
NFFT2.0.beta
July 29, 2004

Stefan Kunis and Daniel Potts
University of Lübeck

Institute of Mathematics
D–23560 Lübeck, Germany

{kunis,potts}@math.uni-luebeck.de

1 Introduction

This technical report gives a short summary of the fast Fourier transform at non equispaced
knots (NFFT) and its generalised inverse. An introduction to the NFFT, error estimates
etc. can be found in [17]. The computational complexity of the proposed algorithms is
O (NΠ logNΠ +M) for NΠ equispaced frequencies and M non equispaced samples.

The algorithms are implemented in the C-library nfft2 which will be described in detail.
The heart of the algorithms are (uniform) fast Fourier transforms for which the library fftw3
(see [10]) is used.

The remainder is organised as follows: in Section 2, the problems of the discrete Fourier
transform at non equispaced knots (NDFT) are stated, the used notation is introduced, related
works are classified, and the fast algorithm (NFFT) is deduced in pseudo code. Furthermore,
an iterative scheme for inversion of the NFFT is presented. The implementation and usage of
the library is described in Section 3. Finally, simple examples of usage and numerical results
are presented in Section 4.

1

2 Notation, the NDFT and the NFFT

This section summarises the mathematical theory and ideas behind the NFFT.

2.1 NDFT

Let the torus

Td :=
{

x = (xt)t=0,...,d−1 ∈ Rd : −1
2
≤ xt <

1
2
, t = 0, . . . , d− 1

}

of dimension d be given. It will serve as domain where the non equispaced knots x are taken
from. Thus, the sampling set is given by X := {xj ∈ Td : j = 0, . . . ,M − 1}.

The space of all (d-variate, one-periodic) functions f : Td → C is restricted to the space
of d-variate trigonometric polynomials

span
(
e−2πik· : k ∈ IN

)

with degree Nt (t = 0, . . . , d − 1) in the t-th dimension. Possible frequencies k are collected
in the multi index set

IN :=
{

k ∈ Zd : −Nt

2
≤ kt <

Nt

2
− 1, t = 0, . . . , d− 1

}
,

where N = (Nt)t=0,...,d−1 is the multi bandlimit. The dimension of the space of d-variate

trigonometric polynomials is given by NΠ =
d−1∏
t=0

Nt.

The inner product between the frequency k and the time/spatial knot x is defined in
the usual way by kx := k0x0 + k1x1 + . . . + kd−1xd−1. Furthermore, two vectors may be
linked by the pointwise product σ ¯ N := (σ0N0, σ1N1, . . . , σd−1Nd−1,)

T with its inverse

N−1 :=
(

1
N0
, 1

N1
, . . . , 1

Nd−1

)T
.

For clarity of presentation the multiindex k adresses elements of vectors and matrices as
well, i.e., the plain index kΠ :=

∑d−1
t=0 (kt + Nt

2)
∏d−1

t′=t+1Nt′ is not used here.

Direct NDFT

The first problem to be adressed can be regarded as a matrix vector multiplication. For a finite
number of given Fourier coefficients f̂k ∈ C (k ∈ IN) one wants to evaluate the trigonometric
polynomial

f (x) :=
∑

k∈IN

f̂ke−2πikx (2.1)

at given non equispaced knots xj ∈ Td. Thus, our concern is the evaluation of

fj = f (xj) :=
∑

k∈IN

f̂ke−2πikxj (j = 0, . . . ,M − 1).

In matrix vector notation this reads as

f = Af̂ (2.2)

2

where

f := (fj)j=0,...,M−1 , A :=
(
e−2πikxj

)
j=0,...,M−1; k∈IN

, f̂ :=
(
f̂k

)
k∈IN

.

As already mentioned, all ’vec’-operation are omitted, and the matrix-vector-product is de-
fined by Af̂ := Vec (A) vec

(
f̂

)
. The straight forward algorithm of this matrix vector prod-

uct, which is called ndft, takes O (MNΠ) arithmetical operations.
Related matrix vector products are the adjoint ndft

f̂ = AHf ,

the conjugated ndft
f = Af̂ ,

and the transposed ndft
f̂ = ATf ,

where AH = A
T.

Equispaced knots

For Nt = N (t = 0, . . . , d − 1), M = Nd and equispaced knots xj = 1
N j (j ∈ IN) the

computation of (2.2) is known as (multivariate) discrete Fourier transform (DFT). In this
special case, the input data f̂k are called discrete Fourier coefficients and the samples fj can
be computed by the well known fast Fourier transform (FFT) with only O (NΠ logNΠ) (NΠ =
Nd) arithmetic operations. Furthermore, one has an inversion formula

AAH = AHA = NΠI,

which does NOT hold true for the non equispaced case in general.

