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1 Introduction

This technical report gives a short summary of the fast Fourier transform at non equispaced knots
(NFFT) and its generalised inverse. An introduction to the NFFT, error estimates etc. can be
found in [20]. The computational complexity of the proposed algorithms is O (N log Ny + M)
for Ny equispaced frequencies and M non equispaced samples.

The algorithms are implemented in the C-library nfft2 which will be described in detail. The
heart of the algorithms are (uniform) fast Fourier transforms for which the library fftw3 (see
[12]) is used.

The remainder is organised as follows: in Section 2, the problems of the discrete Fourier
transform at non equispaced knots (NDFT) are stated, the used notation is introduced, related
works are classified, and the fast algorithm (NFFT) is deduced in pseudo code. Furthermore,
an iterative scheme for inversion of the NFFT is presented. The implementation and usage of
the library is described in Section 3. Finally, simple examples of usage and numerical results
are presented in Section 4.



2 Notation, the NDFT and the NFFT

This section summarises the mathematical theory and ideas behind the NFFT.

2.1 NDFT

Let the torus
d d 1 1
T¢ .= x:(xt)tzo,...,d—leR :—ggmt<§,t: yoonyd—1

of dimension d be given. It will serve as domain where the non equispaced knots « are taken
from. Thus, the sampling set is given by X := {x; € T¢: j=0,...,M —1}.

The space of all (d-variate, one-periodic) functions f : T¢ — C is restricted to the space of
d-variate trigonometric polynomials

span (e72”ik' ke IN)

with degree Ny (t =0,...,d — 1) in the t-th dimension. Possible frequencies k are collected in
the multi index set

N; N,
In = {kz = (kt)tzo,...,d—l VAR —?t <k < ?t, t=0,...,d— 1},
where N = (Ni),—g_ 41 is the multi bandlimit. The dimension of the space of d-variate
d—1
trigonometric polynomials is given by Ny, = [ V.
t=0
The inner product between the frequency k and the time/spatial knot x is defined in the
usual way by kx := korg + kiz1 + ... + kg_174—1. Furthermore, two vectors may be linked
by the pointwise product & ® N := (09Np,01Nq,. .. ,ad,lNd,l,)T with its inverse N~ :=

11 1 \T
()"

For clarity of presentation the multiindex k adresses elements of vectors and matrices as
well, i.e., the plain index ky := ;1:—01 (ke + %) f/_:i 41 Ny is not used here.

Direct NDFT

The first problem to be adressed can be regarded as a matrix vector multiplication. For a finite
number of given Fourier coefficients fi € C (k € Iy) one wants to evaluate the trigonometric
polynomial

f@):= Y fre 2k (2.1)

k}EIN

at given non equispaced knots x; € T<¢. Thus, our concern is the evaluation of

fi=F(my) = > fee ™ ™ (j=0,...,M-1).

keln

In matrix vector notation this reads as

where

= (f). A = (e_%ikmj) f o= < i ) :
f (fJ)FO,--vM—l’ §=0,...M—1; k€ln 7 T keln



As already mentioned, all 'vec’-operation are omitted, and the matrix vector product is defined
by A f := Vec (A) vec < f > The straight forward algorithm of this matrix vector product, which

is called ndft, takes O (M Ny;) arithmetical operations.
Related matrix vector products are the adjoint ndft

M—-1
F=A%f =) fietmhe,
j=0

the conjugated ndft
fF=Af  fi=Y fuc?*,
keln

and the transposed ndft

where A" = ZT.

Equispaced knots

For Ny = N (t = 0,...,d — 1), M = N? and equispaced knots T; = %J (j € IN) the
computation of (2.2) is known as (multivariate) discrete Fourier transform (DFT). In this special
case, the input data fk, are called discrete Fourier coefficients and the samples f; can be computed
by the well known fast Fourier transform (FFT) with only O (Nylog Nyy) (Ny = N%) arithmetic
operations. Furthermore, one has an inversion formula

AAY = AHA = NI,

which does NOT hold true for the non equispaced case in general.

