TU Chemnitz:

2008 Summer School on Applied Analysis

Four lectures on

Theory and numerical analysis of Volterra functional equations

Hermann Brunner

Department of Mathematics and Statistics Memorial University of Newfoundland St. John's, NL Canada hermann@math.mun.ca

and
Department of Mathematics
Hong Kong Baptist University
Kowloon Tong

Hong Kong SAR P.R. China

hbrunner@math.hkbu.edu.hk

Lecture I:

Theory of Volterra functional equations

Classical and delay Volterra integral operators:

•
$$(\mathcal{V}\mathbf{u})(\mathbf{t}) := \int_0^t \mathbf{K_0}(\mathbf{t}, \mathbf{s}) \mathbf{u}(\mathbf{s}) \, d\mathbf{s}, \quad \mathbf{t} \in \mathbf{I}$$

$$ullet (\mathcal{V}_{ heta} \mathrm{u})(\mathrm{t}) := \int_0^{ heta(\mathrm{t})} \mathrm{K}_1(\mathrm{t},\mathrm{s}) \mathrm{u}(\mathrm{s}) \, \mathrm{d}\mathrm{s}, \quad \mathrm{t} \in \mathrm{I}$$

$$ullet \qquad (\mathcal{W}_{ heta} \mathrm{u})(\mathrm{t}) := \int_{ heta(\mathrm{t})}^{\mathrm{t}} \mathrm{K}(\mathrm{t}, \mathrm{s}) \mathrm{u}(\mathrm{s}) \; \mathrm{d} \mathrm{s}, \quad \mathrm{t} \in \mathrm{I}$$

Here, $\mathbf{t} \in \mathbf{I} := [\mathbf{0}, \mathbf{T}]$, and the *delay function* (or: *lag function*) θ has the form

$$\theta(t) := t - \tau(t) .$$

We refer to τ as the *delay*.

- ullet Non-vanishing delay: $au(t) \geq au_0 > 0 \; (t \in I)$
- Vanishing delay: au(0) = 0, au(t) > 0 (t > 0)

Volterra functional equations

• Volterra functional integral equations (VFIEs):

$$\mathbf{u}(\mathbf{t}) = \mathbf{g}(\mathbf{t}) + (\mathcal{V}\mathbf{u})(\mathbf{t}) + (\mathcal{V}_{\theta}\mathbf{u})(\mathbf{t}), \quad \mathbf{t} \in \mathbf{I}$$

 Volterra functional integro-differential equations (VFIDEs):

$$\begin{aligned} \mathbf{u}'(t) &= \mathbf{a}(t)\mathbf{u}(t) + \mathbf{b}(t)\mathbf{u}(\theta(t)) + \mathbf{g}(t) \\ &+ (\mathcal{V}\mathbf{u})(t) + (\mathcal{V}_{\theta}\mathbf{u})(t), \quad t \in \mathbf{I} \end{aligned}$$

→ Special case: Delay differential equation (DDE):

$$\mathbf{u}'(\mathbf{t}) = \mathbf{a}(\mathbf{t})\mathbf{u}(\mathbf{t}) + \mathbf{b}(\mathbf{t})\mathbf{u}(\theta(\mathbf{t})) + \mathbf{g}(\mathbf{t}), \quad \mathbf{t} \in \mathbf{I}$$

• First-kind VFIE:

$$(\mathcal{W}_{\theta}\mathbf{u})(\mathbf{t}) = \mathbf{g}(\mathbf{t}), \quad \mathbf{t} \in \mathbf{I}$$

 $\hookrightarrow \theta(t) = qt (0 < q < 1)$: Volterra (1897)

Vito Volterra (1860 - 1940)

DDEs; Effect of delay on solutions

Exercise

The solutions of the **ODE**

$$u'(t) = au(t), \quad t \ge 0; \quad Re(a) < 0,$$

satisfies

$$\lim_{t\to\infty} u(t) = 0.$$

What is the **asymptotic behaviour**, as $t \to \infty$, of the solutions to the **DDE**s

$$\mathbf{u}'(\mathbf{t}) = \mathbf{b}\mathbf{u}(\mathbf{t} - \tau), \quad \mathbf{t} \ge \mathbf{0}, \quad \mathsf{Re}(\mathbf{b}) < \mathbf{0},$$

with au>0 and u(t)=1 if $t\leq 0$, and

$$u'(t) = bu(qt), \quad t \ge 0, \quad \text{Re}(b) < 0,$$

with 0 < q < 1 and $u(0) = u_0$?

Illustration:

$$u'(t) = bu(qt), \quad u(0) = 1; \quad b < 0, \ 0 < q < 1.$$

 \hookrightarrow The solution is given by

$$u(t) = \sum_{j=0}^{\infty} \frac{q^{j(j-1)/2}}{j!} (bt)^j, \quad t \ge 0 \ \ : \label{eq:ut}$$

It is an entire function of order zero.

(Comparison: For $\,q=1\,$, the solution is an entire function of order one: $\,u(t)=\mbox{exp}(bt).)$

Example: b = -1, q = 0.95:

Properties of solutions of VFIEs and VFIDES (Representation / regularity)

Classical VIES:

$$u(t) = g(t) + \int_0^t K(t,s)u(s) ds, \quad t \in I := [0,T]$$

Theorem (Volterra, 1896)

If $K\in C(D)$ $(D:=\{(t,s):\ 0\le s\le t\le T\})$, then for any $g\in C(I)$ the VIE has a unique solution $u\in C(I)$. This solution is given by

$$u(t) = g(t) + \int_0^t R(t, s)g(s) ds, \quad t \in I,$$

where $R \in C(D)$ denotes the **resolvent kernel** of K:

$$R(t,s) := \sum_{j=1}^{\infty} K_j(t,s), \quad (t,s) \in D$$

(Neumann series of K). The iterated kernels K_j of K are defined by $K_1(t,s):=K(t,s)$ and

$$K_{j+1}(t,s) := \int_s^t K(t,v) K_j(v,s) \, \mathrm{d}v \quad (j \geq 1).$$

Moreover,

$$K \in C^d(D) \quad \text{and} \quad g \in C^d(I) \quad \Rightarrow \quad u \in C^d(I).$$

• VIES: with delay function $\theta(t) = qt \ (0 < q < 1)$

$$u(t)=g(t)+\int_0^{qt}K(t,s)u(s)\,ds,\quad t\in I:=[0,T]$$

 $\begin{array}{l} \underline{\textbf{Theorem}} \ (\text{Andreoli (1914); Chambers (1990)}) \\ \text{If } \mathbf{K} \in C(D_{\theta}) \ (D_{\theta} := \{(t,s): \ 0 \leq s \leq \theta(t) \ (t \in I)\}) \ , \\ \text{then for any } \mathbf{g} \in C(I) \ \text{the VIE has a unique solution } \mathbf{u} \in C(I). \ \text{This solution is given by} \end{array}$

$$\label{eq:ut} u(t) = g(t) + \sum_{j=1}^{\infty} \int_0^{q^j t} K_j(t,s) g(s) \, \mathrm{d}s, \quad t \in I \; .$$

The iterated kernels \mathbf{K}_j of \mathbf{K} are defined by $\mathbf{K}_1(\mathbf{t},\mathbf{s}) := \mathbf{K}(\mathbf{t},\mathbf{s})$ and

$$K_{j+1}(t,s) := \int_{q^{-j}s}^{qt} K(t,v) K_j(v,s) \, \mathrm{d}v \quad (j \geq 1).$$

For 0 < q < 1 the kernel K does not have a Neumann series!

However, as for classical VIEs,

$$K \in C^d(D_\theta) \quad \text{and} \quad g \in C^d(I) \quad \Rightarrow \quad u \in C^d(I).$$

Classical VIDEs:

$$u'(t)=a(t)u(t)+g(t)+\int_0^t K(t,s)u(s)\,ds,\quad t\in I$$

⇒ VIDE is equivalent to VIE

$$u(t) = g_0(t) + \int_0^t H(t, s)u(s) ds,$$

with

$$g_0(t) := u_0 + \int_0^t g(s) ds$$

and

$$H(t,s) := a(s) + \int_s^t K(v,s) dv.$$

<u>Theorem:</u> (Grossman & Miller (1970)) If $a \in C(I)$ and $K \in C(D)$, then for any $g \in C(I)$ and any $u_0 \in R$ the VIDE has a unique solution $u \in C(I)$ satisfying $u(0) = u_0$. This solution is given by

$$\mathbf{u}(\mathbf{t}) = \mathbf{r}(\mathbf{t}, \mathbf{0})\mathbf{u}_0 + \int_0^{\mathbf{t}} \mathbf{r}(\mathbf{t}, \mathbf{s})\mathbf{g}(\mathbf{s}) \, d\mathbf{s}, \quad \mathbf{t} \in \mathbf{I},$$

where the (differential) resolvent kernel $\mathbf{r}(\mathbf{t},\mathbf{s})$ depends on a and \mathbf{K} .

Moreover.

$$a,\;g\in C^d(I)\quad\text{and}\quad K\in C^d(D)\;\;\Rightarrow\;\;u\in C^{d+1}(I).$$

• VFIDEs with delay function $\theta(t) = qt \ (0 < q < 1)$

$$u'(t) = b(t)u(\theta(t)) + g(t) + \int_0^{\theta(t)} K(t,s)u(s) ds,$$

with $t \in I := [0,T]$ and $u(0) = u_0$.

Theorem: (Brunner & Hu (2007))

Assume that $b, g \in C^d(I)$ and $K \in C^d(D_\theta)$. Then for each $q \in (0,1)$ and given u_0 the VFIDE has a unique solution $u \in C^{d+1}(I)$ that satisfies $u(0) = u_0$.

This solution has the representation

$$\begin{split} u(t) &= \left(1 + \sum_{j=1}^{\infty} \tilde{H}_j(t,s) \, \mathrm{d}s \right) u_0 + \int_0^t g(s) \, \mathrm{d}s \\ &+ \sum_{j=1}^{\infty} \int_0^{\theta^j(t)} \tilde{H}_j(t,s) g(s) \, \mathrm{d}s, \ t \in I. \end{split}$$

where

$$\tilde{\mathbf{H}}_{\mathbf{j}}(\mathbf{t},\mathbf{s}) := \int_{\mathbf{s}}^{\theta^{\mathbf{j}}(\mathbf{t})} \mathbf{H}_{\mathbf{j}}(\mathbf{t},\mathbf{v}) \, d\mathbf{v} \ (j \geq 1) .$$

Here, the $\mathbf{H_j}(\mathbf{t},\mathbf{s})$ are the iterated kernels of

$$H_1(t,s) := b(\theta^{-1}(s))\theta'(\theta^{-1}(s)) + \int_{\theta^{-1}(s)}^t K(v,s) dv$$
.

• Summary:

If $\, \theta(t) = qt \; (0 < q < 1)$, or if $\, \theta \,$ is nonlinear and satisfies

(i) $\theta(0) = 0$, θ is strictly increasing on I, and

(ii) $\theta(t) \leq q_1 t$ for some $q_1 \in (0,1)$, then

Smooth data \Rightarrow Solution of VFE is (globally) smooth on [0,T].

VFEs with non-vanishing delays

Assume: the delay function $\theta(t) = t - \tau(t)$ satisfies:

(D1)
$$\tau(t) \geq \tau_0 > 0$$
 for $t \in I := [t_0, T]$

- (D2) θ is strictly increasing on I;
- (D3) $\tau \in C^d(I)$ for some $d \geq 0$.

Definition:

The points $\{\xi_{\mu}\}$ generated by

$$\theta(\xi_{\mu}) = \xi_{\mu-1}, \quad \mu \ge 1 \quad (\xi_0 := t_0),$$

are called the **primary discontinuity points** (or: *breaking points*) induced by the delay function θ . \hookrightarrow By (D1): $\xi_{\mu} - \xi_{\mu-1} \geq \tau_0$ ($\mu \geq 1$).