Inverse NDFT

In general there is no simple inversion formula, hence one deals with the following reconstruc-
tion or recovery problem. Given the values fj ∈ C (j = 0, . . . ,M − 1) at non equispaced
knots xj (j = 0, . . . ,M − 1), the aim is to reconstruct a trigonometric polynomial f resp. its
Fourier-coefficients f̂k (k ∈ IN) with

f (xj) =
∑

k∈IN

f̂ke−2πikxj ≈ fj resp. Af̂ ≈ f .

Often, the number of nodes M and the dimension of the space of the polynomials NΠ do not
coincide, i.e., the matrix A is rectangular. A standard method is to use the Moore-Penrose-
pseudoinverse solution f̂

†
which solves the general linear least squares problem, see e.g. [3,

p. 15],
‖f̂‖2 → min subject to ‖f −Af̂‖2 = min for f ∈ CM .

Of course, computing the pseudoinverse by the singular value decomposition is very expensive
here and no practical way at all.

3

For a comparative low polynomial degree NΠ < M the linear system Af̂ ≈ f is over-
determined, so that in general the given data fj ∈ C, j = 0, . . . ,M − 1, will be only approxi-
mated up to the residual r := f −Af̂ . One considers the weighted approximation problem

‖f −Af̂‖W =

M−1∑

j=0

wj |fj − f(xj)|2

1/2

f̂→ min,

which may incorporate weights wj > 0, W := diag(wj)j=0,...,M−1, to compensate for clusters
in the sampling set X . This problem is equivalent to the weighted normal equation of first
kind

AHWAf̂ = AHWf . (2.3)

For a comparative high polynomial degree NΠ > M one expects to interpolate the given
data fj ∈ C, j = 0, . . . ,M − 1, exactly. The (consistent) linear system Af̂ = f is under-
determined. One considers the damped minimisation problem

‖f̂‖Ŵ −1 =

 ∑

k∈IN

ŵ−1
k |f̂k|2

1/2

f̂→ min subject to Af̂ = f , (2.4)

which may incorporate ’damping factors’ ŵk > 0, Ŵ := diag(ŵk)k∈IN
. A smooth solution

is favoured, i.e., a decay of the Fourier coefficients f̂k, k ∈ IN , for decaying damping factors
ŵk. This problem is equivalent to the damped normal equation of second kind

AŴAHf̃ = f , f̂ = ŴAHf̃ . (2.5)

2.2 NFFT

For clarity of presentation the ideas behind the NFFT will be shown for the case d = 1 and
the algorithm ndft. The generalisation of the FFT is an approximative algorithm and has
computational complexity O (N logN + log (1/ε)M), where ε denotes the desired accuracy.
The main idea is to use standard FFTs and a window function ϕ which is well localised in
the time/spatial domain R and in the frequency domain R. Several window functions were
proposed, see [5, 2, 19, 9, 7].

The considered problem is the fast evaluation of

f (x) =
∑

k∈IN

f̂ke−2πikx (2.6)

at arbitrary knots xj ∈ T, j = 0, . . . ,M − 1.

The ansatz

One wants to approximate the trigonometric polynomial f in (2.6) by a linear combination
of shifted 1-periodic window functions ϕ̃ as

s1 (x) :=
∑

l∈In

gl ϕ̃

(
x− l

n

)
. (2.7)

With the help of an oversampling factor σ > 1 the fft-length is given by n := σN .

4

The window function

Starting with a window function ϕ ∈ L2 (R), one assumes that its 1-periodic version ϕ̃, i.e.,

ϕ̃ (x) :=
∑

r∈Z
ϕ (x+ r)

has an uniformly convergent Fourier series and is well localised in the time/spatial domain T
and in the frequency domain Z. The periodic window function ϕ̃ may be represented by its
Fourier series

ϕ̃ (x) =
∑

k∈Z
ck (ϕ̃) e−2πikx

with the Fourier coefficients

ck (ϕ̃) :=
∫

T

ϕ̃ (x) e2πikx dx =
∫

R

ϕ (x) e2πikx dx = ϕ̂ (k) , k ∈ Z.

−0.5 0 0.5
10

−20

10
−15

10
−10

10
−5

−0.5 0 0.5
10

−20

10
−15

10
−10

10
−5

−32 −20 −12 0 11 19 32
10

−20

10
−15

10
−10

10
−5

10
0

Figure 1: From left to right: Gaussian window funtion ϕ, its 1-periodic version ϕ̃, and the
integral Fourier-transform ϕ̂ (with pass, transition, and stop band) forN = 24, σ = 4

3 , n = 32.

The first approximation - cutting off in frequency domain

Switching from the definition (2.7) to the frequency domain, one obtains

s1 (x) =
∑

k∈In

ĝk ck (ϕ̃) e−2πikx +
∑

r∈Z\{0}

∑

k∈In

ĝk ck+nr (ϕ̃) e−2πi(k+nr)x (2.8)

with the discrete Fourier coefficients

ĝk :=
∑

l∈In

gl e2πi kl
n . (2.9)

Comparing (2.6) to (2.7) and assuming ck (ϕ̃) small for |k| ≥ n− N
2 suggests to set

ĝk :=

{
f̂k

ck(ϕ̃) for k ∈ IN ,
0 for k ∈ In\IN .