Inverse NDFT

In general there is no simple inversion formula, hence one deals with the following reconstruction
or recovery problem. Given the values f; € C (j = 0,...,M — 1) at non equispaced knots
x; (j=0,...,M —1), the aim is to reconstruct a trigonometric polynomial f resp. its Fourier-
coefficients fx, (k € In) with

f(x;) = Z fre 2™k ~ £ vesp. Af ~ f.

keln

Often, the number of nodes M and the dimension of the space of the polynomials N, do not
coincide, i.e., the matrix A is rectangular. A standard method is to use the Moore-Penrose-

pseudoinverse solution er which solves the general linear least squares problem, see e.g. [3, p.
15],
|fll2 — min  subject to || f — Af]s =min for feCM,

Of course, computing the pseudoinverse by the singular value decomposition is very expensive
here and no practical way at all.



For a comparative low polynomial degree N;; < M the linear system A f ~ f is over-
determined, so that in general the given data f; € C, j =0,..., M —1, will be only approximated
up to the residual 7 := f — Af. One considers the weighted approximation problem
M1 1/2 ;

If = Afllw = | D wilfi — f) = min,

J=0

which may incorporate weights w; >0, W := diag(wj) j=o0,....M—1, to compensate for clusters in
the sampling set X. This problem is equivalent to the weighted normal equation of first kind

AwAf = Alw . (2.3)

For a comparative high polynomial degree N;; > M one expects to interpolate the given data
f;€C, j=0,...,M —1, exactly. The (consistent) linear system A f = f is under-determined.
One considers the damped minimisation problem

1/2
HfHW_1 = Z w,;l\ka 7, min subject to Af = f, (2.4)
keln
which may incorporate ’damping factors’ wg > 0, W := diag(ig)rery. A smooth solution is

favoured, i.e., a decay of the Fourier coefficients fk,, k € In, for decaying damping factors wy.
This problem is equivalent to the damped normal equation of second kind

AWARf = f  f=WAHUf (2.5)

2.2 NFFT

For clarity of presentation the ideas behind the NFFT will be shown for the case d = 1 and
the algorithm ndft. The generalisation of the FFT is an approximative algorithm and has
computational complexity O (N log N + log (1/¢) M), where € denotes the desired accuracy. The
main idea is to use standard FFTs and a window function ¢ which is well localised in the
time/spatial domain R and in the frequency domain R. Several window functions were proposed,
see [5, 2, 22, 9, §].

The considered problem is the fast evaluation of

f(l') — Z fke—Zﬂikx (26)
kely

at arbitrary knots z; € T, j =0,...,M — 1.

The ansatz

One wants to approximate the trigonometric polynomial f in (2.6) by a linear combination of
shifted 1-periodic window functions ¢ as

CEINT (+-1)- (2.7)

With the help of an oversampling factor ¢ > 1 the fft-length is given by n := oN.



The window function

Starting with a window function ¢ € Ly (R), one assumes that its 1-periodic version ¢, i.e.,
p(@)=) wla+r)
reZ

has an uniformly convergent Fourier series and is well localised in the time/spatial domain T
and in the frequency domain Z. The periodic window function ¢ may be represented by its

Fourier series _
B(x) = cp(p)e Mk

keZ
with the Fourier coeflicients

ek (@) == /(,5 (z) e?™ke dg = /<p (x)e®™* dx = ¢ (k), ke
T R
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Figure 1: From left to right: Gaussian window funtion ¢, its 1-periodic version ¢, and the

integral Fourier-transform ¢ (with pass, transition, and stop band) for N =24, o = %, n = 32.

The first approximation - cutting off in frequency domain

Switching from the definition (2.7) to the frequency domain, one obtains

si(@) =Y dner (@) e P4 "N Gy (¢) e 2TEEI (2:8)

kely, rezZ\{0} keI,
with the discrete Fourier coefficients

. ikl
gk =Y gie”™ (2.9)
leln

Comparing (2.6) to (2.7) and assuming cj, (¢) small for [k| > n — £ suggests to set

fi
PR ) for k € Iy,

0 for k € I,\Iy.

Then the values g; can be obtained from (2.9) by

1 . o ikl
a=1 S gt el
]CEIN

(2.10)

a FF'T of size n.
This approximation causes an aliasing error.