 \hookrightarrow Assume: ${f T}$ such that

$$T = \xi_{M+1}$$
 for some $M \ge 1$.

Solve VFE on $I^{(\mu)} := [\xi_{\mu}, \xi_{\mu+1}] \; (\mu = 0, \dots, M).$

Illustration:

$$\begin{split} u'(t) &= au(t) + bu(\theta(t)) + \int_0^{\theta(t)} K(t,s) u(s) \, ds, \\ t &\in [0,T], \text{ with } u(t) = \phi(t) \text{ for } t \leq 0. \end{split}$$

For
$$\underline{t\in I^{(0)}}$$
:= $[0,\xi_1]$; $(\Rightarrow \ \theta(t)\in I^{(-1)}:=[\theta(0),0])$:
$$u'(t)=au(t)+\Phi_0(t).$$

where

$$\Phi_0(t) := b\phi(\theta(t)) + \int_0^{\theta(t)} K(t, s)\phi(s) ds$$

is known.

For
$$\underline{\mathbf{t}}\in \underline{\mathbf{I}^{(\mu)}}:=[\xi_{\mu},\xi_{\mu+1}],\;(\mu=1,\ldots,\mathbf{M}):$$
 $\mathbf{u}'(\mathbf{t})=\mathbf{a}\mathbf{u}(\mathbf{t})+\Phi_{\mu}(\mathbf{t}).$

with known

$$\Phi_{\mu}(t) := \operatorname{bu}(\theta(t)) + \int_{0}^{\theta(t)} K(t,s) u(s) \, ds.$$

Question: Regularity of solution $\mathbf{u}(\mathbf{t})$ at ξ_{μ} ?

Representation of solutions:

Let $\theta(t) = t - \tau(t)$, $\tau(t) \ge \tau_0 > 0$. For continuous data, the solution of the **VFIDE**

$$u'(t) = a(t)u(t) + b(t)u(\theta(t)) + g(t)$$

$$+(\mathcal{V}\mathrm{u})(\mathrm{t})+(\mathcal{V}_{ heta}\mathrm{u})(\mathrm{t}),\quad \mathrm{t}\in\mathrm{I}$$

(with $u(t)=\phi(t),\ t\leq t_0$) on $\mathbf{I}^{(\mu)}:=[\xi_\mu,\xi_{\mu+1}]$ is given by

$$egin{align} \mathbf{u}(\mathbf{t}) &= \mathbf{r_1}(\mathbf{r}, \xi_\mu) \mathbf{u}(\xi_\mu) + \int_{\xi_\mu}^{\mathbf{t}} \mathbf{r_1}(\mathbf{t}, \mathbf{s}) \mathbf{g}(\mathbf{s}) \, \mathrm{d}\mathbf{s} \ \\ &+ \mathbf{F}_\mu(\mathbf{t}) + \Phi_\mu(\mathbf{t}), \quad \mathbf{t} \in \mathbf{I}^{(\mu)}. \end{split}$$

 $+\mathbf{r}_{\mu}(\mathbf{t})+\mathbf{\Psi}_{\mu}(\mathbf{t}),\quad \mathbf{t}\in\mathbf{r}^{n}$

Here,

$$\mathrm{F}_{\mu}(\mathrm{t}) := \sum_{
u=0}^{\mu-1} \int_{\xi_{
u}}^{\xi_{
u}+1} \mathrm{r}_{\mu,
u}(\mathrm{t},\mathrm{s}) \mathrm{g}(\mathrm{s}) \, \mathrm{d}\mathrm{s}$$

$$\sum_{\nu=0}^{\mu-1} p_{\mu,\nu}(t) u(\xi_{\nu}) + G_{\mu}^{(1)}(t;\phi)$$

and

$$\Phi_{\mu}(t) := \sum_{\nu=0}^{\mu-1} \int_{\xi_{
u}}^{ heta^{\mu-
u}(t)} r_{\mu,
u}(t,s) g(s) \, ds + G_{\mu}^{(2)}(t;\phi).$$

Non-vanishing $\tau(t)$: Regularity results

• VFIDEs (and DDEs):

$$\mathbf{u}'(\mathbf{t}) = \mathbf{a}\mathbf{u}(\mathbf{t}) + \mathbf{b}\mathbf{u}(\theta(\mathbf{t})) + (\mathcal{V}\mathbf{u})(\mathbf{t}) + (\mathcal{V}_{\theta}\mathbf{u})(\mathbf{t})$$
:

Theorem: (Smoothing of solutions)

Assume that the given functions are arbitrarily smooth, and $\mathcal{V}_{\theta} \neq 0$. Then at $\mathbf{t} = \xi_{\mu}$,

$$\mathbf{u} \in \mathbf{C}^{\mu}$$
 but $\mathbf{u} \not\in \mathbf{C}^{\mu+1}$ $(\mu = 0, \dots, M).$ If $\underline{b} \equiv 0$, then at $\mathbf{t} = \xi_{\mu} \ (\mu = 0, \dots, M)$, $\mathbf{u} \in \mathbf{C}^{2\mu}$ ('super-smoothing').

Neutral VFIDE:

$$\mathbf{u}'(\mathbf{t}) = \mathbf{a}\mathbf{u}(\mathbf{t}) + \mathbf{b}\mathbf{u}(\theta(\mathbf{t})) + \underline{c}\mathbf{u}'(\theta(\mathbf{t}))$$
$$+ (\mathcal{V}\mathbf{u})(\mathbf{t}) + (\mathcal{V}_{\theta}\mathbf{u})(\mathbf{t}) :$$

<u>Theorem:</u> (Non-smoothing of solutions) If given functions are smooth and $\underline{c \neq 0}$, then at $\mathbf{t} = \xi_{\mu}$ ($\mu = 0, 1, \ldots, \mathbf{M}$),

$$\mathbf{u} \in \mathbf{C}^0$$
 but $\mathbf{u} \not \in \mathbf{C}^1$:

there is **no smoothing** at $t = \xi_{\mu}$ as μ increases.

• **VFIEs** with non-vanishing delay: :

$$\begin{split} u(t) &= g(t) + (\mathcal{V}u)(t) + (\mathcal{V}_{\theta}u)(t), \\ t &\in (0,T], \text{ with } u(t) = \phi(t) \text{ for } t \leq 0. \end{split}$$

Theorem: (Smoothing of solutions)

For smooth data and $\mathbf{V}_{\theta} \neq \mathbf{0}$, the solution satisfies

$$\mathbf{u} \in \mathbf{C}^{\mu-1}$$
 but $\mathbf{u} \not\in \mathbf{C}^{\mu}$

for $\mu = \underline{1}, ..., M$. At $\mathbf{t} = \xi_0 = \mathbf{0}$ the solution is in general **discontinuous**; that is, \mathbf{u} has a **finite jump** at $\mathbf{t} = \xi_0$ (except for specially chosen initial functions ϕ).

(Note:

$$u(0^-) = \phi(0)$$
. $u(0^+) = g(0) - \int_{\theta(0)}^0 K_1(0,s)\phi(s) ds$)

Exercise: Regularity of solution of

$$\mathbf{u}(\mathbf{t}) = \mathbf{g}(\mathbf{t}) + \underline{b(t)u(\theta(t))} + (\mathcal{W}_{\theta}\mathbf{u})(\mathbf{t}),$$

where

$$(\mathcal{W}_{\theta}\mathbf{u})(\mathbf{t}) := \int_{\theta(\mathbf{t})}^{\mathbf{t}} \mathbf{K}(\mathbf{t}, \mathbf{s})\mathbf{u}(\mathbf{s}) \, d\mathbf{s}$$
?

State-dependent delays

Example:

Mathematical model of population whose *life* span depends on the size of the population (crowding sffects) (Bélair, 1990):

$$\begin{split} u(t) &= \int_{t-\tau(y(t))}^t k(t-s) G(u(s)) \, ds, \quad t>0, \end{split}$$
 with $u(t) = \phi(t)$ for $t \leq 0.$

F. Hartung, T. Krisztin, H.-O. Walther & J. Wu, Functional differential equations with state-dependent delays: theory and applications, in: *Handbook of Differential Equations: Ordinary Differential Equations*, Vol. 3 (A. Cañada *et al.*, eds.), pp. 435-545, Elsevier, 2006.

Lecture I: Basic references

- H. Brunner, *Lecture Notes*, 2008 Summer School on Applied Analysis, TU Chemnitz: Sections 1 and 2.
- J.K. Hale & S.M. Verduyn Lunel, *Introduction to Functional Differential Equations*, Springer-Verlag, 1993.
- T. Kato & J.B. McLeod, The functional differential equation $y'(x) = ay(\lambda x) + by(x)$, Bull. Amer. Math. Soc. **77** (1971), 891-937.
- A. Iserles, On the generalized pantograph functional differential equation, *Europ. J. Appl. Math.* **4** (1993), 1-33.
- A. Bellen & M. Zennaro, *Numerical Methods* for *Delay Differential Equations*, Oxford University Press, 2003. (Chapters 1 and 2)
- H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, 2004. (Chapters 2-5)

Lecture II:

Collocation in piecewise polynomial spaces

Mesh (or: grid) on $I := [t_0, T]$:

$$I_h := \{t_n : t_0 < t_1 < \dots < t_N = T\},$$

with

$$e_n := (t_n, t_{n+1}], \quad h_n := t_{n+1} - t_n;$$

 $h:=\text{max}\;\{h_n:\;0\leq n\leq N-1\}\;$ is called the mesh diameter.

Definition: For given integers $\, {f r} \geq 1, \, -1 \leq d < r \,$,

$$S_r^{(d)}(I_h) := \{v \in C^d(I): \ v|_{e_n} \in \pi_r \ (0 \leq n \leq N-1) \}$$

denotes the space of **piecewise polynomials** (with respect to the given mesh $I_h)$ of **degree** ${\bf r}$; if $d\geq 0$ these functions are <code>globally</code> in $C^d(I)$.

$$\hookrightarrow \quad \text{ dim } S_r^{(d)}(I_h) = N(r-d) + (d+1).$$

For $\underline{\mathbf{d} = -1}$,

$$S_{r}^{(-1)}(I_{h}) := \{v: v|_{e_{n}} \in \pi_{r} \ (0 \le n \le N-1)\}.$$

Illustration:

Approximation of the solution of the ODE

$$\begin{split} u'(t) &= f(t,u(t)), \ t \in [0,T]; \ u(0) = u_0, \\ \text{by } \textbf{collocation} \text{ in } \mathbf{S}_m^{(0)}(\mathbf{I}_h) \ (r=m,\ d=0). \\ \text{Since } \dim \mathbf{S}_m^{(0)}(\mathbf{I}_h) = \mathbf{N}m+1, \text{ choose} \end{split}$$

$$X_h :=$$

$$\begin{split} \{t_n+c_ih_n:\ 0< c_1< \cdots < c_m \leq 1\ (0\leq n\leq N-1)\}\\ \text{as } \textbf{collocation points}\ (\ \Rightarrow\ |X_h|=Nm\),\\ \hookrightarrow \text{ Find }\ u_h\in S_m^{(0)}(I_h) \text{ satisfying the ODE on}\\ \text{the } \textit{finite subset }\ X_h \text{ of } [0,T]; \end{split}$$

$$u_h'(t) = f(t,u_h(t)) \quad \text{for all} \quad \underline{t \in X_h},$$
 with $u_h(0) = u_0.$

Remark:

For kth-order ODEs ($k \geq 2$),

$$u^{(k)}(t) = f(t, u(t), \dots, u^{(k-1)}(t)),$$

choose the collocation space

$$S_{m+d}^{(d)}(I_h) \quad \text{with} \quad \underline{d:=k-1},$$

and the $\underline{\mathsf{same}\ \mathsf{set}}$ of collocation points $\ X_h$ (since

dim
$$S_{m+d}^{(d)}(I_h)=Nm+d+1=Nm+k$$
).