(2.10)

Then the values gl can be obtained from (2.9) by

gl =
1
n

∑

k∈IN

ĝk e−2πi kl
n (l ∈ In),

a FFT of size n.
This approximation causes an aliasing error.

5

The second approximation - cutting off in time/spatial domain

If ϕ is well localised in time/space domain R it can be approximated by a function

ψ (x) = ϕ (x)χ[−m
n

, m
n

] (x)

with suppψ
[−m

n ,
m
n

]
, m ¿ n, m ∈ N. Again, one defines its one periodic version ψ̃ with

compact support in T as
ψ̃ (x) =

∑

r∈Z
ψ (x+ r) .

With the help of the index set

In,m (xj) := {l ∈ In : nxj −m ≤ l ≤ nxj +m}
an approximation to s1 is defined by

s (xj) :=
∑

l∈In,m(xj)

gl ψ̃

(
xj − l

n

)
. (2.11)

Note, that for fixed xj ∈ T, the above sum contains at most (2m+ 1) nonzero summands.
This approximation causes a truncation error.

The case d > 1

Starting with the original problem of evaluating the multivariate trigonometric polynomial in
(2.1) one has to do a few generalisations. The window function is given by

ϕ (x) := ϕ0 (x0)ϕ1 (x1) . . . ϕd−1 (xd−1)

where ϕt is an univariate window function. Thus, a simple consequence is

ck (ϕ̃) = ck0 (ϕ̃0) ck1 (ϕ̃1) . . . ckd−1
(ϕ̃d−1) .

The ansatz is generalised to

s1 (x) :=
∑

l∈In

gl ϕ̃
(
x− n−1 ¯ l

)
,

where the fft-size is given by n := σ¯N and the oversampling factors by σ = (σ0, . . . , σd−1)
T.

Along the lines of (2.10) one defines

ĝk :=

{
f̂k

ck(ϕ̃) for k ∈ IN ,
0 for k ∈ In\IN .

The values gl can be obtained by a (multivariate) FFT of size n0 × n1 × . . .× nd−1 as

gl =
1
nΠ

∑

k∈IN

ĝk e−2πik(n−1¯l), l ∈ In.

Using the compactly supported function ψ (x) = ϕ (x)χ[−m
n

, m
n

]d (x), one obtains

s (xj) :=
∑

l∈In,m(xj)

gl ψ̃
(
xj − n−1 ¯ l

)
,

where ψ̃ again denotes the one periodic version of ψ and the multi index set is given by

In,m (xj) := {l ∈ In : n¯ xj −m1 ≤ l ≤ n¯ xj +m1} .

6

The algorithm

In summary, the following Algorithm 1 is obtained for the fast computation of (2.2) with
O (nΠ log nΠ +mM) arithmetic operations.

Input: d,M ∈ N, N ∈ 2Nd

Input: xj ∈ [−1
2 ,

1
2]d, j = 0, . . . ,M − 1, and f̂k ∈ C, k ∈ IN ,

1: For k ∈ IN compute

ĝk :=
f̂k

nΠck (ϕ̃)
.

2: For l ∈ In compute by d-variate FFT

gl :=
∑

k∈IN

ĝk e−2πik(n−1¯l).

3: For j = 0, . . . ,M − 1 compute

fj :=
∑

l∈In,m(xj)

gl ψ̃
(
xj − n−1 ¯ l

)
.

Output: approximate values fj , j = 0, . . . ,M − 1.
Algorithm 1: NFFT

Algorithm 1 reads in matrix vector notation as

Af̂ ≈ BFDf̂ ,

where B denotes the real M × nΠ sparse matrix

B :=
(
ψ̃

(
xj − n−1 ¯ l

))
j=0,...,M−1; l∈In

, (2.12)

where F is the Fourier matrix of size nΠ × nΠ, and where D is the real nΠ × NΠ ’diagonal’
matrix

D :=
d−1⊗

t=0

(
Ot |diag (1/ ckt (ϕ̃t))kt∈INt

|Ot

)T

with zero matrices Ot of size Nt × nt−Nt
2 .

The corresponding computation of the adjoint matrix vector product reads as

AHf̂ ≈ DTF HBTf̂ .

With the help of the transposed index set

IT
n,m (l) := {j = 0, . . . ,M − 1 : l−m1 ≤ n¯ xj ≤ l +m1} ,

one obtains Algorithm 2 for the adjoint nfft. Due to the characterisation of the non zero
elements of the matrix B, i.e.,

M−1⋃

j=0

j × In,m (xj) =
⋃

l∈In

IT
n,m (l)× l.

the multiplication with the sparse matrix BT is implemented in a ’transposed’ way in the
library, summation as outer loop and only using the multi index sets In,m (xj).