The second approximation - cutting off in time/spatial domain
If o is well localised in time/space domain R it can be approximated by a function

¥ (z) =@ (2) X[~z m) ()

with supp [_m m] ., m < n, me N. Again, one defines its one periodic version 1) with

n’n
compact support in T as

G(x) =) W(z+r).
r€Z
With the help of the index set

I (z5) :={l €Iy :nz; —m <1l <nz;+m}
an approximation to s; is defined by
~ l
say= Y aid(n-1). (211)
lEIn’m(:L‘j)

Note, that for fixed z; € T, the above sum contains at most (2m + 1) nonzero summands.
This approximation causes a truncation error.

The case d > 1

Starting with the original problem of evaluating the multivariate trigonometric polynomial in
(2.1) one has to do a few generalisations. The window function is given by

¢ (x) := o (o) 1 (21) ... pg—1 (Ta-1)
where ¢y is an univariate window function. Thus, a simple consequence is
¢k (P) = ko (@) cry (P1) -+ - Chyy (Pa—1) -
The ansatz is generalised to
s1(x) == Zgl plz—ntol),
leln
where the fft-size is given by n := o ® N and the oversampling factors by o = (oo, ... ,Ud,l)T.
Along the lines of (2.10) one defines
. Ik for k € In,
Ik = v
0 for k € I,\IN.

The values g; can be obtained by a (multivariate) FFT of size ng X ny X ... X ng_1 as
1 I
g=— gee kN e,
I kZEIN
Using the compactly supported function 1 (z) = ¢ (x) x[_m mj« (z), one obtains
s (xj) := Z glq/;(acj—n_lé)l) ,
leln,m(:vj)
where ¢ again denotes the one periodic version of 1) and the multi index set is given by

Inm (zj) ={lelpn:nOx;—ml<Il<nozx;+ml}.



The algorithm

In summary, the following Algorithm 1 is obtained for the fast computation of (2.2) with
O (nylog ny + mM) arithmetic operations.

Input: d,M € N, N € 2N¢

z;€[-1,419 j=0,....M ~1,and fr € C, k € In,

1: For k € In compute
. T

Jr == —.
NnCk (gp)

2: For I € I,, compute by d-variate FFT

g = Z ik o 2mik(n7lol)
keln

3: For 7 =0,...,M — 1 compute

fj = Z g“/;(a:j—n*l@l).

leln,m(mj)

Output: approximate values f;, j =0,...,M — 1.

Algorithm 1: NFFT

Algorithm 1 reads in matrix vector notation as
Af ~BFDfF,

where B denotes the real M x ny sparse matrix
B = (1/; (scj -nlo l))

where F' is the Fourier matrix of size ny X nyg, and where D is the real ny x Ny 'diagonal’ matrix

, 2.12
§=0,...M—1;1€In ( )

d—1

) 3 T
D= <0t | diag (1/ ¢k, (3)pery, |ot)
t=0
with zero matrices O; of size N; X T”%Nt

The corresponding computation of the adjoint matrix vector product reads as
AU f~ DTFUBTf .
With the help of the transposed index set
L) ={j=0,....M—-1:1-ml<noz; <l+ml},

one obtains Algorithm 2 for the adjoint nfft. Due to the characterisation of the non zero elements
of the matrix B, i.e.,

M-1
U 5% Inm (25) = | In (1) x L.
7=0 lel,

the multiplication with the sparse matrix B™ is implemented in a ’transposed’ way in the library,
summation as outer loop and only using the multi index sets I, (x;).




Input: d,M € N, N € 2N¢
zje -4 1% j=0,....,M—1,and f;€C, j=0,...,M — 1,

1: For 1l € I,, compute .
qgi = Z fjlb(il}j—n_l@l) .

JELY,m )
2: For k € In compute by d-variate IFF'T

0K = Z a ot2mik(nTloL)
leln

3: For k € In compute
Ak: __ 9k
nuck(P)

Output: approximate values fk, keln.