Questions:

 Collocation for ODEs (and VEs) in smoother piecewise polynomial spaces:

$$\mathbf{S_r^{(d)}(I_h)}$$
 with $\mathbf{d} \geq 1$ $(d < r)$?

- Computational form of collocation equation ?
- Global order of convergence (on I):

$$\|\mathbf{u} - \mathbf{u}_{\mathbf{h}}\|_{\infty} \le Ch^{\mathbf{p}} : \mathbf{p} = ?$$

• Local order of convergence (on I_h):

$$\begin{split} & \text{max}\{|u(t)-u_h(t)|:\ t\in I_h\} \leq Ch^{p^*}\ :\ p^*>p\ ? \\ &\hookrightarrow \ \textit{Local superconvergence} \ \text{on}\ \ I_h\ ? \end{split}$$

Do the above optimal orders remain true for VFEs ?

Computational form of collocation equation: Let

$$\mathrm{L}_{\mathbf{j}}(\mathrm{v}) := \prod_{k
eq j}^m rac{\mathrm{v} - \mathrm{c_k}}{\mathrm{c_j} - \mathrm{c_k}} \,, \quad \mathrm{v} \in [0, 1] \quad (\mathrm{j} = 1, \ldots, \mathrm{m})$$

denote the **Lagrange** canonical polynomials with respect to the *collocation parameters* $\{c_i\}$. Setting $Y_{n,j}:=u_h'(t_n+c_jh_n)$ and

$$u_h'(t_n+vh_n)=\sum_{j=1}^m L_j(v)Y_{n,j},\quad v\in(0,1],$$

we obtain the **local representation** of the collocation solution $u_h\in \mathbf{S}_m^{(0)}(\mathbf{I}_h)$ on the subinterval $[t_n,t_{n+1}]$:

$$u_h(t_n + vh_n) = u_h(t_n) + h_n \sum_{j=1}^m \beta_j(v) Y_{n,j}, \ v \in [0,1],$$

with

$$\beta_{\mathbf{j}}(\mathbf{v}) := \int_{0}^{\mathbf{v}} \mathbf{L}_{\mathbf{j}}(\mathbf{s}) \, d\mathbf{s}.$$

 \hookrightarrow Computation of $\{\mathbf{Y_{n,j}}\}\ (\ 0 \le n \le N-1)$:

$$Y_{n,i} = f\left(t_n + c_i h_n, y_n + h_n \sum_{j=1}^m a_{i,j} Y_{n,j}\right) (i = 1, \dots, m)$$

where $\mathbf{y_n} := \mathbf{u_h}(\mathbf{t_n})$ and $\mathbf{a_{i,j}} := \beta_{\mathbf{j}}(\mathbf{c_i})$.

 \hookrightarrow The pair of equations (for $0 \le n \le N-1$):

$$u_h(t_n + vh_n) = u_h(t_n) + h_n \sum_{j=1}^m \beta_j(v) Y_{n,j}, \ v \in [0,1]$$

(local representation of the collocation solution $u_h\in S_m^{(0)}(I_h)$ on the subinterval $[t_n,t_{n+1}])$ and

$$Y_{n,i} = f(t_n + c_i h_n, y_n + h \sum_{j=1}^{m} a_{i,j} Y_{n,j}) (i = 1, ..., m)$$

(collocation equations for $t=t_n+c_ih_n$) represent an m-stage continuous implicit Runge-Kutta method for solving the ODE initial-value problem

$$u'(t) = f(t, u(t)), \quad t \in [0, T]; \quad u(0) = u_0.$$

For arbitrary $\{c_i\}$ (and $u\in C^d(I)$ with $d\geq m+1)$:

$$\|\mathbf{u}^{(k)} - \mathbf{u}_{h}^{(k)}\|_{\infty} \le Ch^{m} \quad (k = 0, 1).$$

→ Question:

Choice of collocation parameters $\{c_i\}$?

Convergence results for $\textbf{ODEs}: \ \mathbf{u}_h \in \mathbf{S}_m^{(0)}(I_h)$.

• If $u \in C^{m+1}(I)$:

$$\|u^{(k)}-u_h^{(k)}\|_{\infty} \leq Ch^m \ \ (k=0,1) \ \ \text{for arbitrary} \ \{c_i\}.$$
 Let

$$\mathbf{J}_{
u} := \int_0^1 \mathbf{s}^{
u} \prod_{\mathbf{i}=1}^{\mathbf{m}} (\mathbf{s} - \mathbf{c_i}) \, d\mathbf{s} \quad (
u \in \mathbb{N}).$$

ullet If $u\in C^{m+2}(I)$ and $J_0=0$:

$$\|\mathbf{u} - \mathbf{u}_{\mathbf{h}}\|_{\infty} \le \mathbf{C}\mathbf{h}^{\mathbf{m}+1}$$
.

• Let
$$\mathbf{u} \in \mathbf{C^{m+\kappa+1}}(\mathbf{I})$$
 $(\kappa \leq \mathbf{m}).$ If $\mathbf{J}_{\nu} = \mathbf{0}, \ \nu = 0, \ldots, \kappa-1$, and $\mathbf{J}_{\kappa} \neq \mathbf{0}:$

$$\text{max}\{|u(t)-u_h(t)|:\ \underline{t\in I_h}\}\leq Ch^{m+\kappa}.$$

 $\underline{\kappa = m}$: $\Rightarrow \{c_i\}$ are the Gauss points¿

$$\mathsf{max}\{|u(t)-u_h(t)|:\ \underline{t\in I_h}\}\leq Ch^{2m}.$$

The underlying method is the m-stage continuous implicit **Runge-Kutta-Gauss method**.

 $\underline{\mathit{Why}}\ \mathcal{O}(h^{2m})$ -convergence on I_h ?

Illustration:

$$u'(t)=a(t)u(t)+g(t),\ t\in I;\ u(0)=u_0$$
 Collocation equation: $u_h\in S_m^{(-1)}(I_h)$:

$$\begin{split} u_h'(t) &= a(t)u_h(t) + g(t) - \delta_h(t), \ t \in I; \ u_h(0) = u_0, \end{split}$$
 where the **defect function** δ_h vanishes at the collocation points $t_n + c_i h_n$:

$$\delta_h(t) = 0 \quad \text{for all} \quad t \in X_h \ .$$

 \Rightarrow Collocation error $e_h := u - u_h$ satisfies

$$e'_{h}(t) = a(t)e_{h}(t) + \delta_{h}(t), t \in I; e_{h}(0) = 0.$$

Thus, setting
$$\mathbf{r}(\mathbf{t},\mathbf{s}) := \exp\left(\int_{\mathbf{s}}^{\mathbf{t}} \mathbf{a}(\mathbf{v}) \, d\mathbf{v}\right)$$
 :

$$e_h(t) = \int_0^t r(t, s) \delta_h(s) ds, \ t \in I.$$

 $\hookrightarrow \text{ For } \underline{t=t_n \in I_{\underline{h}}}\text{:}$

$$e_h(t_n) = \sum_{\ell=0}^{n-1} h_\ell \int_0^1 r(t_n, t_\ell + sh_\ell) \delta_h(t_\ell + sh_\ell) ds.$$

$$\delta_h(t_\ell+c_ih_\ell)=0 \quad \text{ for } i=1,\ldots,m; \ 0\leq \ell \leq N-1.$$

 \hookrightarrow m-point interpolatory quadrature formula: Abscissas $\{d_i\}$ with $0 \leq d_1 < \dots < d_m \leq 1$:

$$\int_0^1 \phi(t_n + sh_n) \, ds = \sum_{j=1}^m w_j \phi(t_n + d_j h_n) + E_n(\phi),$$

with quadrature weights

$$\mathbf{w_j} := \int_0^1 \mathbf{L_j}(\mathbf{s}) \, d\mathbf{s} \quad (\mathbf{j} = 1, \dots, \mathbf{m})$$

 \hookrightarrow Quadrature error $E_n(\phi)$.

 \bullet For arbitrary abscissas $\{d_{\mathbf{j}}\}$ (and $\phi \in C^m)$:

$$|E_n(\phi)| \leq Q_m h_n^m$$
.

 \bullet If the $\{d_j\}$ satisfy

$$J_{\nu} \mathrel{\mathop:}= \int_0^1 s^{\nu} \prod_{i=1}^m (s-d_j) \, ds \quad (\nu=0,\ldots,\kappa-1)$$

and $J_{\kappa} \neq 0$ $(1 \leq \kappa \leq m)$, then

$$|\mathbf{E}_{\mathbf{n}}(\phi)| \leq \mathbf{Q}_{\mathbf{m}}\mathbf{h}_{\mathbf{n}}^{\mathbf{m}+\kappa},$$

provided that $\phi \in \mathbb{C}^{m+\kappa}$.

 $\underline{\kappa=m}$: The $\{d_j\}$ are the **Gauss** (-Legendre) points (zeros of $P_m(2s-1)$).

 $\frac{\kappa=m-1}{\text{The }\{d_j\}}$ and $\ d_m=1$: The $\{d_j\}$ are the Radau II points.

 $\underline{\kappa=m-2}$ and $d_1=0,\ d_m=1\ (m\geq 2)$: The $\{d_j\}$ are the **Lobatto points**.

The collocation error $e_h := u - u_h$ satisfies

$$e_h(t) = \int_0^t r(t,s) \delta_h(s) \, ds, \ t \in I.$$

 $\hookrightarrow \text{ For } \mathbf{t} = \mathbf{t}_n \in I_h\text{:}$

$$e_h(t_n) = \sum_{\ell=0}^{n-1} h_\ell \int_0^1 r(t_n, t_\ell + sh_\ell) \delta_h(t_\ell + sh_\ell) ds.$$

Set

$$\phi_{\mathbf{n}}(\mathbf{t}_{\ell} + \mathbf{sh}_{\ell}) := \mathbf{r}(\mathbf{t}_{\mathbf{n}}, \mathbf{t}_{\ell} + \mathbf{sh}_{\ell}) \delta_{\mathbf{h}}(\mathbf{t}_{\ell} + \mathbf{sh}_{\ell}).$$

Since $\underline{\delta_h(t)=0}$ for $t=t_\ell+c_jh_\ell\in X_h$ \Rightarrow choose the collocation parameters as quadrature abscissas ($d_j=c_j$) :

$$e_h(t_n) = \sum_{\ell=0}^{n-1} h_\ell \int_0^1 \phi_n(t_\ell + sh_\ell) \, ds = 0 + \sum_{\ell=0}^{n-1} h_\ell E_{n,\ell}$$

for $n=1,\ldots,N.$ This implies that

$$|e_h(t_n)| \leq \sum_{\ell=0}^{n-1} h_\ell |E_{n,\ell}| \leq Q_m h^{m+\kappa} \sum_{\ell=0}^{n-1} h_\ell \leq C_m h^{m+\kappa} \;,$$

with $C_m:=Q_mT$. The **optimal order** (on the mesh I_h) is attained when $\underline{\kappa=mi}$ \Leftrightarrow the $\{c_i\}$ are the **Gauss points**.

However, we then only have

$$\text{max}\{|u'(t)-u_h'(t)|:\ t\in I_h\setminus\{0\}\}\leq C_m'h^m \ !$$

<u>**ODEs**</u>: Collocation in **smoother** piecewise polynomial spaces ?

- $\begin{array}{ll} \bullet & u_h \in S_m^{(m-1)}(I_h) \ (d=m-1) \\ \hookrightarrow & u_h \ \text{is } \textbf{divergent} \ (\text{as } h \to 0) \ \text{whwn} \ m \geq 4 \ ! \\ \text{(Loscalzo \& Talbot, 1967)} \end{array}$

$$\frac{1-c_1}{c_1} > 1.$$

 $\begin{array}{ll} \bullet & u_h \in S_m^{(2)}(I_h) \ (m \geq 4) \ ; \\ u_h \ \mbox{is divergent if the } \{c_i\} \ \mbox{are the Radau II} \\ \mbox{points}. \end{array}$

(Complete convergence / divergence analysis for ODEs: **Mülthei**, 1979)

Remark:

The natural (and optimal) piecewise polynomial spaces for (first-order) ODEs and VIDEs are the spaces $\mathbf{S}_m^{(0)}(I_h)$ with $m\geq 1$ For VIEs the natural spaces are $\mathbf{S}_{m-1}^{(-1)}(I_h)$.