7

Input: d,M ∈ N, N ∈ 2Nd

Input: xj ∈ [−1
2 ,

1
2]d, j = 0, . . . ,M − 1, and fj ∈ C, j = 0, . . . ,M − 1,

1: For l ∈ In compute
gl :=

∑

j∈IT
n,m(l)

fj ψ̃
(
xj − n−1 ¯ l

)
.

2: For k ∈ IN compute by d-variate IFFT

ĝk :=
∑

l∈In

gl e+2πik(n−1¯l).

3: For k ∈ IN compute

f̂k :=
ĝk

nΠck(ϕ̃)
.

Output: approximate values f̂k, k ∈ IN .

Algorithm 2: NFFTH

2.3 Window functions

Again, only the case d = 1 is presented. To keep the aliasing error and the truncation error
small, several functions ϕ with good localisation in time and frequency domain were proposed,
e.g. the (dilated) Gaussian [5, 19, 4]

ϕ (x) = (πb)−1/2 e−
(nx)2

b

(
b :=

2σ
2σ − 1

m

π

)
, (2.13)

ϕ̂ (k) =
1
n

e−b(πk
n)2

,

(dilated) cardinal central B–splines [2, 19]

ϕ (x) = M2m (nx) , (2.14)

ϕ̂ (k) =
1
n

sinc2m (kπ/n) , (2.15)

where M2m denotes the centered cardinal B–Spline of order 2m,
(dilated) Sinc functions

ϕ (x) =
N (2σ − 1)

2m
sinc2m

(
(πNx (2σ − 1))

2m

)
, (2.16)

ϕ̂ (k) = M2m

(
2mk

(2σ − 1)N

)

8

and (dilated) Kaiser–Bessel functions [12, 9]

ϕ (x) =
1
π

sinh
(
b
√
m2 − n2x2

)
√
m2 − n2x2

for |x| ≤ m
n

(
b := π

(
2− 1

σ

))
,

sin
(
b
√
n2x2 −m2

)
√
n2x2 −m2

otherwise,

(2.17)

ϕ̂ (k) =
1
n

I0

(
m

√
b2 − (2πk/n)2

)
for k = −n (

1− 1
2σ

)
, . . . , n

(
1− 1

2σ

)
,

0 otherwise,

where I0 denotes the modified zero–order Bessel function. For these functions ϕ it has been
proven that

|f (xj)− s (xj) | ≤ C (σ,m) ‖f̂‖1

where

C (σ,m) :=

4 e−mπ(1−1/(2σ−1)) for (2.13) [19],

4
(

1
2σ−1

)2m
for (2.14) [19],

1
m−1

(
2

σ2m +
(

σ
2σ−1

)2m
)

for (2.16)
(

4π2

3 +O
(
m

3
2

))
e−m2π

√
1−1/σ for (2.17) .

Thus, for fixed σ > 1, the approximation error introduced by the NFFT decays exponentially
with the number m of summands in (2.11). Using the tensor product approach the above
error estimates can be generalised for the multivariate setting [6]. On the other hand, the
complexity of the NFFT increases with m.

Further NFFT papers

Several papers have described fast approximations for the NFFT. Common names for NFFT
are non-uniform fast Fourier transform [7], generalized fast Fourier transform [5], unequally-
spaced fast Fourier transform [2], fast approximate Fourier transforms for irregularly spaced
data [20], non-equispaced fast Fourier transform [9] or gridding [18, 12, 16].

In various papers, different window functions were considered, e.g. Gaussian pulse tapered
with a Hanning window in [4], Gaussian kernels combined with sinc kernels in [16], and special
optimised windows in [12, 4]. Furthermore, special approaches based on scaling vectors [14],
based on minimising the Frobenius norm of certain error matrices [15] or based on min-max
interpolation [7] are proposed. However, the numerical results in [9, 15, 7] show that these
approaches are not superior to the approach based on Kaiser-Bessel functions.

Our algorithms are based on the approach in [17]. Here, one can change the window
functions in a very simple way. See Section 3 and Section 4 for a suitable choice of the
window function with respect to accuracy, speed and memory usage.

2.4 Inverse NFFT

As already mentioned, the reconstruction or recovery problem is to find for given data f ∈ CM

a suitable vector of Fourier coefficients f̂ ∈ CNΠ satisfying

Af̂ ≈ f .

9

Starting from the normal equations (2.3, 2.5) it has been proven, see [8, 1, 13], that these
are well conditioned for

Nt < Cdδ
−1 , δ := max

j,l=0,...,M−1
min
l 6=j

dist∞ (xj ,xl) ,

or
Nt > Cβ,dq

−1+ 1−d
β , q := min

j,l=0,...,M−1;l 6=j
dist∞ (xj ,xl) ,

where t = 0, . . . , d−1. The mesh norm δ or the separation distance q have to be bounded with
respect to the polynomial degree NΠ. Once, a suitable multi bandwidth N has been chosen,
one may apply one of the following iterative algorithms. The implemented algorithms are
given below in pseudocode. Algorithm 3 is the only algorithm which computes the original
residual rl in each step, all other algorithms iterate the residual.