Algorithm 2: NFFTH

2.3 Window functions

Again, only the case d = 1 is presented. To keep the aliasing error and the truncation error
small, several functions ¢ with good localisation in time and frequency domain were proposed,

e.g. the (dilated) Gaussian [5, 22, 4]

nx2
ole) = () V2 e (bzz 20 T>,

20—1m

1 k2
S(k) = —et(3)
¢ (k) e :
(dilated) cardinal central B—splines [2, 22]

p(r) = Moy (nz),
ok) = %sianm(k‘ﬂ'/n),

where M, denotes the centered cardinal B—Spline of order 2m,
(dilated) Sinc functions

o(x) = N(L_DsinC2m<

2m

8

(rNz (20 — 1))> |

2m

(2.13)

(2.16)




and (dilated) Kaiser—Bessel functions [15, 9]

sinh (by/m? = 222
for |z] < 2 (b:=7(2-1)),
1 m? — n2x? n o
o= g (2.17)
sin <b ')’L2x2 _ mZ)
otherwise,
222 — m2
o(k) = 1 Io(m\/W) for k:—n(l—%),...,n(l_%),
n .
0 otherwise,

where Iy denotes the modified zero—order Bessel function. For these functions ¢ it has been
proven that

|f (2)) = s (z5)| < C(a.m) | £

where (4 o-mr(1-1/(20-1)) for (2.13) [22],
1 <201_ 1)2’” for (2.14) [22],

Clom)=1 1 (JQL” <ﬁ>2m> for (2.16),

| 4 (v +m) ﬂe—%mm for (2.17).

Thus, for fixed o > 1, the approximation error introduced by the NFFT decays exponentially
with the number m of summands in (2.11). Using the tensor product approach the above error
estimates can be generalised for the multivariate setting [6]. On the other hand, the complexity
of the NFF'T increases with m.

Further NFFT papers

Several papers have described fast approximations for the NFFT. Common names for NFFT are
non-uniform fast Fourier transform (8], generalized fast Fourier transform [5], unequally-spaced
fast Fourier transform [2], fast approximate Fourier transforms for irreqularly spaced data [23],
non-equispaced fast Fourier transform [10] or gridding [21, 15, 19].

In various papers, different window functions were considered, e.g. Gaussian pulse tapered
with a Hanning window in [4], Gaussian kernels combined with sinc kernels in [19], and spe-
cial optimised windows in [15, 4]. Furthermore, special approaches based on scaling vectors
[17], based on minimising the Frobenius norm of certain error matrices [18] or based on min-
max interpolation [8] are proposed. However, the numerical results in [18, 8] show that these
approaches are not superior to the approach based on Kaiser-Bessel functions.

An even more general FFT, where both the knots in frequency and time/spatial domain are
arbitrary, was developed in [6]. Up to now, the library does not support this extension.

Our algorithms are based on the approach in [20]. Here, one can change the window functions
in a very simple way. See Section 3 and Section 4 for a suitable choice of the window function
with respect to accuracy, speed and memory usage.

2.4 Inverse NFFT

As already mentioned, the reconstruction or recovery problem is to find for given data f € CM
a suitable vector of Fourier coefficients f € C satisfying Af ~ f. Starting from the normal



equations (2.3) and (2.5) it has been proven, that these are well conditioned for (see [7, 1])

N<C(571 52: dt - ’
t ’ , jvl:g??}li\/[—lrlgél? 15 OO( Jo l)
or (see [16])
1—d
N,>Cgqq 77, — _ Gt (o
t B,d4 q j,l:O,.?ﬁl—1;l¢j istoo ( j ),
where t =0,...,d — 1. The mesh norm ¢ or the separation distance ¢ have to be bounded with

respect to the polynomial degree N;;. Once, a suitable multi bandwidth N has been chosen,
one may apply one of the following iterative algorithms. The implemented algorithms are given
below in pseudocode, see also [3, 14]. Algorithm 3 is the only algorithm which computes the
original residual 7; in each step, all other algorithms iterate the residual. Algorithm 1 and 2 are
used for the matrix vector multiplication with A and A", respectively.