Notes

1. Higher-order ODEs:

$$u^{(k)}(t) = f(t, u(t), \dots, u^{(k-1)}(t)) \quad (k \geq 2) :$$

 \hookrightarrow Collocation in $\mathbf{S}_{m+d}^{(d)}(\mathbf{I}_h)$ with $\underline{d:=k-1}$ and collocation points

$$X_h = \{t_n + c_i h_n: \ 0 < c_1 < \dots < c_m \le 1 \ \}$$

- ⇒ Continuous Runge-Kutta-Nyström methods.
- 2. The collocation solutions $\, \mathbf{u}_h \in \mathbf{S}_m^{(0)}(\mathbf{I}_h) \,$ for the ODE

$$u'(t) = au(t), \quad t \in I; \quad u_0 = u_0,$$

and $v_h \in \mathbf{S}_{m-1}^{(-1)}(I_h)$ for the 'integrated ODE'

$$\mathbf{u}(\mathbf{t}) = \mathbf{u}_0 + \int_0^t \mathbf{a}\mathbf{u}(\mathbf{s}) \, d\mathbf{s}, \quad \mathbf{t} \in \mathbf{I}$$

(Volterra integral equation), using the same set \mathbf{X}_h of collocation points, are identical **only if** $\mathbf{c}_m = \mathbf{1}$. In particular:

$$u_h(t_n) = v_h(t_n) \quad (1 \le n \le N) \quad \Leftrightarrow \quad c_m = 1.$$

 \hookrightarrow For the **Gauss** points: $u_h(t_n) \neq v_h(t_n)$!

Observations:

• Assume that the solution of a given functional (differential or integral) equation admits a 'resolvent representation' of the form

$$u(t)=r(t,0)u(0)+\int_0^t r(t,s)g(s)\,ds,\quad t\in I.$$
 or

$$u(t) = g(t) + \int_0^t R(t, s)g(s) ds, \quad t \in I.$$

Then the collocation solution (or a closely related 'iterated collocation solution') in the 'natural' piecewise polynomial space for the given VFE has the <u>same</u> superconvergence orders as the one for ODEs.

This is **true** for classical *Volterra integral* and *integro-differential* equations, and for *delay dif- ferential* and *Volterra functional* equations with **non-vanishing delays** (but **not** for VFEs with **vanishing delays** like $\theta(t) = qt$, 0 < q < 1).

ullet The attainable order of *superconvergence* is governed by the **regularity** of the solution ${f u}$ and the choice of the *collocation parameters*.

Volterra integro-differential equations:

$$u'(t) = a(t)u(t) + g(t) + \int_0^t K(t,s)u(s) \, ds, \ t \in I,$$

with continuous $a,\,g$ and K. For given initial value $u(0)=u_0$ the (unique) solution $u\in C^1(I)$ is given by

$$\mathbf{u}(\mathbf{t}) = \mathbf{r}(\mathbf{t}, \mathbf{0})\mathbf{u}_0 + \int_0^t \mathbf{r}(\mathbf{t}, \mathbf{s})\mathbf{g}(\mathbf{s}) \, d\mathbf{s}, \quad \mathbf{t} \in \mathbf{I},$$

where the (differential) **resolvent kernel** r(t,s) is defined by the *resolvent equation*

$$\begin{split} \frac{\partial r}{\partial s} &= -r(t,s)a(s) - \int_s^t r(t,v)K(v,s)\,dv,\\ (0 \leq s \leq t \leq T) \text{, with } r(s,s) &= 1, \ s \in I. \end{split}$$

 \hookrightarrow Collocation in $\mathbf{S}_m^{(0)}(\mathbf{I}_h)$: the <code>collocation</code> error $\mathbf{e}_h:=\mathbf{u}-\mathbf{u}_h$ has the representation

$$e_h(t) = \int_0^t r(t,s) \delta_h(s) ds, \quad t \in I.$$

Thus: for the **Gauss points** $\{c_i\}$,

$$\text{max}\{|e_h(t)|:\ t\in I_h\}\leq C_mh^{2m},$$

as for ODEs!

Volterra integral equations:

$$\mathbf{u}(t) = \mathbf{g}(t) + \int_0^t \mathbf{K}(t, \mathbf{s}) \mathbf{u}(\mathbf{s}) \, d\mathbf{s}, \quad t \in \mathbf{I}. \quad :$$

For continuous g and K the (unique) solution $u\in C(I)$ is given by

$$u(t)=g(t)+\int_0^t R(t,s)g(s)\,ds,\quad t\in I,$$

where R(t,s) is the **resolvent kernel** of K:

$$R(t,s) := \sum_{j=1}^{\infty} K_j(t,s) \quad \textit{(Neumann series)},$$

with iterated kernels $\mathrm{K}_1 := \mathrm{K}$ and

$$K_{j+1}(t,s) = \int_s^t K(t,v) K_j(v,s) \, dv \quad (j \ge 1).$$

Collocation: $\mathbf{u}_h \in \mathbf{S}_{m-1}^{(-1)}(I_h),$ and corresponding iterated collocation solution

$$\mathbf{u}_{h}^{it}(t) := \mathbf{g}(t) + \int_{0}^{t} \mathbf{K}(t, \mathbf{s}) \mathbf{u}_{h}(\mathbf{s}) \, d\mathbf{s}, \quad t \in \mathbf{I}$$
:

resulting errors $\,{\bf e}_h:={\bf u}-{\bf u}_h\,$ and $\,{\bf e}_h^{it}:={\bf u}-{\bf u}_h^{it}$ have the representations

$$e_h(t) = \delta_h(t) + \int_0^t R(t,s)\delta_h(s) ds, \quad t \in I$$

and

$$e_h^{it}(t) = e_h(t) - \delta_h(t), \quad t \in I$$
:

$$\Rightarrow e_h^{it}(t) = \int_0^t R(t,s) \delta_h(s) ds, \quad t \in I.$$

Collocation at Gauss points:

 \hookrightarrow Iterated collocation error at the *mesh points* $\mathbf{t} = \mathbf{t_n} \ (1 \le n \le N)$ satisfies

$$\text{max}\{|e_h^{it}(t)|:\ t\in I_h\setminus\{0\}\}\leq C_mh^{2m}.$$

But:

$$\text{max}\{|e_h(t)|:\ t\in I_h\setminus\{0\}\}\leq C_mh^m$$

Note:

only!

If $c_{\mathrm{m}}=1$, then

$$u_h^{it}(t_n) = u_h(t_n), \quad n = 1, \dots, N,$$

and thus $e_h^{it}(t_n) = e_h(t_n)$. \Rightarrow

$$\text{max}\{|e_h(t_n)|:\ 1\leq n\leq N\}\leq C_mh^{2m-1}$$

if the collocation parameters $\{c_i\}$ are the Radau

II points (
$$\kappa=m-1$$
 : zeros of $(P_m-P_{m-1})(2s-1)$).

Lecture II: Basic references

- L.L. Schumaker, *Spline Functions: Basic Theory*, Wiley-Interscience, 1981.
- H.N. Mülthei, Splineapproximationen von beliebigem Defekt zur numerischen Lösung von gewöhnlichen Differentialgleichungen I,II,III, Numer. Math., 32 (1979), 147-157 and 343-358; Numer. Math., 34 (1980), 143-154.
- E. Hairer, Ch. Lubich & G. Wanner, *Geomet-ric Numerical Integration* (2nd ed.), Springer-Verlag, 2006. (Section II.1)
- H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, 2004. (Chapters 1,2,3)
- H. Brunner, On the divergence of collocation solutions in smooth piecewise polynomial spaces for Volterra integral equations, *BIT*, 44 (2004), 631-650.

Lecture III:

VFEs with non-vanishing delays

<u>Illustration:</u> Collocation for **DDE**

$$u'(t) = f(t, u(t), u(\theta(t))), \quad t \in [0, T],$$

with $\theta(t) = t - \tau \quad (\tau > 0); \quad u(t) = \phi(t), \quad t \leq 0.$
Primary discontinuity points: $\xi_{\mu} = \mu \cdot \tau \quad (\mu \geq 0)$
 $\hookrightarrow \Delta ssume$: $T = \xi_{T+1}$ for some $M > 1$ and

 \hookrightarrow Assume: $\mathbf{T}=\xi_{\mathbf{M}+\mathbf{1}}$ for some $\mathbf{M}\geq\mathbf{1}$, and let $\mathbf{I}^{(\mu)}:=[\xi_{\mu},\xi_{\mu+\mathbf{1}}]$ $(0\leq\mu\leq M).$

Collocation for DDE in $\,S_m^{(0)}(I_h)$, with constrained mesh I_h ,

$$\mathbf{I_h} := igcup_{\mu=0}^{\mathbf{M}} \mathbf{I_h^{(\mu)}}$$

(containing the points $\{\xi_{\mu}\}$). ${\bf I_h}$ is defined by the *local meshes*

$$\mathbf{I}_{\mathbf{h}}^{(\mu)} := \{ \mathbf{t}_{\mathbf{n}}^{(\mu)} : \ \xi_{\mu} = \mathbf{t}_{\mathbf{0}}^{(\mu)} < \mathbf{t}_{\mathbf{1}}^{(\mu)} < \dots < \mathbf{t}_{\mathbf{N}}^{(\mu)} = \xi_{\mu+1} \}.$$

 \hookrightarrow Local representation of u_h on $\ [t_n^{(\mu)},t_{n+1}^{(\mu)}]$:

for
$$t=t_n^{(\mu)}+vh_n^{(\mu)},\ v\in[0,1];\ \ h_n^{(\mu)}:=t_{n+1}^{(\mu)}-t_n^{(\mu)}$$
 :

$$\mathbf{u_h(t)} = \mathbf{y_n^{(\mu)}} + \mathbf{h_n^{(\mu)}} \sum_{j=1}^{m} \beta_j(\mathbf{v}) \mathbf{Y_{n,j}^{(\mu)}},$$

with $y_n^{(\mu)} := u_h(t_n^{(\mu)})$, $Y_{n,j}^{(\mu)} := u_h'(t_n^{(\mu)} + c_j h_n^{(\mu)})$.

$$\mathbf{X_h} := \bigcup_{\mu=0}^{\mathbf{M}} \mathbf{X_h^{(\mu)}},$$

with

$$X_h^{(\mu)} := \{t_n^{(\mu)} + c_i h_n^{(\mu)}: i = 1, \dots, m; 0 \le n \le N-1\}$$

and prescribed $0 < c_1 < \dots < c_m \le 1$. For $\mu=0,\dots,M$: generate $u_h \in S_m^{(0)}(I_h)$ by

$$u_h'(t) = f(t, u_h(t), u_h(\theta(t))), \quad t \in X_h^{(\mu)},$$

with known $\mathbf{u_h}(\xi_\mu)$ and (when $\mu=0$)

$$u(\theta(t_n^{(0)} + c_i h_n^{(0)})) = \phi(\theta(t_n^{(0)} + c_i h_n^{(0)})).$$

 \hookrightarrow Choose θ -invariant mesh:

$$\theta(\mathbf{I}_{\mathbf{h}}^{(\mu)}) = \mathbf{I}_{\mathbf{h}}^{(\mu-1)}$$
 for $\mu = 1, \dots, M$.

Note that here we have

$$\theta(t_n^{(\mu)} + c_i h_n^{(\mu)}) = t_n^{(\mu-1)} + c_i h_n^{(\mu-1)} \quad (\mu \ge 1),$$

since θ is **linear**.