Input: f ∈ CM , f̂0 ∈ CNΠ

1: r0 = f −Af̂0

2: ẑ0 = AHWr0

3: for l = 0, . . . do
4: f̂ l+1 = f̂ l + αŴ ẑl

5: rl+1 = f −Af̂ l+1

6: ẑl+1 = AHWrl+1

7: end for
Output: f̂ l

Algorithm 3: LANDWEBER

Input: f ∈ CM , f̂0 ∈ CNΠ

1: r0 = f −Af̂0

2: ẑ0 = AHWr0

3: for l = 0, . . . do
4: vl = AŴ ẑl

5: αl = ẑH
l Ŵ ẑl

vH
l Wvl

6: f̂ l+1 = f̂ l + αlŴ ẑl

7: rl+1 = rl+1 − αlvl

8: ẑl+1 = AHWrl+1

9: end for
Output: f̂ l

Algorithm 4: STEEPEST DESCENT

The memory usage of the iterative algorithms are given in the following Table 1.

10

Input: f ∈ CM , f̂0 ∈ CNΠ

1: if ITERATE 2nd then
2: f̂

cgne
0 = f̂0

3: end if

4: r0 = f −Af̂0

5: ẑ0 = AHWr0

6: p̂0 = ẑ0

7: for l = 0, . . . do
8: vl = AŴ p̂l

9: αl = ẑH
l Ŵ ẑl

vH
l Wvl

10: f̂ l+1 = f̂ l + αlŴ p̂l

11: if ITERATE 2nd then
12: αcgne

l = rH
l Wrl

ẑH
l Ŵ ẑl

13: f̂
cgne
l+1 = f̂

cgne
l + αcgne

l Ŵ ẑl

14: end if

15: rl+1 = rl − αlvl

16: ẑl+1 = AHWrl+1

17: βl = ẑH
l+1Ŵ ẑl+1

ẑH
l Ŵ ẑl

18: p̂l+1 = βlp̂l + ẑl+1

19: end for
Output: f̂ l, f̂

cgne
l

Algorithm 5: CGNR E

Algorithm Memory usage
LANDWEBER 2M + 2NΠ

STEEPEST DESCENT 3M + 2NΠ

CGNR E 3M + (3 (+1))NΠ

CGNE R 2M + (2 (+1))NΠ

Table 1: Memory usage of the iterative schemes.

11

Input: f ∈ CM , f̂0 ∈ CNΠ

1: if ITERATE 2nd then
2: γ0 = 1

3: f̂
cgnr
0 = f̂0

4: end if

5: r0 = f −Af̂0

6: p̂0 = AHWr0

7: for l = 0, . . . do

8: αl = rH
l Wrl

p̂H

l Ŵ p̂l

9: f̂ l+1 = f̂ l + αlŴ p̂l

10: rl+1 = rl − αlAŴ p̂l

11: βl =
rH

l+1Wrl+1

rH
l Wrl

12: if ITERATE 2nd then
13: γl+1 = βlγl + 1

14: f̂
cgnr
l+1 = 1

γl+1

(
βlγlf̂

cgnr
l + f̂ l+1

)

15: end if

16: p̂l+1 = βlp̂l + AHWrl+1

17: end for
Output: f̂ l, f̂

cgnr
l

Algorithm 6: CGNE R

12

3 Library

The library is completely written in C and uses the FFTW library (see [10]), which has to
be installed on your system. Algorithms 1 and 2 are implemented for arbitrary dimensions
d = 1, 2, The library has several options (determined at compile time) and parameters
(determined at run time).

3.1 Installation

Download and make

1. Install the FFTW library (version 3), available from www.fftw.org. Generally this will
mean
> ./configure --prefix <FFTW PATH>
> make
> make install

2. Download from www.math.uni-luebeck.de/potts/nfft
> tar xfv nfft2.tar will create a directory ./nfft2
./nfft2> ./configure <FFTW PATH> creates all makefiles
./nfft2/lib> make creates the library
./nfft2/example/<A>> make creates example <A>

The following options are determined at compile time, realised in the Makefiles and in
the file ./include/options.h, respectively.

Options

The adaptation of the C-library is done in ./include/options.h. One chooses between win-
dow functions by defining one of the following constant symbols: KAISER BESSEL, SINC 2m,
GAUSSIAN, B SPLINE.

Furthermore, the fast transforms can be instrumented such that the elapsed time for each
step of Algorithm 1 and 2 is printed to stderr, respectively. This option should help to
customise the library to one’s needs. One can enable this option by defining MEASURE TIME
in options.h.