Input: f € CM, fo € CNm
Lrg=f— A.fo
2 20 = A"Wrg
3: forAl =0,... do X
4 fra=FfitaWz
5 Tiyl :f—Ale
6: 21 =A"Wrg,

7: end for
Output: fl

Algorithm 3: LANDWEBER

Input: f € CM, fo € CNm
Lro=f—Af,
2: 29 = AHW’I’O

3: for [ =0,...do
4: v, =AW 2,

5: o] = LEW’QZ
viWu,

6 fro=FfitaWsz

T T4l = T4 — qUp

8: 21+1 = AHW7°1+1

9: end for
Output: f,

Algorithm 4: STEEPEST DESCENT

The memory usage of the iterative algorithms are given in the following Table 1.

10




Input: f € CM, fo € CNm
1: if ITERATE_2nd then

acgne a
3: end if

4 1o =f - Af,
5: 20 = AHW’I‘O

6: ﬁo - 20

7. for [ =0,... do

8: v = AWﬁl
2w 3,

9: o) = ’UFW’UL
10:  frp=fi+aWp
11: if ITERATE_2nd then

riWr
12: ofBC = L
2 Wz,
acgne acgne cgneyis &
13: fl+1 = fl + o Wz
14:  end if

15: T4l =T — QU]
s _ AH
16: Zi4r1 = A W’I"H_l
SH Y7 s
ZaWZi
2wz,

18 Py = Bib + 2141

17: 6 =

19: end for

~cgne

Output: f;, f;

Algorithm 5: CGNR_E

‘ Algorithm ‘ Memory usage ‘
LANDWEBER 2M + 2Ny
STEEPEST _DESCENT 3M + 2Ny
CGNR_E 3M + (3(+1)) Nn
CGNE R 2M + (2(+1)) Nn

Table 1: Memory usage of the iterative schemes.
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Input: f € CM, fo € CNm
1: if ITERATE_2nd then

2: Yo =1
acgnr a
3 o =1Fo
4: end if
5: 1o =f — Af,
6 ﬁo = AHW’I"O
7. for [ =0,... do
riWr,
Ql = TH<z,
D, WD,

9 fra=Fi+taWp
10: Tiy1 =T — OélAWﬁl

11: /B . TF+1W7"[+1
' L= T}{er

12: if ITERATE 2nd then

13: Y41 =0+ 1

acgnr scgnr -
o i = 5 (8P fu)
15: end if

16: Py = B+ AW

17: end for
acgnr

Output: f;, f;

Algorithm 6: CGNER

12




3 Library

The library is completely written in C and uses the FFTW library (see [12]), which has to
be installed on your system. Algorithms 1 and 2 are implemented for arbitrary dimensions
d = 1,2,.... The library has several options (determined at compile time) and parameters
(determined at run time).

3.1 Installation
Download and make

1. Install the FFTW library (version 3), available from www.fftw.org. Generally this will
mean
> ./configure --prefix <FFTW_PATH>
> make
> make install

2. Download from www.math.uni-luebeck.de/potts/nfft
> tar xfv nfft2.tar will create a directory ./nfft2
./nfft2> ./configure <FFTW_PATH> creates all makefiles
./nfft2> make creates the library and all examples

The following options are determined at compile time, realised in the Makefiles and in the
file ./include/options.h, respectively.

Options

The adaptation of the C-library is done in ./include/options.h. One chooses between win-
dow functions by defining one of the following constant symbols: KAISER BESSEL, SINC_ 2m,
GAUSSIAN, B_SPLINE.

Furthermore, the fast transforms can be instrumented such that the elapsed time for each
step of Algorithm 1 and 2 is printed to stderr, respectively. This option should help to customise
the library to one’s needs. One can enable this option by defining MEASURE TIME in options.h.

3.2 NFFT - General procedure

One has to follow certain steps to write a simple program using the NFFT library. The first
argument of each function is a pointer to a application-owned variable of type nfft plan. The
aim of this structure is to keep interfaces small, it contains all parameters and data.

Initialisation

Initialisation of a plan is done by one of the nfft_init-functions. The simplest version for the
univariate case d = 1 just specifies the number of Fourier coefficients Ng and the number of non
equispaced knots M. For an application-owned variable nfft _plan my_plan the function call is

nfft init 1d(&my_plan,NO,M);

The first argument should be uninitialised. Memory allocation is completely done by the init
routine.