 \hookrightarrow If θ is **nonlinear**:

$$\theta(t_n^{(\mu)} + c_i h_n^{(\mu)}) = t_n^{(\mu-1)} + \tilde{c}_i h_n^{(\mu-1)}$$

for some $\, \tilde{c}_i \in (0,1]. \,$

 \hookrightarrow Collocation solution $\mathbf{u}_h \in \mathbf{S}_m^{(0)}(\mathbf{I}_h)$:

$$\mathbf{u}_{\mathbf{h}}'\mathbf{t} = \mathbf{f}(\mathbf{t}, \mathbf{u}_{\mathbf{h}}(\mathbf{t}), \mathbf{u}_{\mathbf{h}}(\mathbf{t} - \tau)), \ \mathbf{t} \in \mathbf{X}_{\mathbf{h}},$$

with $u_h(t) := \phi(t)$ if $t \in [-\tau, 0]$.

Using the *local representation* of $\mathbf{u_h}$ on $[\mathbf{t_n^{(\mu)}}, \mathbf{t_{n+1}^{(\mu)}}]$,

$$\mathbf{u_h}(\mathbf{t_n^{(\mu)}} + \mathbf{vh_n^{(\mu)}}) = \mathbf{y_n^{(\mu)}} + \mathbf{h_n^{(\mu)}} \sum_{j=1}^{m} \beta_j(\mathbf{v}) \mathbf{Y_{n,j}^{(\mu)}}, \ \mathbf{v} \in [0,1]$$

we obtain (setting $\mathbf{t}_{\mathbf{n},\mathbf{i}}^{(\mu)} := \mathbf{t}_{\mathbf{n}}^{(\mu)} + c_{\mathbf{i}}\mathbf{h}_{\mathbf{n}}^{(\mu)})$

$$Y_{n,j}^{(\mu)} = f\left(t_{n,i}^{(\mu)}, y_n^{(\mu)} + h_n^{(\mu)} \sum_{j=1}^m a_{i,j} Y_{n,i}^{(\mu)}, \Phi_{n,i}^{(\mu)}\right),$$

with

$$\begin{split} \Phi_{n,i}^{(\mu)} := u_h (\underbrace{t_n^{(\mu)} + c_i h_n^{(\mu)} - \tau}_{n}) \quad (i = 1, \dots, m). \\ = \theta(t_n^{(\mu)} + c_i h_n^{(\mu)}) \end{split}$$

If the mesh I_h is θ -invariant:

$$u_h(t_{n,i}^{(\mu)}-\tau)=u_h(t_n^{(\mu-1)}+c_ih_n^{(\mu-1)})=u_h(t_{n,i}^{(\mu-1)}),$$

when θ is **linear**. For **nonlinear** θ we have

$$u_h(\theta(t_{n,i}^{(\mu)})) = u_h(t_n^{(\mu-1)} + \tilde{c}_i h_n^{(\mu-1)}).$$

⇒ m-stage continuous implicit Runge-Kutta method for the DDE

$$u'(t) = f(t, u(t), u(t-\tau)), t \in I.$$

Optimal convergence estimates

Assume that the delay function $\theta(t) = t - \tau(t)$ satisfies:

- (D1) $au(t) \geq au_0 > 0$ for $t \in I := [t_0, T]$
- (D2) θ is strictly increasing on I;
- (D3) $\tau \in C^d(I)$ for some $d \geq 0$.

<u>Theorem:</u> (Bellen (1984))

Suppose that the mesh I_h in $S_m^{(0)}(I_h)$ is $\theta\text{-invariant},$ and let the collocation parameters $\{c_i\}$ satisfy

$$J_{\nu} := \int_{0}^{1} s^{\nu} \prod_{i=1}^{m} (s - c_{i}) ds = 0,$$

 $\nu=0,\ldots,\kappa-1$, for some κ with $1\leq\kappa\leq m$. If the given functions in the DDE (including θ) are sufficiently smooth, then:

$$(a) \qquad \|u-u_h\|_{\infty} \leq C_m h^{m+1}.$$

(b)
$$\max\{|u(t)-u_h(t)|:\ t\in I_h\}\leq C_m^*h^{m+\kappa}.$$

Here, $\mathbf{h} := \max_{(\mu)} \{\mathbf{h}^{(\mu)}\}.$

Summary: Constrained and θ -invariant meshes

• **Primary discontinuity points** (or: *breaking points*) $\{\xi_{\mu}\}$ induced by the delay function θ :

$$\theta(\xi_{\mu}) = \xi_{\mu-1} \quad (\mu \ge 1; \ \xi_0 := 0),$$

with $\xi_{\mu} - \xi_{\mu-1} \ge \tau_0 > 0$ for all $\mu \ge 1$. \hookrightarrow Assume: $T = \xi_{M+1}$ for some $M \ge 1$.

• Definition:

A mesh I_h on I:=[0,T] is called a **constrained mesh** if it contains the *primary discontinuity points* $\{\xi_{\mu}\}$ induced by θ ; *i.e.*,

$$\mathbf{I_h} := igcup_{\mu=0}^{\mathbf{M}} \mathbf{I_h^{(\mu)}}$$

is defined by the local meshes

$$\mathbf{I}_{\mathbf{h}}^{(\mu)} := \{ \mathbf{t}_{\mathbf{n}}^{(\mu)} : \ \xi_{\mu} = \mathbf{t}_{\mathbf{0}}^{(\mu)} < \mathbf{t}_{\mathbf{1}}^{(\mu)} < \dots < \mathbf{t}_{\mathbf{N}}^{(\mu)} = \xi_{\mu+1} \}.$$

• Definition:

A constrained mesh $\, {f I}_{h} \,$ is said to be $\, heta ext{-invariant} \,$ if

$$heta$$
 : $\mathbf{I}_{\mathbf{h}}^{(\mu)}$ \longrightarrow $\mathbf{I}_{\mathbf{h}}^{(\mu-1)}$ for $\mu=1,\ldots,\mathbf{M}$;

that is, if

$$\theta(t_n^{(\mu)})=t_n^{(\mu-1)}\quad (n=0,1,\ldots,N)$$

for $\mu = 1, \dots, M$.

Superconvergence analysis: VFIDEs

Let $\theta(t)=t-\tau(t),\ \tau(t)\geq \tau_0>0.$ For $t\in [\xi_\mu,\xi_{\mu+1}]$ the collocation error $e_h:=u-u_h$ associated with the collocation equation

$$\begin{aligned} u_h'(t) &= a(t)u_h(t) + b(t)u(\theta(t)) + g(t) \\ &+ (\mathcal{V}u_h)(t) + (\mathcal{V}_\theta u)_h(t) - \delta_h(t), \quad t \in I, \end{aligned}$$

with $\delta_h(t)=0$ for $t\in X_h$, has the representation

$$egin{aligned} \mathrm{e_h}(\mathrm{t}) &= \mathrm{r_1}(\mathrm{t}, \xi_\mu) \mathrm{e_h}(\xi_\mu) + \int_{\xi_\mu}^{\mathrm{t}} \mathrm{r_1}(\mathrm{t}, \mathrm{s}) \mathrm{d_h}(\mathrm{s}) \, \mathrm{ds} \ \\ &+ \mathrm{F}_\mu(\mathrm{t}) + \Phi_\mu(\mathrm{t}), \quad \mathrm{t} \in \mathrm{I}^{(\mu)}. \end{aligned}$$

Here,

$$\mathrm{F}_{\mu}(\mathrm{t}) := \sum_{
u=0}^{\mu-1} \int_{\xi_{
u}}^{\xi_{
u}+1} \mathrm{r}_{\mu,
u}(\mathrm{t},\mathrm{s}) \mathrm{d}_{\mathrm{h}}(\mathrm{s}) \, \mathrm{d}\mathrm{s} +$$

$$\sum_{
u=0}^{\mu-1} p_{\mu,
u}(t) e_h(\xi_{
u}) + G_{\mu}^{(1)}(t;\phi)$$
 and

$$\Phi_{\mu}(t) := \sum_{
u=0}^{\mu-1} \int_{\xi_{
u}}^{ heta^{\mu-
u}(t)} \mathbf{r}_{\mu,
u}(t,s) \mathrm{d}_{\mathbf{h}}(s) \, \mathrm{d}s + \mathbf{G}_{\mu}^{(2)}(t;\phi),$$

with

$$d_h(t) := \int_0^t \delta_h(s) ds$$
.

Equation for collocation error:

$$egin{aligned} \mathrm{e_h}(\mathrm{t}) &= \mathrm{r_1}(\mathrm{t}, \xi_\mu) \mathrm{e_h}(\xi_\mu) + \int_{\xi_\mu}^{\mathrm{t}} \mathrm{r_1}(\mathrm{t}, \mathrm{s}) \mathrm{d_h}(\mathrm{s}) \, \mathrm{ds} \ \\ &+ \mathrm{F}_\mu(\mathrm{t}) + \Phi_\mu(\mathrm{t}), \quad \mathrm{t} \in \mathrm{I}^{(\mu)}, \end{aligned}$$

with

$$\mathrm{F}_{\mu}(\mathrm{t}) := \sum_{
u=0}^{\mu-1} \int_{\xi_{
u}}^{\xi_{
u}+1} \mathrm{r}_{\mu,
u}(\mathrm{t},\mathrm{s}) \mathrm{d}_{\mathrm{h}}(\mathrm{s}) \, \mathrm{d}\mathrm{s} +$$

$$\sum_{
u=0}^{\mu-1} p_{\mu,
u}(t) e_h(\xi_
u) + G_\mu^{(1)}(t;\phi)$$
 and

$$\Phi_{\mu}(t) := \sum_{
u=0}^{\mu-1} \int_{\xi_{
u}}^{ heta^{\mu-
u}(t)} r_{\mu,
u}(t,s) d_{
m h}(s) \, {
m d} s + G_{\mu}^{(2)}(t;\phi).$$

$$\hookrightarrow$$
 $\underline{\mathbf{t}} = \mathbf{t}_{\mathbf{n}}^{(\mu)}$:

If the mesh $\, I_h \,$ is $\, heta ext{-invariant} \, ,$ then

$$\theta^{\mu-\nu}(t_n^{(\mu)}) = t_n^{(\nu)} \quad (\nu = 0, \dots, \mu).$$

Hence, we can estimate the integrals by employing the techniques used for *non-delay* VIDEs (and ODEs).

An analogous error representation holds for VFIEs.

Superconvergence results for VFIDEs and VFIEs with **non-vanishing** delays:

Theorem: (Bellen (1984); Brunner (2004))

Let the delay function $\theta(t) = t - \tau(t)$ satisfy

(D1)
$$\tau(t) \geq \tau_0 > 0$$
 for $t \in I := [t_0, T]$

- (D2) θ is strictly increasing on I;
- (D3) $\tau \in C^d(I)$, with sufficiently large d.

Then:

For sufficiently smooth data (including the initial function ϕ), the collocation solutions in $S_m^{(0)}(I_h)$ (for VFIDEs) or in $S_{m-1}^{(-1)}(I_h)$ (for VFIEs) possess the **same optimal orders** of **local superconvergence** on I_h as the ones for *classical* VIDEs and VIEs with similarly smooth data if, and only if, the underlying mesh I_h is θ -invariant.

For example, if the $\{c_i\}$ are the **Gauss points**:

$$\mathsf{max}\{|u(t)-u_h(t)|:\ t\in I_h\}\leq C_m^*h^{2m}$$

for **VFIDE**s, and

$$\label{eq:max} \text{max}\{|u(t)-u_h^{it}(t)|:\ t\in I_h\setminus\{0\}\}\leq C_m^*h^{2m}$$
 for **VFIE**s.

Remarks:

• Fully discretised collocation equations:

The integrals occurring in the collocation equations for VFIDEs and VFIEs,

$$\int_{0}^{1} K(t_{n,i}^{(\mu)}, t_{\ell}^{(\mu)} + sh_{\ell}^{(\mu)}) \beta_{j}(s) ds$$

and

$$\int_0^1 K(t_{n,i}^{(\mu)}, t_{\ell}^{(\mu)} + sh_{\ell}^{(\mu)}) L_j(s) ds,$$

can in general <u>not</u> be found analytically and thus have to be *approximated* by appropriate *quadrature formulas*.