3.2 NFFT - General procedure

One has to follow certain steps to write a simple program using the NFFT library. The first
argument of each function is a pointer to a application-owned variable of type nfft plan.
The aim of this structure is to keep interfaces small, it contains all parameters and data.

Initialisation

Initialisation of a plan is done by one of the nfft init-functions. The simplest version for the
univariate case d = 1 just specifies the number of Fourier coefficients N0 and the number of
non equispaced knots M . For an application-owned variable nfft plan my plan the function
call is

nfft init 1d(&my plan,N0,M);

The first argument should be uninitialised. Memory allocation is completely done by the init
routine.

13

Setting knots

One has to define the knots xj ∈ Td for the transformation in the member variable my plan.x.
The t-th coordinate of the j-th knot xj has to be assigned to

my plan.x[d*j+t]= /*your choice*/;

Precompute ψ̃

The precomputation of the values ψ̃
(
xj − n−1 ¯ l

)
depends on the choice for my plan.x. If

and only if the nfft-flag PRE PSI is set, the subroutine nfft precompute psi(&my plan) has
to be called, i.e.

if(my plan.nfft flags & PRE PSI) nfft precompute psi(&my plan);

Doing the transform

Algorithm 1 is implemented as

nfft trafo(&my plan);

One only needs one plan for several transforms of the same kind, i.e. transforms with equal
initialisation parameters.

Finalisation

All memory allocated by the init routine is deallocated by

nfft finalize(&my plan);

Note, that almost all (de)allocation operations of the library are done by fftw malloc and
fftw free. Additional data, declared and allocated by the application, have to be deallocated
by the user’s program as well.

Example

Thus, the following code computes a univariate nfft with 12 Fourier coefficients and 19 knots.

void simple_test_nfft_1d()
{
int j,k;
nfft_plan my_plan;

nfft_init_1d(&my_plan,12,19);

for(j=0;j<my_plan.M;j++)
my_plan.x[j]=((double)rand())/RAND_MAX-0.5;

if(my_plan.nfft_flags & PRE_PSI)
nfft_precompute_psi(&my_plan);

for(k=0;k<my_plan.N_L;k++)
{

14

my_plan.f_hat[k][0]=((double)rand())/RAND_MAX;
my_plan.f_hat[k][1]=((double)rand())/RAND_MAX;

}

nfft_trafo(&my_plan);

nfft_finalize(&my_plan);
}

3.3 NFFT - Parameter

All parameters are stored in the plan. Using the simple initialisation nfft init, one has only
to define the multi bandwidth N and the number of knots M . All other parameters are set
to default values. The specific initialisation nfft init specific may be used to customise
the library to one’s needs.

name default description
N multivariate bandwidth
M number of knots
n 2dlog Ne FFTW-size
m see Table 3 cut off parameter in time domain

nfft flags PRE PSI | PRE PHI HUT | disjunction of flags for
MALLOC X | MALLOC F HAT | memory allocation
MALLOC F | FFT OUT OF PLACE

fftw flags FFTW ESTIMATE | FFTW DESTROY INPUT disjunction of flags for FFTW

Table 2: Parameters

In Table 3 we give the default values for the cut off parameter m. This parameter depends
on the window function and is choosen such that the error E∞ (see Section 4) is smaller than
10−12.

window function Kaiser-Bessel sinc2m B-spline Gaussian
m 6 9 11 12

Table 3: Default values for the cut-off parameter m, see also Section 4,Figure 3.

Flags

The flags, set in nfft flags concern memory allocation and precomputations. For the knot
vector x, the vector of Fourier coefficients f̂ , and the vector of samples f memory is allocated
iff MALLOC X, MALLOC F HAT, and MALLOC F are set, respectively. Iff FFT OUT OF PLACE is set,
the vectors g and ĝ have their own allocated memory, otherwise they share. Precomputa-
tion can be customised by the flags PRE PHI HUT, PRE PSI, and PRE FULL PSI; PRE PHI HUT
causes the initialisation routine to precompute the values ck(φ̃) (in their tensor product
form). The flag PRE PSI allocates memory for ψ̃

(
xj − n−1 ¯ l

)
(l ∈ In,m (xj)), the rou-

tine nfft precompute psi has to be called for the actual precomputation, again the library

15

uses the tensor product form, which leads to a memory usage of d(2m+ 2) doubles per knot,
but an arithmetic complexity of d(2m+2)d per knot. In contrast, PRE FULL PSI precomputes
the values of ψ̃ completely, using (2m+ 2)d doubles and 2(2m+ 2)d integers (for indices) per
knot, which leads to an arithmetic complexity of (2m+ 2)d per knot.

3.4 NFFT - Data

Data layout

All data with multi index are stored plain, e.g. f̂k in my plan.f hat[kΠ], where the plain
index again is given by kΠ :=

∑d−1
t=0 (kt+ Nt

2)
∏d−1

t′=t+1Nt′ and the knots (xj)t in my plan.x[dj+
t].

