) and error constant (6.14) using φsinh

and β = πm (1+λ−2τ)
1+λ in (6.1) for the function f(x) =

√
2δ sinc(2δπx) with

N = 128, m = 2, 3, . . . , 10, as well as τ ∈ {1/20, 1/10, 1/4, 1/3, 9/20}, δ = τN , and
λ ∈ {0, 0.5, 1, 2}, respectively.

Now we show that for the regularized Shannon sampling formula with the Gaussian window
function (6.1) the uniform perturbation error (3.25) only grows as O(

√
m).
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Theorem 6.5. Let f ∈ Bδ(R) with δ = τN , τ ∈ (0, 1/2), N ∈ N, L = N(1 + λ) with
λ ≥ 0 and m ∈ N \ {1} be given. Further let Rsinh,mf̃ be as in (3.24) with the noisy samples
f̃ℓ = f

(
ℓ
L

)
+ εℓ, where |εℓ| ≤ ε for all ℓ ∈ Z.

Then the regularized Shannon sampling formula (3.2) with the sinh-type window function (6.1)

and β = πm (1+λ+2τ)
1+λ is numerically robust and satisfies

∥Rsinh,mf̃ −Rsinh,mf∥C0(R) ≤ ε

(
2 +

√
2 + 2λ

1 + λ− 2τ

1

1− e−2β

√
m

)
. (6.15)

Proof. By Theorem 3.4 we only have to compute φ̂sinh(0) for the sinh-type window function
(6.1). By (6.4) we recognize that

φ̂sinh(0) =
πmβ

L sinhβ
· I1
(
β
)

β
=
πmI1

(
β
)

L sinhβ
.

By [10, Lemma 7] it holds
√
2πβ e−β I1(β) < 1. Thus, we have

πmI1(β)

sinhβ
≤ πm eβ√

2πβ sinhβ
=

√
2πm√

β (1− e−2β)
.

If we now use β = πm (1+λ−2τ)
1+λ , then (3.25) yields the assertion.
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(a) λ = 1 and various τ < 1
2
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Ẽm,1/3,2

ẽm,1/3,2(f)

(b) τ = 1
3 and various λ ≥ 0

Figure 6.5: Maximum perturbation error (4.12) over 100 runs and error constant (6.16) us-

ing φsinh in (6.1) and β = πm (1+λ−2τ)
1+λ for the function f(x) =

√
2δ sinc(2δπx)

with ε = 10−3, N = 128, m = 2, 3, . . . , 10, as well as τ ∈ {1/20, 1/10, 1/4, 1/3, 9/20},
δ = τN , and λ ∈ {0, 0.5, 1, 2}, respectively.

Example 6.6. Now we aim to visualize the error bound from Theorem 6.5. Similar to
Example 4.6, we show that for the perturbation error (4.12) with φ = φsinh it holds by (6.15)
that ẽm,τ,λ(f) ≤ Ẽm,τ,λ where

Ẽm,τ,λ := ε

(
2 +

√
2 + 2λ

1 + λ− 2τ

1

1− e−2β

√
m

)
. (6.16)

We conduct the same experiments as in Example 4.6 using a maximum perturbation of
ε = 10−3 as well as uniformly distributed random numbers εℓ in (−ε, ε). Due to the random-
ness we perform the experiments 100 times and then take the maximum error over all runs.
The corresponding outcomes are depicted in Figure 6.5.
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7 Conclusion

To overcome the drawbacks of classical Shannon sampling series – which are poor convergence
and non-robustness in the presence of noise – in this paper we considered regularized Shannon
sampling formulas with localized sampling. To this end, we considered bandlimited functions
f ∈ Bδ(R) and introduced a set Φm,L of window functions. Despite the original result,
where φ ∈ Φm,L is chosen as the rectangular window function, and the well–studied approach
of using the Gaussian window function, we proposed new window functions with compact
support [−m/L, m/L], namely the B–spline and sinh-type window function, which are well-
studied in the context of the nonequispaced fast Fourier transform (NFFT).

In Section 3 we considered an arbitrary window function φ ∈ Φm,L and presented a uni-
fied approach to error estimates of the uniform approximation error for regularized Shannon
sampling formulas in Theorem 3.2, as well as a unified approach to the numerical robustness
of regularized Shannon sampling formulas in Theorem 3.4.

Then, in the next sections, we concretized the results for special window functions. More
precisely, it was shown that the uniform approximation error decays exponentially with respect
to the truncation parameter m, if φ ∈ Φm,L is the Gaussian, B–spline, or sinh-type window
function. Moreover, we have shown that the regularized Shannon sampling formulas are
numerically robust for noisy samples, i. e., if φ ∈ Φm,L is the Gaussian, B–spline, or sinh-
type window function, then the uniform perturbation error only grows as m1/2. While the
Gaussian window function from Section 4 has already been studied in numerous papers such
as [12, 13, 14, 15, 5], we remarked that Theorem 4.3 improves a corresponding result in [5],
since we improved the exponential decay rate from (m− 1) to m.

Throughout this paper, several numerical experiments illustrated the corresponding theo-
retical results. Finally, comparing the proposed window functions as done in Figure 7.1, the
superiority of the new proposed sinh-type window function can easily be seen, since even
small choices of the truncation parameter m ≤ 10 are sufficient for achieving high precision.
Due to the usage of localized sampling the evaluation of Rφ,mf on an interval [0, 1/L] requires
only 2m samples and therefore has a computational cost of O(2m) flops. Thus, a reduction
of the truncation parameter m is desirable to obtain an efficient method.
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(a) λ = 0.5
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Figure 7.1: Maximum approximation error (4.9) and error constant (3.16) using
φ ∈ {φGauss, φB, φsinh} for the function f(x) = δ sinc2(δπx) with N = 256,
τ = 0.45, δ = τN , as well as m = 2, 3, . . . , 10, and λ ∈ {0.5, 1, 2}.
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