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max, min, +, times

max plus (R,max,+)
max times (R+

0 ,max,×)
min plus (R,min,+) = tropical

min times (R+
0 ,min,×)

We do max times
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MAX ALGEBRA

a,b ≥ 0

a⊕b = max(a,b)

a⊗b = ab

(R+
0 ,⊕,⊗) is a semiring: a commutative semigroup

with 0 under max, and ⊗ distributes over ⊕
Just like (R+

0 ,+,×)?

Hans Schneider NONNEGATIVE MATRICES IN MAX ALGEBRA 3 / 23



MAX ALGEBRA

a,b ≥ 0

a⊕b = max(a,b)

a⊗b = ab

(R+
0 ,⊕,⊗) is a semiring: a commutative semigroup

with 0 under max, and ⊗ distributes over ⊕

Just like (R+
0 ,+,×)?

Hans Schneider NONNEGATIVE MATRICES IN MAX ALGEBRA 3 / 23



MAX ALGEBRA

a,b ≥ 0

a⊕b = max(a,b)

a⊗b = ab

(R+
0 ,⊕,⊗) is a semiring: a commutative semigroup

with 0 under max, and ⊗ distributes over ⊕
Just like (R+

0 ,+,×)?

Hans Schneider NONNEGATIVE MATRICES IN MAX ALGEBRA 3 / 23



same vs different

a⊕b = 0 =⇒ a = b = 0

a⊕b = a 6=⇒ b = 0

a⊕b = a =⇒ a≥ b

a⊕a = a
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max lin alg

C = A⊕B : cij = aij ⊕bij

C = A⊗B : cij =
⊕

k

aikbkj

Stephane Gaubert 1997:
The spectral theory in MX "is extremely similar to the
well-known Perron-Frobenius theory" in NN
with some important differences.

Our aim is to compare and contrast the two theories
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where is the difference?

A > 0,x  y ≥ 0 =⇒ Ax > Ay

A > 0,x  y ≥ 0 6=⇒ A⊗x > A⊗y(
2 2
1 2

)
⊗

(
1
1

)
=

(
2
2

)
(

2 2
1 2

)
⊗

(
0
1

)
=

(
2
2

)
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graph recap

A ∈ Rn×n
+ , A≥ 0

G(A): Graph of A
Vertex set {1, . . . ,n}

arcs i → j : aij > 0

i0
∗→ ik : ∃(i1, . . . , ik−1) i0→ i1 · · · → ik−1→ ik

or i = j

cycle γ: i0
∗→ ik , i0 = ik

cycle mean γ̄(A) = (ai0,i1 · · ·aik−1,ik )
1/k

ρ(A) = max γ̄(A),γ(A) ∈ cG(A)
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Critical graph

Critical graph C (A): Graph induced in G(A) by the
vertices of arcs lying on max cycles.

A =



3/4 1 1/2 0 0 1/2 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 3/4 0 0

1/2 0 0 0 1 3/4 0
0 0 0 0 0 0 1/2

3/4 0 0 0 0 3/4 0


ρ(A) = 1
Components of C (A): {1,2,3,4},{5}
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Very special?

Not really!

Observation: If B = X−1AX , where X is a pos diag matrix
then

bij =
xiaij

xj

G(B) = cG(A)

γ̄(A) = γ̄(B), ∀ cycles γ

ρ(B) = ρ(A)

C (B) = cC(A)
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diagonal scaling

Fiedler-Ptak(1967, 1969), M.Schneider -S (1990)

Theorem
Let A ∈ Rn×n

+ . There exists a pos diag X such that for
B = X−1AX,

bij = ρ(B) if (i , j) ∈ C (B)
bij < ρ(B) otherwise

We may assume matrix is strictly visualized
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NN: Perron-Frobenius for irred matrices

Frobenius (1912)

Theorem
Let A≥ 0 be irreducible. Then its spec rad ρ(A) is its the
unique eigenvalue with an assoc nonneg eigenvector

which is (ess) unique and positive.

ρ(A) is the Perron root of A
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MX: Perron-Frobenius for irred matrices

Cunninghame-Greene (1960s)

Theorem
Let A≥ 0 be irreducible. Then its max cyc mean ρ(A) is
its unique (dist) eigenvalue. There is an (ess) unique
associated positive eigenvector for each component of
the crit graph,

which are the extremals of the max cone of
eigenvectors.