13



Setting knots

One has to define the knots @; € T? for the transformation in the member variable my_plan.x.
The t-th coordinate of the j-th knot x; has to be assigned to

my_plan.x[d*j+t]= /*your choicex*/;

Precompute 1;

The precomputation of the values v (;c = n o l) depends on the choice for my_plan.x. If and
only if the nfft-flag PRE_PST is set, the subroutine nfft _precompute psi(&my_plan) has to be
called, i.e.

if (my_plan.nfft flags & PRE_PSI) nfft_precompute psi(&my_plan);

Doing the transform
Algorithm 1 is implemented as
nfft_trafo(&my_plan);

One only needs one plan for several transforms of the same kind, i.e. transforms with equal
initialisation parameters.
Finalisation
All memory allocated by the init routine is deallocated by

nfft_finalize (&my_plan);

Note, that almost all (de)allocation operations of the library are done by fftwmalloc and
fftw_free. Additional data, declared and allocated by the application, have to be deallocated
by the user’s program as well.

Example

Thus, the following code computes a univariate nfft with 12 Fourier coefficients and 19 knots.

void simple_test_nfft_1d4()
{

int j,k;

nfft_plan my_plan;

nfft_init_1d(&my_plan,12,19);

for(j=0;j<my_plan.M; j++)
my_plan.x[jl=((double)rand())/RAND_MAX-0.5;

if (my_plan.nfft_flags & PRE_PSI)
nfft_precompute_psi(&my_plan);

for(k=0;k<my_plan.N_L;k++)
{

14



my_plan.f_hat [k] [0]=((double)rand())/RAND_MAX;
my_plan.f_hat[k] [1]=((double)rand())/RAND_MAX;
}

nfft_trafo(&my_plan);

nfft_finalize(&my_plan);
}

3.3 NFFT - Parameter

All parameters are stored in the plan. Using the simple initialisation nfft_init, one has only
to define the multi bandwidth N and the number of knots M. All other parameters are set to
default values. The specific initialisation nfft_init_specific may be used to customise the
library to one’s needs.

‘ name ‘ default ‘ description
N multivariate bandwidth
M number of knots
n | 2Mog N FFTW-size
m | see Table 3 cut off parameter in time domain
nfft _flags | PREPSI| PRE PHI HUT| disjunction of flags for
MALLOC X | MALLOC_F_HAT| MALLOCF| | memory allocation
FFTW_INIT| FFT_OUT_OF_PLACE
fftw_flags | FFTW_ESTIMATE| FFTW.DESTROY_INPUT | disjunction of flags for FF'TW

Table 2: Parameters

In Table 3 we give the default values for the cut off parameter m. This parameter depends
on the window function and is choosen such that the error E, (see Section 4) is smaller than
10712,

window function | Kaiser-Bessel | sinc?” | B-spline | Gaussian

m 6 9 11 12

Table 3: Default values for the cut-off parameter m, see also Section 4,Figure 3.

Flags

The flags, set in nfft flags concern memory allocation and precomputations. For the knot
vector @, the vector of Fourier coefficients f, and the vector of samples f memory is allocated
iff MALLOC_X, MALLOC_F_HAT, and MALLOC_F are set, respectively.
The flag FFTW_INIT causes the library to initialise the plans for the fft; iff FFT_OUT _OF PLACE
is set, the vectors g and g have their own allocated memory, otherwise they share.
Precomputation can be customised by the flags PRE_PHI_HUT, PRE_PSI, and PRE FULL PSI;

PRE_PHI HUT causes the initialisation routine to precompute the values cg(¢$) in their tensor
product form. The flag PRE_PSI causes the allocation of memory for (mj -nloe l), used in

15



the 3rd step of Algorithm 1. The routine nfft_precompute_psi has to be called for the actual
precomputation. Again, the library uses the tensor product form, which leads to a memory usage
of d(2m + 2) doubles per knot, but an arithmetic complexity of d(2m + 2)? per knot; similar
to what is called ’fast gridding’ in [13], where the storage requirements are further decreased
for the Gaussian window function. In contrast, if in addition the flag PRE FULL PST is set, the
library uses (2m + 2)¢ doubles and 2(2m + 2)? integers (for indices) per knot, which leads to an
arithmetic complexity of (2m + 2)? per knot. In this case the nfft_full psi has to be called.