Exchanging data

All routines work on the structure my plan. One can exchange data with this structure
if one wants to use several transforms. One can do this by declaring, allocating memory
(fftw malloc), initiatisation (optionally) and using the SWAPC macro, e.g.

SWAPC(my plan.f hat,new f hat).

Note that the data has the right type and size (see Table 4). Memory deallocation of all
’free’ data has to be done by the user’s program. Note, that the vectors my plan.g and
my plan.g hat must not be exchanged.

3.5 NFFT - Plan

The library defines the structure nfft plan. The members are int d, int* N, int M,
double* sigma, int* n, int m, double* b, int nfft flags, int fftw flags (already
discussed, see Table 2). Furthermore, it contains all data vectors, see Table 4.

type name description size (in *type)
double* x knots xj ∈ Td dM

fftw complex* f hat Fourier coefficients NΠ

fftw complex* f samples M

double** c phi inv precomputed ck (ϕ̃)−1 ∑d−1
t=0 Nt

double* psi precomputed ψ̃
(
xj − n−1 ¯ l

)
d (2m+ 2)M

or (2m+ 2)dM

fftw complex* g gl nΠ

fftw complex* g hat ĝk (nΠ)

Table 4: Members of nfft plan.

3.6 iNFFT - General procedure

The following Figure 2 shows how to use the inverse nfft. There is no general stopping rule
implemented, since this task is highly dependent on the special application. A simple example
can be found in example/simple test/.

16

Initialise NFFT.

Initialise iNFFT.

Compute residuals.

Compute one iteration.

Finalise iNFFT.

Finalise NFFT.

?

?

?

?

?

©©©
HHH

HHH ©©©
no yes

Stop?

?

-

Figure 2: Control flow of the iNFFT.

3.7 iNFFT - Parameter

The inverse nfft basically wraps an already initialised direct nfft, i.e. one specifies the type of
iteration by setting one of

LANDWEBER, STEEPEST DESCENT, CGNR E, CGNE R.

in infft flags. The additional flag NORMS FOR LANDWEBER, only applicaple if LANDWEBER
is set, causes the library to compute the residuals ‖rl‖2

W and ‖ẑl‖2
Ŵ

; ITERATE 2nd, only
applicaple if CGNR E or CGNR E is set, computes the cgne/cgnr-iterate out of the cgnr/cgne-
algorithm, see [11] for details. Weights and damping factors are used if the flags

PRECOMPUTE WEIGHT, PRECOMPUTE DAMP

are specified, respectively. One has to initialise the members my iplan.w, my iplan.w hat in
these cases. The utility library, see lib/utils.c, provides a set of functions for computing
voronoi weights and certain damping factors. The default for infft flags is CGNR E.

3.8 User functions

All user functions have return type void and their first argument is of type nfft plan* or
infft plan*, respectively. Table 5 shows all available functions.

17

name additional arguments
ndft trafo
ndft conjugated
ndft adjoint
ndft transposed

nfft init 1d int N0, int M
nfft init 2d int N0, int N1, int M
nfft init 3d int N0, int N1, int N2, int M
nfft init int d, int *N, int M
nfft init specific int d, int *N, int M, int *n, int m,

unsigned nfft flags, unsigned fftw flags
nfft precompute psi
nfft full psi double eps
nfft trafo
nfft conjugated
nfft adjoint
nfft transposed
nfft finalize

infft init nfft plan *direct plan
infft init specific nfft plan *direct plan, int infft flags
infft before loop
infft loop one step
infft finalize

Table 5: User functions.

18

4 Examples

One may start with example/simple test/, where the usage of the library is presented for
small problems. More elaborated examples in example/error decay, franke, glacier,
interpolation 1d, lena show the usage of the inverse nfft. Note, that these examples use
MatLab for their visualisation.

The library was tested on a AMD Athlon(tm) XP 2700+, 1GB memory, SuSe-Linux, kernel
2.4.20-4GB-athlon, gcc version 3.3. In all test cases the knots xj and the Fourier coefficients
f̂k are chosen pseudo random with xj ∈ [−0.5, 0.5]d and f̂k ∈ [0, 1]× [0, 1] i.

4.1 Accuracy & m

The accuracy of the Algorithm 1, measured by

E2 =
‖f − s‖2

‖f‖2
=

 ∑

j∈I1
M

|fj − s (xj) |2/
∑

j∈I1
M

|fj |2

1
2

and
E∞ =

‖f − s‖∞
‖f̂‖1

= max
j∈I1

M

|fj − s (xj) |/
∑

k∈IN

|f̂k|

is shown in Figure 3, see ./example/accuracy.