- \hookrightarrow Use m-point interpolatory quadrature with abscissas given by the collocation points.
- \Rightarrow Order of quadrature error is (at least) equal to the local order of the *exact* collocation solution.
- Non-monotonic delay functions:

See monograph by **Bellen** & **Zennaro** (2003); also: **Brunner** & **Maset** (2008).

Lecture III: Basic references

- H. Brunner, *Lecture Notes*, 2008 Summer School on Applied Analysis, TU Chemnitz: Section 3.
- A. Bellen, One-step collocation for delay differential equations, *Computing* 10 (1984), 275-283.
- A. Bellen & M. Zennaro, *Numerical Methods* for *Delay Differential Equations*, Oxford Universirty Press, 2003. (Chapters 5-7)
- H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, 2004. (Section 4.2)
- N. Guglielmi & E. Hairer, Computing breaking points in implicit delay differential equations, *Adv. Comput. Math.*, (2008) (to appear).

Lecture IV:

VFEs with vanishing delays

Volterra functional equations (on I := [0, T]):

•
$$\mathbf{u}'(t) = \mathbf{a}(t)\mathbf{u}(t) + \mathbf{b}(t)\mathbf{u}(\theta(t)) + (\mathcal{V}_{\theta}\mathbf{u})(t)$$
,

- $\mathbf{u}(\mathbf{t}) = \mathbf{g}(\mathbf{t}) + (\mathcal{V}_{\theta}\mathbf{u})(\mathbf{t})$;
- $\mathbf{u}(\mathbf{t}) = \mathbf{g}(\mathbf{t}) + \mathbf{b}(\mathbf{t})\mathbf{u}(\theta(\mathbf{t})) + (\mathcal{V}_{\theta}\mathbf{u})(\mathbf{t})$;

Volterra integral operators $(C(I) \rightarrow C(I))$

$$\begin{aligned} (\mathcal{V}\mathbf{u})(t) &:= & \int_0^t \mathbf{K}_0(t,s)\mathbf{u}(s) \,\mathrm{d}s \\ (\mathcal{V}_\theta\mathbf{u})(t) &:= & \int_0^{\theta(t)} \mathbf{K}_1(t,s)\mathbf{u}(s) \,\mathrm{d}s. \end{aligned}$$

Also:
$$(\mathcal{W}_{\theta} u)(t) := \int_{\theta(t)}^t K(t,s) u(s) \, ds$$
 .

Assume that the delay function $\theta = \theta(t)$ satisfies:

- (D1) $\theta(0) = 0$; $\theta(t) \leq q_1 t$ for some $q_1 \in (0,1)$;
- (D2) θ is **strictly increasing** in **I**;
- (D3) $\theta \in C^d(I)$ for some $d \ge 1$.

→ Pantograph equation:

$$u'(t) = au(t) + bu(qt), \ t \in I \ :$$

$$\theta(t) = qt = t - (1-q)t, \ 0 < q < 1.$$

Illustration: Pantograph DDE: $\theta(t) = qt$

$$u'(t) = au(t) + bu(qt), \quad t \in [0, T] \ (0 < q < 1),$$

with $u(0) = u_0$.

Collocation solution $\mathbf{u}_h \in \mathbf{S}_m^{(0)}(\mathbf{I}_h)$, with uniform mesh $|\mathbf{I}_h|$

$$u_h'(t)=au_h(t)+bu_h(qt),\ t\in X_h;\ u_h(0)=u_0.$$
 Define:

$$\mathbf{q}^I := \lceil \frac{\mathbf{q}}{1-\mathbf{q}} \mathbf{c}_1 \rceil, \qquad \mathbf{q}^{II} := \lceil \frac{\mathbf{q}}{1-\mathbf{q}} \mathbf{c}_m \rceil \;.$$

For the collocation points $t=t_n+c_ih\in e_n$, the **images** $q(t_n+c_ih)$ satisfy

- $\begin{array}{ll} \bullet & \underline{\textit{Phase I:}} & 0 \leq n < q^I \\ q(t_n + c_i h) \in (t_n, t_{n+1}) & \text{for } \underline{\textit{all}} & i = 1, \dots, m. \end{array}$
- $\begin{array}{ll} \bullet & \textit{\underline{Phase II:}} & q^I \leq n < q^{II} \\ q(t_n + c_i h) \leq t_n & \text{for } \underline{\textbf{some}} & i < m. \end{array}$
- $\begin{array}{ll} \bullet & \underline{\textit{Phase III:}} & q^{II} \leq n \leq N-1 \\ q(t_n+c_ih) \leq t_n & \text{for } \underline{\textit{all}} & i=1,\ldots,m. \end{array}$

Continuous implicit Runge-Kutta method:

 $\mathbf{u}_h \in \mathbf{S}_m^{(0)}(\mathbf{I}_h)$, with uniform \mathbf{I}_h :

$$\mathbf{u_h}(t_n+vh) = \mathbf{u_h}(t_n) + h\sum_{j=1}^m \beta_j(\mathbf{v}) \mathbf{Y_{n,j}}, ; \ \mathbf{v} \in [0,1].$$

Let
$$\mathbf{Y}_n := (\ \mathbf{Y}_{n,1}, \dots, \mathbf{Y}_{n.m}\)^T \in \mathbb{R}^m$$
 .

- Phase I: $0 \le n < q^I$
- \Rightarrow Linear algebraic systems for $\mathbf{Y_n}$:

$$[\mathcal{I}_{m} - h(\mathcal{A}_{n} + \mathcal{B}_{n}^{I}(q))]Y_{n} = r_{n}^{I}.$$

 $\bullet \ \ \underline{\textit{Phase II:}} \ \ q^I \leq n < q^{II}$

$$[\mathcal{I}_m - h(\mathcal{A}_n + \mathcal{B}_n^{II}(q))]Y_n = r_n^{II} + \tilde{\mathcal{B}}_n^{II}(q)Y_{n-1}.$$

• Phase III: $q^{II} \le n \le N-1$

$$[\mathcal{I}_{m} - h\mathcal{A}_{n}]Y_{n} = r_{n}^{III} + \mathcal{B}_{n}^{III}(q)Y_{\tilde{n}},$$

for some $\tilde{\mathbf{n}} < \mathbf{n}$. Here, $\mathcal{I}_{\mathbf{m}}$ denotes the *identity* matrix in $\mathbb{R}^{m \times m}$, and $\mathcal{A}_{\mathbf{n}}$ is the Runge-Kutta matrix corresponding to the **ODE part** in the pantograph DDE.

Collocation solutions for VFIDEs

$$\mathbf{u}'(\mathbf{t}) = \mathbf{a}(\mathbf{t})\mathbf{u}(\mathbf{t}) + \mathbf{b}(\mathbf{t})\mathbf{u}(\theta(\mathbf{t}))$$
$$+ (\mathcal{V}\mathbf{u})(\mathbf{t}) + (\mathcal{V}_{\theta}\mathbf{u})(\mathbf{t}), i \ \mathbf{t} \in \mathbf{I},$$

with delay function θ satisfying

(D1)
$$\theta(0) = 0$$
; $\theta(t) \leq q_1 t$ for some $q_1 \in (0,1)$;

- (D2) θ is **strictly increasing** in **I**;
- (D3) $\theta \in C^d(I)$ for some $d \ge 0$.

Let
$$I_h:=\{t_n:\ 0=t_0< t_1<\cdots< t_N=T\}$$
 , with
$$e_n:=(t_n,t_{n+1}],\quad h_n:=t_{n+1}-t_n,\quad h:=\max_{(n)}\{h_n\}.$$

Collocation space:

$$\begin{split} \mathbf{S}_m^{(0)}\mathbf{I}_h) := & \left\{ \mathbf{v} \in \mathbf{C}(\mathbf{I}): \ \mathbf{v}|_{\mathbf{e}_n} \in \pi_m \ (\mathbf{0} \leq \mathit{n} \leq \mathit{N}-\mathbf{1}) \right\}, \\ \text{with} \ \Rightarrow \ \text{dim} \ (\mathbf{S}_m^{(0)}(\mathbf{I}_h) = \mathbf{N}m + \mathbf{1}. \end{split}$$

 \bullet Collocation equation: Find $u_h \in S_m^{(0)}(I_h)$ so that for all $t \in X_h$,

$$\begin{split} u_h'(t) &= a(t)u_h(t) + b(t)u_h(\theta(t)) \\ &+ (\mathcal{V}u_h)(t) + (\mathcal{V}_\theta u_h)(t) \;, \end{split}$$

with $u_h(0) = u_0$.

 \hookrightarrow Structure of algebraic equations for Y_n in the local representation of u_h ,

$$u_h(t) = u_h(t_n) + h \sum_{j=1}^m \beta_j(v) Y_{n,j}, \ v \in [0,1] \ :$$

- $\begin{array}{ll} \bullet & \textit{Phase I:} & 0 \leq n < q^I \\ \\ [\mathcal{I}_m h(\mathcal{A}_n + \mathcal{B}_n^I(q)) h^2(\mathcal{C}_n + \mathcal{C}_n^I(q))] Y_n = r_n^I. \end{array}$
- $$\begin{split} \bullet & \ \, \underline{\textit{Phase II:}} \quad q^I \leq n < q^{II} \\ & [\mathcal{I}_m h(\mathcal{A}_n + \mathcal{B}_n^{II}(q)) h^2(\mathcal{C}_n + \mathcal{C}_n^{II}(q))] Y_n \\ & = r_n^{II} + h[\tilde{\mathcal{B}}_n^{II}(q) + h\tilde{\mathcal{C}}_n^{II}(q)] Y_{n-1}. \end{split}$$
- $$\begin{split} \bullet & \ \, \underline{\textit{Phase III:}} \quad q^{II} \leq n \leq N-1 \\ & [\mathcal{I}_m h(\mathcal{A}_n + h\mathcal{C}_n)] Y_n \\ & = r_n^{III} + h[\tilde{\mathcal{B}}_n^{III}(q) + h\tilde{\mathcal{C}}_n^{III}(q)] Y_{\tilde{n}}, \end{split} \\ \text{for some } & \tilde{n} < n. \end{split}$$

Collocation solutions for VFIEs

 $u(t) = g(t) + (\mathcal{V}u)(t) + (\mathcal{V}_{\theta}u)(t), \ t \in [0,T] \; ,$ with

$$(\mathcal{V}\mathbf{u})(\mathbf{t}) := \int_0^t \mathbf{K}_0(\mathbf{t}, \mathbf{s}) \mathbf{u}(\mathbf{s}) \, d\mathbf{s}$$

and

$$\begin{split} (\mathcal{V}_\theta u)(t) := \int_0^{\theta(t)} K_1(t,s) u(s) \, \mathrm{d}s \; . \\ \text{Let } I_h := \{t_n: \; 0 = t_0 < t_1 < \dots < t_N = T\} \; \text{, with} \\ e_n := (t_n,t_{n+1}], \quad h_n := t_{n+1} - t_n, \quad h := \max_{(n)} \{h_n\}. \end{split}$$

• Collocation space:

$$S_{m-1}^{(-1)}(I_h) := \{ v : v | e_n \in \pi_{m-1} \ (0 \le n \le N) \}.$$

• Collocation points:

$$\mathbf{X_h} := \left\{ \mathbf{t_n} + \mathbf{c_k} \mathbf{h_n} : \ 0 \le n \le N - 1 \right\},\,$$

with $0 \leq c_1 < \cdots < c_m \leq 1$.