3.4 NFFT - Data
Data layout

All data with multi index are stored plaz’n e. g fk, in my_plan.f hat[ky], where the plain index
again is given by ky := kt + )Ht/ t+1 V¢ and the knots (x;), in my plan.x[dj +t].

Exchanging data

All routines work on the structure my_plan. One can exchange data with this structure if one
wants to use several transforms. One can do this by declaring, allocating memory (fftwmalloc),
initiatisation (optionally) and using the SWAPC macro, e.g.

SWAPC (my_plan.f hat,new_f hat).

Note that the data has the right type and size (see Table 4). Memory deallocation of all ’free’
data has to be done by the user’s program. Note, that the vectors my plan.g and my plan.g hat
must not be exchanged.

3.5 NFFT - Plan

The library defines the structure nfft_plan. The members are int d, int* N, int M, doublex
sigma, int* n, int m, doublex b, int nfft flags, int fftw_flags (already discussed,
see Table 2). Furthermore, it contains all data vectors, see Table 4.

‘ type name ‘ description ‘ size (in *type) ‘
doublex x knots x; € T? dM
fftw_complex* f hat Fourier coefficients Ny
fftw_complex*x f samples M
double** c_phi_inv | precomputed cg (@) f:_ol Ny
double* psi precomputed 1) ( -n 1o l) d2m+2)M
or (flags *_PSI) (2m +2) M
fftw_complex* g g1 "
fftw_complex* g hat Jk (ng)

Table 4: Members of nfft_plan.

3.6 iINFFT - General procedure

The following Figure 2 shows how to use the inverse nfft. There is no general stopping rule
implemented, since this task is highly dependent on the special application. A simple example
can be found in example/simple_test/.
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Initialise NFFT.

Initialise iNFFT.

Compute residuals.

Compute one iteration.

no yes

Stop?

Finalise iNFFT.

Finalise NFFT.

Figure 2: Control flow of the iNFFT.

3.7 1INFFT - Parameter

The inverse nfft basically wraps an already initialised direct nfft (direct_plan), i.e. one only
specifies the type of iteration by setting one of

LANDWEBER, STEEPEST_DESCENT, CGNR_E, CGNE_R.

in infft_flags. The additional flag NORMS _FOR_LANDWEBER, only applicaple if LANDWEBER is set,
causes the library to compute the residuals |73, and |2, %;V; ITERATE 2nd, only applicaple if
CGNR_E or CGNR_E is set, computes the cgne/cgnr-iterate out of the cgnr/cgne-algorithm, see [14]
for details. Weights and damping factors are used if the flags

PRECOMPUTE_WEIGHT, PRECOMPUTE _DAMP

are specified, respectively. One has to initialise the members my_iplan.w, my_iplan.w hat in
these cases. The utility library, see 1ib/utils.c, provides a set of functions for computing
voronoi weights and certain damping factors, see Subsection 4.3. The default for infft flags
is CGNR_E.

3.8 iNFFT - Plan

The library defines the structure infft _plan. The members direct plan and infft flags are
already discussed. Table 5 shows part of the remaining members.
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type name description ‘ size (in *type) ‘

doublex w weights w M

doublex w_hat damping factors Ny

fftw_complex* given f right hand side M

fftw_complex* f hat iter actual solution Ny

fftw_complex* f hat_iter_2nd | 2nd solution (ITERATE 2nd) | Ny

fftw_complex* r_iter ‘ residual vector r;4q ‘ M
double dot_r_iter 704113

double dot.r_iter_old | |73

Table 5: More important members of infft_plan.

3.9 User functions

All user functions have return type void and their first argument is of type nfft_plan* or
infft_plan*, respectively. Table 6 shows all available functions.