0 5 10 15
10

−15

10
−10

10
−5

10
0

0 5 10 15
10

−15

10
−10

10
−5

10
0

0 5 10 15
10

−15

10
−10

10
−5

10
0

0 5 10 15
10

−15

10
−10

10
−5

10
0

0 5 10 15
10

−15

10
−10

10
−5

10
0

0 5 10 15
10

−15

10
−10

10
−5

10
0

Figure 3: The error E2 (top) and E∞ (bottom) with respect to m, from left to right d = 1, 2, 3
(N = 212, 26, 24, σ = 2, M = 10000), for Kaiser Bessel- (circle), Sinc power- (x), B-Spline-
(+), and Gaussian window (triangle).

19

4.2 CPU-time & N

Figure 4 compares computational times for both the NDFT and the NFFT, see ./example/timing.

1024 4096 16384 65536 262144 1048576
10

−1

10
0

10
1

10
2

16 64 256 1024
10

−1

10
0

10
1

10
2

16 24 32 40 48 56 64
10

−1

10
0

10
1

10
2

Figure 4: The elapsed CPU-time with respect to N for Kaiser Bessel window, parameters
m = 6, σ = 2, M = N ; left, d = 1: NDFT (circle), NFFT (no precomputation, x), NFFT
(simple interface, +), NFFT (maximum precomputation, triangle); middle, d = 2: NDFT
(circle), NFFT (simple interface, +); right, d = 3: NDFT (circle), NFFT (simple interface,
+).

Figure 5 compares computational times for single steps of the NFFT, see ./example/timing.

128 384 640 896
10

−2

10
−1

10
0

128 384 640 896
10

−2

10
−1

10
0

10
1

128 384 640 896
10

−1

10
0

10
1

10
2

Figure 5: The elapsed CPU-time with respect to N for Kaiser Bessel window, parameters d =
2, m = 6, σ ≥ 2, M = N ; from left to right: multiplication with D, F , and B respectively;
no precomputation (x), simple interface (+), and maximum precomputation (triangle).

References

[1] R. Bass and K. Gröchenig. Random sampling of multivariate trigonometric polynomials.
SIAM J. Math. Anal., to appear.

[2] G. Beylkin. On the fast Fourier transform of functions with singularities. Appl. Comput.
Harmon. Anal., 2:363 – 381, 1995.

20

[3] A. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.

[4] A. J. W. Duijndam and M. A. Schonewille. Nonuniform fast Fourier transform. Geo-
physics, 64:539 – 551, 1999.

[5] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM J. Sci.
Stat. Comput., 14:1368 – 1393, 1993.

[6] E. Elbel. Mehrdimensionale Fouriertransformation für nichtäquidistanten Daten. Di-
plomarbeit, TH Darmstadt, 1998.

[7] J. A. Fessler and B. P. Sutton. Nonuniform fast fourier transforms using min-max inter-
polation. IEEE Trans. Signal Process., 2002. in press.

[8] H. Feichtinger, K. Gröchenig, and T. Strohmer. Efficient numerical methods in non-
uniform sampling theory. Numer. Math., 69:423 – 440, 1995.

[9] K. Fourmont. Schnelle Fourier–Transformation bei nichtäquidistanten Gittern und to-
mographische Anwendungen. PhD thesis, University of Münster, 1999.

[10] M. Frigo and S. G. Johnson. FFTW, a C subroutine library. http://www.fftw.org/.

[11] M. Hanke. Conjugate gradient type method for ill–posed problems. Wiley, New York,
1995.

[12] J. I. Jackson. Selection of a convolution function for Fourier inversion using gridding.
IEEE Trans. Medical Imaging, 10:473 – 478, 1991.

[13] S. Kunis and D. Potts. Stability Results for Scattered-Data Interpolation by Trigono-
metric Polynomials. in preparation.

[14] N. Nguyen and Q. H. Liu. The regular Fourier matrices and nonuniform fast Fourier
transforms. SIAM J. Sci. Comput., 21:283 – 293, 1999.

[15] A. Nieslony and G. Steidl. Approximate factorizations of Fourier matrices with noneq-
uispaced knots. Linear Algebra Appl., to appear.

[16] J. Pelt. Fast computation of trigonometric sums with applications to frequency analysis
of astronomical data. In D. Maoz, A. Sternberg, and E. Leibowitz, editors, Astronomical
Time Series, pages 179 – 182, Kluwer Academic Publishers, 1997.

[17] D. Potts, G. Steidl, and M. Tasche. Fast Fourier transforms for nonequispaced data: A
tutorial. In J. J. Benedetto and P. J. S. G. Ferreira, editors, Modern Sampling Theory:
Mathematics and Applications, pages 247 – 270, Boston, 2001.

[18] R. A. Scramek and F. R. Schwab. Imaging. In F. R. S. R. Perley and A. Bridle, editors,
Astronomical Society of the Pacific Conference, Vol 6, pages 117 – 138. 1988.

[19] G. Steidl. A note on fast Fourier transforms for nonequispaced grids. Adv. Comput.
Math., 9:337 – 353, 1998.

[20] A. F. Ware. Fast approximate Fourier transforms for irregularly spaced data. SIAM
Review, 40:838 – 856, 1998.

21