 \bullet Collocation equation: Find $\mathbf{u}_h \in \mathbf{S}_{m-1}^{(-1)}(\mathbf{I}_h)$ so that

$$\mathbf{u_h}(\mathbf{t}) = \mathbf{g}(\mathbf{t}) + (\mathcal{V}\mathbf{u_h})(\mathbf{t}) + (\mathcal{V}_{\theta}\mathbf{u_h})(\mathbf{t}), \ \ \underline{\mathbf{t} \in \mathbf{X_h}}.$$

→ Iterated collocation solution:

$$\mathbf{u}_{\mathbf{h}}^{\mathbf{i}\mathbf{t}}(\mathbf{t}) := \mathbf{g}(\mathbf{t}) + (\mathcal{V}\mathbf{u}_{\mathbf{h}})(\mathbf{t}) + (\mathcal{V}_{\theta}\mathbf{u}_{\mathbf{h}})(\mathbf{t}), \ \mathbf{t} \in \mathbf{I}.$$

Note that $\, u_h^{it}(t) = u_h(t) \,$ for all $\, t \in X_h$.

VFEs with vanishing delays: Global (super-) convergence on uniform ${\bf I}_h$:

• $u_h \in S_{m-1}^{(-1)}(I_h)$ for the **VFIE** $u(t) = g(t) + (\mathcal{V}u)(t) + (\mathcal{V}_{\theta}u)(t), \ t \in I:$

<u>Theorem:</u> (B. & Hu (2005))

(i) For general $\{c_k\}$:

$$\|u - u_h\|_{\infty} \le C_m h^m$$
.

(ii) If the $\{c_k\}$ are the m Gauss points in (0,1):

$$\|u - u_h^{it}\|_{\infty} \le \tilde{C}_m h^{m+1}$$
.

 $ullet \ u_h \in S_m^{(0)}(I_h) \ \ ext{for the VFIDE}$

$$\mathbf{u}'(\mathbf{t}) = \mathbf{a}\mathbf{u}(\mathbf{t}) + \mathbf{b}\mathbf{u}(\theta(\mathbf{t})) + (\mathcal{V}\mathbf{u})(\mathbf{t}) + (\mathcal{V}_{\theta}\mathbf{u})(\mathbf{t}), \ \mathbf{t} \in \mathbf{I}$$
:

Theorem: (B. & Hu (2007))

(i) For general $\{c_k\}$:

$$\|u - u_h\|_{\infty} \le C_m h^m$$
.

(ii) For the Gauss points $\{c_k\}$:

$$\|\mathbf{u} - \mathbf{u}_{\mathbf{h}}\|_{\infty} \leq \tilde{C}_{\mathbf{m}} \mathbf{h}^{\mathbf{m}+1}$$
.

VIDEs with vanishing delays:

 $\frac{\text{Local superconvergence on uniform } \mathbf{I_h}}{\text{Collocation solution } \mathbf{u_h} \in \mathbf{S_{m+d}^{(d)}(I_h)} \; (d := k-1),}$ with $uniform\ mesh\ I_h$, for

$$u^{(k)}(t) = a(t)u(t) + b(t)u(\theta(t))$$

$$+(\mathcal{V}\mathbf{u})(\mathbf{t}) + (\mathcal{V}_{\theta}\mathbf{u})(\mathbf{t}) \ \mathbf{t} \in \mathbf{I} := [0, \mathbf{T}],$$

with delay function $\theta(t) = qt \ (0 < q < 1)$.

Theorem: (B. & Hu (2007) (k = 1); B. (2008)) If the $\{c_i\}$ are the **Gauss points** :

$$\begin{split} & \max_{t \in I_h} |\mathbf{u}^{(j)}(t) - \mathbf{u}_h^{(j)}(t)| \leq C_m^*(q) \left\{ \begin{array}{ll} h^{2m} & \text{if} \quad m = 1, 2 \\ h^{m+2} & \text{if} \quad m > 2, \end{array} \right. \\ & \text{for} \quad j = 0, \dots, k-1 \quad \text{and} \quad \text{all} \quad q \in (0,1) \; . \end{split}$$

Special case: Pantograph DDE:

$$u'(t) = a(t)u(t) + b(t)u(qt)$$
 (0 < q < 1).

The **proofs** of the optimal local superconvergence results for VFIDEs and VFIEs are based on the representations of the solutions $e_h := u - u_h$ of the error equations.

VFIEs with vanishing delays:

Local superconvergence on uniform \boldsymbol{I}_h

Collocation solution $u_h \in S_{m-1}^{(-1)}(I_h)$ and corresponding iterated collocation solution u_h^{it} for

$$\begin{split} \mathbf{u}(\mathbf{t}) &= \mathbf{g}(\mathbf{t}) + (\mathcal{V}\mathbf{u})(\mathbf{t}) + (\mathcal{V}_{\theta}\mathbf{u})(\mathbf{t}), \ t \in [0,T] \;, \end{split}$$
 with $\underline{\theta(\mathbf{t}) = \mathbf{q}\mathbf{t}} \ (\mathbf{0} < \mathbf{q} < \mathbf{1})$

 \hookrightarrow Observation: (B. (1997))

$$u(t) = u_0 + \int_0^{qt} (b/q)u(s) ds, \quad t \ge 0, \quad \underline{0 < q < 1}$$
:

If collocation is at Gauss points, then $\mathbf{u}_h^{it}(\mathbf{h})$ is not the (\mathbf{m},\mathbf{m}) -Padé approximant to $\mathbf{u}(\mathbf{h})$:

$$|u(h)-u_h(h)|=\mathcal{O}(h^{p^*})\quad \mathit{with}\quad \underline{p^*<2m+1}\;.$$

Theorem: (B. & Hu (2005))

If the $\{c_k\}$ are the Gauss points and $m \geq 2$:

$$\label{eq:local_equation} \max_{t \in I_h} |u(t) - u_h^{it}(t)| \leq C_m^*(q) \left\{ \begin{array}{ll} h^{m+2} & \Leftrightarrow \underline{q = 1/2} \\ & \textit{and} \ m \ \underline{even}, \\ h^{m+1} & \textit{otherwise}. \end{array} \right.$$

Comparison: For q = 1 (classical VIE):

$$\text{max}\{|u(t)-u_h^{it}(t)|:\ t\in I_h\setminus\{0\}\}\leq C_m^*h^{2m}.$$

Open Problem:

Superconvergence analysis of iterated collocation solution \mathbf{u}_h^{it} corresponding to $\mathbf{u}_h \in \mathbf{S}_{m-1}^{(-1)}(\mathbf{I}_h)$ (on **uniform** mesh \mathbf{I}_h) for the **VFIE**s

$$u(t)=g(t)+\underline{b(t)u(\theta(t))}+(\mathcal{V}_{\theta}u)(t),\ t\in[0,T]\;,$$
 and

$$\mathbf{u}(\mathbf{t}) = \mathbf{g}(\mathbf{t}) + \underline{\mathbf{b}(\mathbf{t})\mathbf{u}(\theta(\mathbf{t}))} + (\mathcal{W}_{\theta}\mathbf{u})(\mathbf{t}), \quad t \in [0, T] \ ,$$
 with

$$(\mathcal{W}_{ heta} \mathbf{u})(\mathbf{t}) := \int_{ heta(\mathbf{t})}^{\mathbf{t}} \mathbf{K}(\mathbf{t},s) \mathbf{u}(s) \, \mathrm{d}s,$$
 and $heta(\mathbf{t}) = \mathrm{qt} \; (0 < q < 1)$?

Special case:

$$u(t) = g(t) + b(t)u(\theta(t)), \ t \in [0,T]$$
 (Liu (1995): $m=1$).

Representation of collocation errors: VFIDEs

The collocation error $e_h := u - u_h$ for

$$\mathbf{u}^{(\mathbf{k})}(\mathbf{t}) = \mathbf{a}(\mathbf{t})\mathbf{u}(\mathbf{t}) + \mathbf{b}(\mathbf{t})\mathbf{u}(\theta(\mathbf{t}))$$
$$+ (\mathcal{V}\mathbf{u})(\mathbf{t}) + (\mathcal{V}_{\theta}\mathbf{u})(\mathbf{t}) \ (k \ge 1) ,$$

with vanishing delay function $\,\theta(t)\,$ (e.g. $\,\theta(t)=qt$) satisfies the VFIDE

$$\begin{aligned} e_h^{(k)}(t) &= a(t)e_h(t) + b(t)e_h(\theta(t)) + \delta_h(t) \\ &+ (\mathcal{V}e_h)(t) + (\mathcal{V}_\theta e_h)(t), \ t \in [0, T], \end{aligned}$$

with $e_h^{(j)}(0)=0$, $j=0,\ldots,k-1$. The **defect** function $\delta_h(t)$ is piecewise smooth and vanishes on X_h .

For $\,a(t)\equiv 0,\, \mathcal{V}=0\,\,$ the solution of the error equation is given by

$$e_h(t) = d_h(t) + \sum_{j=1}^{\infty} \int_0^{\theta^j(t)} H_{k,j}(t,s) d_h(s) ds, \ t \in [0,T],$$

where the kernels $\mathbf{H}_{k,j}$ are smooth and

$$d_h(t) := \int_0^t \frac{(t-s)^{k-1}}{(k-1)!} \delta_h(s) ds$$
.

For $t=t_n$ (uniform mesh), $\theta^j(t_n)=t_{q_{n,j}}+\gamma_{n,j}h$, where

$$q_{n,j} := \lfloor \theta^j(t_n)/h \rfloor \in \mathbb{N}, \quad \gamma_{n,j} := \theta^j(t_n)/h - q_{n,j} \in [0,1)$$
.

For
$$\underline{\theta(t) = qt}$$
, $t = t_n = nh$ $(1 \le n \le N)$:

$$\mathrm{e}_h(t_n) = \mathrm{d}_h(t_n) + \sum_{j=1}^\infty \int_0^{q^j t_n} H_{k,j}(t_n,s) \mathrm{d}_h(s) \, \mathrm{d}s \; ,$$

with

$$d_h(t) := \int_0^t \frac{(t-s)^{k-1}}{(k-1)!} \delta_h(s) \, ds \quad \text{if} \quad k \ge 1,$$

and

$$d_h(t) := \delta_h(t)$$
 if $k = 0$.

(Recall that
$$\underline{\delta_{\mathbf{h}}(\mathbf{t}) = \mathbf{0}}$$
 for $\underline{\mathbf{t} \in \mathbf{X_h}}$.)

Since
$$heta^{\mathbf{j}}(t_n) = t_{q_{\mathbf{n},\mathbf{j}}} + \gamma_{\mathbf{n},\mathbf{j}} h$$
 , we have

$$\begin{split} \int_0^{q^Jt_n} H_{k,j}(t_n,s) d_h(s) \, ds &= \int_0^{t_{q_{n,j}}} H_{k,j}(t_n,s) d_h(s) \, ds \\ &+ h \int_0^{\gamma_{n,j}} H(t_n,t_{q_{n,j}}+sh) d_h(t_{q_{n,j}}+sh) \, ds \; . \end{split}$$

(etc.)

Collocation on (quasi-) geometric meshes

I. Non-vanishing delay techniques:

On $[0, t_0]$ (with suitably small $t_0 = t_0(q; N) > 0$), assume given initial approximation to u(t).