ρ(A) will be called the (max) Perron root of A
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MX: Example

A =



3/4 1 1/2 0 0 1/2 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 3/4 0 0

1/2 0 0 0 1 3/4 0
0 0 0 0 0 0 1/2

3/4 0 0 0 0 3/4 0



1 3/4
1 3/4
1 3/4
1 3/4

1/2 1
3/8 9/32
3/4 9/16

Two evectors of ρ(A) = 1
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Frobenius Normal Form

collect strong conn cpts [classes] of G(A)
and linearly order them

After permutation similarity

A =


A11 0 . . . . . . 0
A21 A22 0 . . . 0

...
... . . . . . . ...

...
... . . . 0

Ak1 Ak2 . . . . . . Akk


each diagonal block irreducible
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reduced graph

Reduced graph R (A)

V = {1, , . . . ,k}

i → j ∈ E : Aij 6= 0

Path from i to j

i0→ i1→ ··· → ip−1→ im

Transitive closure R ∗(A)

i ∗→ j : exists path from i to j

Skeleton S = R∗(A)

(i , j) ∈ S : i ∗→ k ∗→ j implies k = i or k = j
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Example

(1) ←− (2) ←− (3)
?↖ ↑

(4)


♠ 0 0 0
♥ ♠ 0 0
♦ ♥ ♠ 0
♦ ♥ 0 ♠


♠ irred block
♥ nonzero block
♦ in trans closure of skeleton
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Marked Reduced graph R (A)

Vertex set {1, . . . ,k} (classes)

i → j ⇐⇒ Aij  0

j has access to i in R (A):

i ∗← j

Each vertex marked with its (max) Perron root
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Distinguished, semi-distinguished vertices

i distinguished
i ∗← j =⇒ ρi > ρj

i semi-distinguished

i ∗← j =⇒ ρi ≥ ρj

(ρ1) ←− (ρ2) ←− (ρ3)
?↖ ↑

(ρ4)

ρ1 = ρ2 > ρ3 > ρ4

2,3,4 distinguished, 1 semi-distinguished
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MX: eigenvalues, eigenvectors

Gaubert (1990s),
Butkovic&Cuninghame-Green&Gaubert(2009)

Theorem
Let A be a nonnegative matrix in FNF. Then λ is an evalue
of (A) if snd only there is a semi-distinguished vertex i
with ρi = λ

The eigenvectors of A correspond to the
semi-distinguished vertices of A: for for each
semi-distinguished vertex i of R (A) there are
(nonnegative) eigenvectors x i with Ax i = ρix i such that

x i
j > 0 if i ←← j

x i
j = 0 otherwise

Properly chosen, these form the exremals oif the cones of
eignevectors
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NN: nonneg evals, evecs

Theorem
Let A be a nonnegative matrix in FNF. Then λ is an evalue
of (A) if and only if there is a -distinguished vertex i with
ρi = λ

The nonnegative eigenvectors of A correspond to the
distinguish vertices of A: for for each distinguished vertex
i of R (A) there is nonnegative eigenvector x i with
Ax i = ρix i such that

x i
j > 0 if i ←← j

x i
j = 0 otherwise

Properly chosen, these are linearly independent, and for
any part evalue, form the extremals of the cone of nonneg
evectors
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NN example

A =


4 0 0 0
1 4 1 0
0 3 2 0
0 0 3 2


[4] ← [5]∗∗ ← [2]∗∗

0 . 0
1 . 0
1 . 0
1 . 1
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MX example

A =


4 0 0 0
1 4 1 0
0 3 2 0
0 0 3 2


(
[4]∗ ← [4]∗∗ ← [2]∗∗

)
1 0 0

1/4 1 0
3/16 3/4 0
9/64 3/8 1

Hans Schneider NONNEGATIVE MATRICES IN MAX ALGEBRA 22 / 23



P. Butkovic
Max-Linear Systems: Theory and Algorithms

Springer 2010

That’s it for today

next time:
Commuting matrices in three incarnations

THANKS!
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