‘ name additional arguments
ndft_trafo

ndft_conjugated

ndft_adjoint

ndft_transposed

nfft_init_1d int NO, int M

nfft_init_2d int NO, int N1, int M
nfft_init_3d int NO, int N1, int N2, int M
nfft_init int d, int *N, int M

nfft_init_specific int d, int *N, int M, int *n, int m,
unsigned nfft flags, unsigned fftw flags

nfft_precompute psi

nfft_full psi double eps
nfft_trafo

nfft_conjugated

nfft_adjoint

nfft_transposed

nfft finalize

infft_init nfft_plan *direct_plan

infft_init_specific nfft_plan *direct_plan, unsigned infft flags
infft_before_loop

infft_loop_one_step

infft finalize

Table 6: User functions.
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4 Examples

One may start with example/simple_test/, where the usage of the library is presented for small
problems. More elaborated examples in example/error decay, franke, glacier, interpolation_id,
lena show the usage of the inverse nfft. Note, that these examples use MATLAB for their visu-
alisation.

The library was tested on a AMD Athlon(tm) XP 2700+, 1GB memory, SuSe-Linux, kernel
2.4.20-4GB-athlon, gcc version 3.3. In all test cases the knots x; and the Fourier coefficients f,
are chosen pseudo random with x; € [—0.5,0.5]? and fi, € [0,1] x [0,1] .

4.1 Accuracy & m

The accuracy of the Algorithm 1, measured by

=l (S s P X 15

Jel}, g€l
and IFi |
J— S £
Ex = ~———— =max|f; — s(x;)|/ Z | /il
Hf”l JEIy keln

is shown in Figure 3, see ./example/accuracy.

10° : : 10° : : 10°

10° 10° 10°

107 10" 107

10 150 5 10 15 10_150 5 10 5 U 150 5 10 15

Figure 3: The error Fy (top) and E, (bottom) with respect to m, from left to right d = 1,2,3
(N =21226 24 5 =2 M =10000), for Kaiser Bessel- (circle), Sinc power- (x), B-Spline- (4),
and Gaussian window (triangle).
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4.2 CPU-time & N

Figure 4 compares computational times for both the NDFT and the NFFT, see . /example/timing.

10 ‘ ‘ ‘ ‘ 10 ‘ ‘ 10
I
I
10! 10" 10"
10° ; 10’ 1’
10} : 107 : 107 : T ETI
1024 4096 16384 65536 262144 1048576 16 64 256 1024 16 24 32 40 48 56 64

Figure 4: The elapsed CPU-time with respect to N for Kaiser Bessel window, parameters
m = 6,0 =2, M = N; left, d = 1: NDFT (circle), NFFT (no precomputation, x), NFFT
(simple interface, 4+), NFFT (maximum precomputation, triangle); middle, d = 2: NDFT
(circle), NFFT (simple interface, +); right, d = 3: NDFT (circle), NFFT (simple interface, +).

Figure 5 compares computational times for single steps of the NFFT, see ./example/timing.

10° ‘ ‘ ‘ 10" ‘ ‘ ‘ 10° ‘ ‘ ‘
10° 10"
I
107
10" 10°
1
. 4
107 ‘ R 107 ‘ . 10 ‘ .
128 384 640 896 128 384 640 896 128 384 640 896

Figure 5: The elapsed CPU-time with respect to N for Kaiser Bessel window, parameters
d=2,m=6,0>2 M = N; from left to right: multiplication with D, F', and B respectively;
no precomputation (x), simple interface (+), and maximum precomputation (triangle).

4.3 Reconstruction of functions

The usage of the inverse NFFT is e.g. shown in ./example/interpolation_1d, Figure 6, and
./example/glacier, Figure 7. For theoretical result see [16].
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Figure 6: Real part of different interpolation polynomials for N = 20 for the function /2 xl/ 2

sampled at M = 10 nodes; 10 iterations and the six kernels: Dirichlet, Fejer, Jackson (m = 2)
Jackson (m = 4), Sobolev (a = 1), and inverse multi-quadric-type (¢ = 1, u = 2).

Figure 7: Reconstruction of the glacier data set vo187.dat from [11] with radial (g = W), )
inverse multi-quadric-type damping factors (¢ = 1, p = 1.4); M = 8345 nodes, N = 256, 40
iterations.
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