 \hookrightarrow Choose $geometric\ macro-mesh\ \mbox{on}\ \ [t_0,T]$ given by

$$\{\xi_{\mu} := \mathbf{q}^{\kappa-\mu}\mathbf{T} : 0 \le \mu \le \kappa\}, \quad \kappa = \kappa(\mathbf{q}; \mathbf{N}),$$

with appropriate κ such that $\xi_0 := t_0 \to 0$ as $N \to \infty$. \hookrightarrow Local (uniform) meshes:

$$\mathbf{I}_{\mathbf{h}}^{(\mu)} := \{ \mathbf{t}_{\mathbf{n}}^{(\mu)} : \ \xi_{\mu} = \mathbf{t}_{\mathbf{0}}^{(\mu)} < \mathbf{t}_{\mathbf{1}}^{(\mu)} < \dots < \mathbf{t}_{\mathbf{N}}^{(\mu)} = \xi_{\mu+1} \}.$$

 \Rightarrow Collocation solution $u_h \in S_m^{(0)}(I_h)$ (at Gauss points, and on the global $\theta\text{-invariant}$ mesh

$$\mathbf{I_h} := igcup_{\mu=0}^{\kappa-1} \mathbf{I_h^{(\mu)}}$$
) for the VFIDE

$$\mathbf{u}'(\mathbf{t}) = \mathbf{a}(\mathbf{t})\mathbf{u}(\mathbf{t}) + \mathbf{b}(\mathbf{t})\mathbf{u}(\theta(\mathbf{t})) + (\mathcal{V}\mathbf{u})(\mathbf{t}) + (\mathcal{V}_{\theta}\mathbf{u})(\mathbf{t}) :$$

$$\Rightarrow \quad \max_{t \in I_h} |u(t) - u_h(t)| \leq C_m^*(q) N^{-2m} \ .$$

(Bellen (2002) (*DDEs*), Bellen, B., Maset & Torelli (2006) (*VFIDEs*))

II. Vanishing delay techniques:

(Brunner, Hu & Lin (2001), B. & Hu (2007)) Global geometric mesh on [0,T]:

$$I_h := \{t_n = t_n^{(N)} := d^{N-n}T : 0 \le n \le N\},$$

with suitably chosen $\;d=d(q;m,N)\in(0,1)$. Collocation in $S_m^{(0)}(I_h)$ for VFIDE

$$u'(t) = a(t)u(t) + b(t)u(\theta(t)) + (\mathcal{V}u)(t) + (\mathcal{V}_{\theta}u)(t),$$
 using the **Gauss points**, yields

$$\label{eq:local_equation} \mathop{\text{max}}_{t \in I_h} |u(t) - u_h(t)| \leq C_m^*(q) N^{-(2m - \epsilon_N)} \;,$$

where $\, arepsilon_{\mathbf{N}}
ightarrow \mathbf{0}$, as $\, \mathbf{N}
ightarrow \infty$.

Question:

Numerical comparison of collocation solutions on **quasi-geometric meshes** (approach of *Bellen et al.*) and on **geometric meshes** (approach of *Brunner & Hu*)?

Remark:

The variable stepsize code RADAR5 (Guglielmi & Hairer (2001, 2005)), when applied to pantograph-type DDEs, appears to generate meshes I_h with stepsizes $\{h_n\}$ that show exponential-like growth (Guglielmi (2006)).

Multiple vanishing delays:

The attainable order of local superconvergence at $\underline{\mathbf{t}} = \underline{\mathbf{t}}_1 = \underline{\mathbf{h}}$ for the double pantograph equation,

 ${f u}'(t)={f au}(t)+{f b_1 u}({f q_1 t})+{f b_2 u}({f q_2 t}),\ t\in [0,T],$ where $0<{f q_1}<{f q_2}<1$, is discussed in Zhao, Xu & Qiao (2005); see also Qiu, Mitsui & Kuang (1999) and Liu & Li (2004).

 \bullet Optimal superconvergence of $\, u_h \in S_m^{(0)}(I_h)$ on uniform meshes I_h for the multiple delay VFIDE

$$u'(t) = a(t)u(t) + \sum_{j=1}^r b_j(t)u(\theta_j(t))$$

$$+\sum_{j=1}^{r} (\mathcal{V}_{\theta_{j}} \mathbf{u})(\mathbf{t}), \quad t \in [0, T],$$

where $heta_j(t) = q_j t, \quad 0 < q_1 < \dots < q_r < 1$.

<u>Theorem:</u> (B. (2008))

Collocation at Gauss points leads to

$$\text{max}\{|u(t)-u_h(t)|:\ t\in I_h\}\leq C_m^*(q)h^{m+2}$$

for any $q:=(q_1,\ldots,q_r)$ $(r\geq 2)$ and all $m\geq 2$.

 \bullet Optimal orders of superconvergence of $u_h \in S_{m-1}^{(-1)}(I_h)$ and corresponding u_h^{it} , on uni-form meshes, for VFIEs with multiple vanishing delays,

$$\label{eq:equation:equation:equation:equation} \mathbf{u}(\mathbf{t}) = \mathbf{g}(\mathbf{t}) + \sum_{j=1}^{r} (\mathcal{V}_{\theta_j} \mathbf{u})(\mathbf{t}), \quad \mathbf{t} \in [0, T],$$

where $heta_{j}(t) = q_{j}t, \; 0 < q_{1} < \cdots < q_{r} < 1$:

Theorem: (B., 2008)

Local superconvergence for $\mathbf{u_h}$ or $\mathbf{u^{it}}$ with $\mathbf{p^*} = \mathbf{m} + \mathbf{2}$ $(m \geq 2)$ is **not possible**. If the $\{\mathbf{c_i}\}$ are the **Gauss points**, then the optimal local order of convergence on **uniform meshes** $\mathbf{I_h}$ is described by

$$\text{max}\{|u(t)-u_h^{it}(t)|\ t\in I_h\setminus\{0\}\}\leq C_m^*(q)h^{m+1}$$

for all $\,{\bf q}:=(\,{\bf q}_1,\ldots,{\bf q}_r\,).\,$ It coincides with the optimal ${\it global}$ order of superconvergence of ${\bf u}_h^{it}$ on $\,{\bf I}.$

'Integral-algebraic' VFEs

(VFEs with non-local comstraints)

Illustration:

$$\mathbf{u}'(\mathbf{t}) = \mathbf{F}(\mathbf{t}, \mathbf{u}(\mathbf{t}), \mathbf{u}(\theta(\mathbf{t})), \mathbf{w}(\mathbf{t}), \mathbf{w}(\theta(\mathbf{t}))), \ \mathbf{t} \in [0, \mathbf{T}],$$

$$0 = g(t) + \int_{\theta(t)}^{t} k(t-s)G(s, u(s), w(s)) ds,$$

with delay function $\theta(t)$ satisfying $\theta(0)=0$ (etc.).

(Collocation for delay DAEs with non-vanishing delays and *local* (algebraic) constraints was studied by **Hauber** (1997).)

$$0 = g(t) + \int_{qt}^{t} K(t,s)u(s) ds, \ \ t \in [0,T],$$

where $g(0)=0,\ g\in C^1(I);\ |K(t,t)\geq \kappa_0>0$ and $K\in C^1(D_\theta)$, is open.

• q=0:

$$\|\mathbf{u} - \mathbf{u_h}\|_{\infty} \longrightarrow 0 \qquad \Leftrightarrow \qquad \prod_{i=1}^m rac{\mathbf{1} - \mathbf{c_i}}{\mathbf{c_i}} \leq 1 \; .$$

Lecture IV: Basic references

- H. Brunner, *Lecture Notes*, 2008 Summer School on Applied Analysis, TU Chemnitz: Sections 4 and 5
- A. Iserles, Numerical analysis of delay differential equations with variable delays, Ann. Numer. Math. **1** (1994), 133-152.
- A. Bellen & M. Zennaro, *Numerical Methods* for *Delay Differential Equations*, Oxford University Press, 2003. (Section 6.4)
- Y.K. Liu, Numerical investigation of the pantograph equation, *Appl. Numer. Math.* **24** (1997), 516-528.
- H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, 2004. (Chapter 5)
- A. Bellen *et al.*, Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays, *BIT* **46** (2006), 229-247.

V. Concluding Remarks:

Current and future research work

 DDEs and VFEs with non-monotonic (vanishing) delay functions

→ Illustration:

$$\theta(t)=q_1t+(q_2-q_1)t\sin^2(\omega t)\ \ t\geq 0,$$
 with $0< q_1< q_2< 1,\ \omega\geq 1.$

Brunner & Maset (2008); B. & Guglielmi (2008)

VFEs with weakly singular kernels

VFIDEs and VFIEs corresponding to delay integral operators of the form

$$(\mathcal{V}_{\theta,\alpha}\mathbf{u})(\mathbf{t}) := \int_0^{\theta(\mathbf{t})} (\mathbf{t} - \mathbf{s})^{-\alpha} \mathbf{K}_1(\mathbf{t}, \mathbf{s}) \mathbf{u}(\mathbf{s}) \, d\mathbf{s}$$

and

$$(\mathcal{W}_{\theta,\alpha}\mathbf{u})(\mathbf{t}) := \int_{\theta(\mathbf{t})}^{\mathbf{t}} (\mathbf{t} - \mathbf{s})^{-\alpha} \mathbf{K}(\mathbf{t}, \mathbf{s}) \mathbf{u}(\mathbf{s}) \, d\mathbf{s},$$

with $0 < \alpha < 1$.

$$\hookrightarrow \theta(t) = t - \tau(t), \ \tau(t) \ge \tau_0 > 0$$
:

Brunner, Appl. Numer. Math. 57 (2007), 533-548.

$$\hookrightarrow$$
 $\theta(t) = qt (0 < q < 1)$:

Current work with Q.-Y. Hu (collocation) and D. Schötzau (discontinuous Galerkin method).

• Analysis of asymptotic stability (and contractivity) of collocation solutions on uniform meshes for VFIDEs with vanishing delays (e.g. for $\theta(t) = qt$ (0 < q < 1)?

The solutions of the pantograph DDE

$$u'(t)=au(t)+bu(qt),\quad t\geq 0,$$
 satisfy
$$\lim_{t\to\infty}u(t)=0 \quad \text{if}$$

$$\text{Re}(a)<0 \quad \text{and} \quad |b|<|a|. \tag{1}$$

→ Open Problem 1:

For which $\{c_i\}$ does the collocation solution $u_h \in S_m^{(0)}(I_h)$, with $\mbox{uniform } I_h$, satisfy

$$\lim_{t\to\infty} u_h(t) = 0 \ ?$$

Special case: $m=1,\ q=1/2:\ c_1\in[1/2,1]$ (Buhmann, Nørsett & Iserles (1994); Liu, Wang & Hu (2005)).

Assume (1). For which (continuous) \mathbf{k}_0 and \mathbf{k}_1 are the solutions of the VFIDE

$$\begin{split} u'(t) &= au(t) + bu(qt) + \int_0^t k_0(t-s)u(s)\,ds \\ &+ \int_0^{qt} k_1(t-s)u(s)\,ds, \ t \geq 0, \end{split}$$

asymptotically stable?

DEs and VFEs with advanced arguments

Illustration:

$$u'(t) = au(t) + bu(qt), t \ge 0, q > 1$$
:

Application:

Modelling of cell growth: steady-state distribution of population of cells that grow and divide (each mother cell divides into q > 1 daughter cells of same size).

See, e.g., Hall & Wake (1989,1990+), Wall (2007); also: Marshall, van Brunt & Wake (2004) and references.

Design of VFE software

(See www.unige.ch/~hairer for details of RADAR5.)

Collocation for VFEs with state-dependent delays

Illustration:

Population growth with 'crowding effects' (Bélair (1991)):

$$u(t) = \int_{t-\tau(u(t))}^t P(t-s)G(u(s)) \, ds, \quad t>0,$$

 $\label{eq:convergence} \begin{array}{ll} \hookrightarrow & \text{Attainable order of (super-) convergence of iterated collocation solution solution corresponding to collocation solution } u_h \in S_{m-1}^{(-1)}(I_h) \end{array} ?$ Current work with Stefano Maset (Trieste)

• Partial VFIEs

Illustration:

Time-stepping for (semi-discretised) system corresponding to the partial VFIDE

$$u_t - \Delta u = \int_0^t k(t-s)G(u(s,\cdot), u(\theta(s),\cdot)) ds,$$

with $x\in\Omega\subset\mathbb{R}^d$ $(d=1,2),\ u(t,0)=u_0(x)$ (plus homogeneous BCs), $\theta(0)=0$, and

$$G(u, w) = au^p + bw^r, p > 1, r > 1.$$

(→ **J. Wu**, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, 1996)