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READING GROUP “MIRROR SYMMETRY AND TROPICAL GEOMETRY”

PETER SPACEK

Abstract. One of the goals of this reading group is understanding (in the case of genus-0

and on a 2-dimensional toric variety) Mikhalkin’s result that the number N0,trop
Σ,∆ of genus-0,

degree-∆ tropical curves in a toric variety XΣ passing through |∆| − 1 general points equals

the number N0,hol
Σ,∆ of genus-0, degree-∆ holomorphic curves in a toric variety passing through

|∆| − 1 general points.

The ultimate goal of this talk is to define N0,trop
Σ,∆ when dim(XΣ) = 2.

1. Parametrized and marked tropical curves

Recall from the second talk that tropical hypersurfaces inside a two-dimensional space appear

as piecewise linear graphs, for example:

0
(0, 0)

(−1,−1)

(−1,−5)

(−5,−1)

x1

x2

1 + x1 + x2

5 + 2x1

5 + 2x2

(1.1)

Here, we will define tropical curves as one-dimensional piecewise linear subvarieties, even inside

higher dimensional spaces.

Taking away the ambient two-dimensional space in the examples of the second talk, we find

that in an “abstract sense”, tropical hypersurfaces appear as graphs:

Definition 1.1. A graph Γ is a tuple (Γ
[0]
,Γ

[1]
) where Γ

[0]
is a finite set of elements called the

vertices and Γ
[1]

a set of unordered pairs of elements of Γ
[0]

called the edges; in particular, we do

not allow “loops” (an edge consisting of the same vertex twice). We say an edge E is connected

to a vertex V if the vertex is one of the two elements defining the edge, i.e. V ∈ E; the pair

(V,E) is called a flag. The valency of a vertex is the number of edges connected to it. A leaf is

a flag (V,E) consisting of a vertex V of valency 1 and its unique connecting edge E; we denote

by Γ
[0]

∞ ⊂ Γ
[0]

the set of all vertices in leaves and by Γ
[1]

∞ ⊂ Γ
[1]

the set of all edges in leaves.
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We will consider the vertices in Γ
[0]

∞ to “lie at infinity” and hence the edges in Γ
[1]

∞ to be

“unbounded”. In other words, we associate to Γ the topological space

Γ =

 ⋃
E∈Γ

[1]

{(1− t)V1 + tV2 | t ∈ [0, 1]}

 \

 ⋃
V ∈Γ

[0]
∞

{V }


with the topology induced by the euclidean topology on [0, 1] ⊂ R. We will abuse notation

by writing E ∈ Γ[1] for the topological “line segment” E = {(1 − t)V1 + tV2| t ∈ [0, 1]} where

E = {V1, V2} ∈ Γ
[1]
, and we call E ∈ Γ[1] an “edge” of Γ. (In particular, E ∈ Γ

[1]
∞ denotes the

“unbounded line segment” corresponding to an unbounded edge E ∈ Γ
[1]

∞ .) Similarly, we call the

points V ∈ Γ for V ∈ Γ
[1] \ Γ[1]

∞ the “vertices” of Γ, denoted by Γ[1].

Definition 1.2. A weighted graph (Γ, w) is a graph Γ with a weight function w : Γ
[1] → Z≥0

assigning a non-negative integer to each edge. A marking on a graph Γ is an embedding {xi} =

{x1, . . . , xk} ↪→ Γ
[1]

∞ : xi 7→ Exi
. A marked graph (Γ, w, {xi}) is a weighted graph (Γ, w) with a

marking {xi} ↪→ Γ
[1]

∞ such that w(E) = 0 if and only if E = Exi
for some i.

Remark 1.3. The standard convention in tropical geometry is “w(E) = 0 if E = Exi
”, and not

“if and only if”.

Example 1.4. An example of a marked graph and its associated topological space related to

the tropical hypersurface in (1.1) is:

Γ :

1

x1
1

1

11 11

x3 x2 11

Γ : (1.2)

Where Γ
[0]

consists of all nodes, Γ
[0]

∞ consists of the white nodes, Γ
[1]

consists of all edges, Γ
[1]

∞
consists of edges connecting one black and one white node, and where each edge E is labeled

with either its nonzero weight w(E) or with xi when it is marked. For Γ, each line segment has

the topology of [0, 1], except those with a circle at the end, which denote line segments with the

topology [0, 1⟩ with the circle denoting the non-compact end. ♢

Now, we return to the conventions of the second talk: Let M = Zn with MR = M ⊗Z R, and
set N = HomZ(M,Z).

Definition 1.5. A parametrized marked tropical curve (Γ, w, {xi}, h) is the triple of a marked

graph (Γ, w, {xi}) together with a continuous function h : Γ → MR satisfying:

(i) If E ∈ Γ
[1]

has weight w(E) = 0, then h|E is constant (i.e. a point); else h|E is a proper

embedding of E ⊂ Γ into a line of rational slope in MR.

(ii) The balancing condition at every V ∈ Γ[0]: Let E1, . . . , Eℓ ∈ Γ[1] be all the edges

connected to V and denote by mi ∈ M a primitive tangent vector to h(Ei) pointing

away from h(V ), then
ℓ∑

i=1

w(Ei)mi = 0.

Since h(Exi) is a point in MR, we will simply write h(xi). It is also common to write h :

(Γ, x1, . . . , xk) → MR for a parametrized marked tropical curve. We call b1(Γ) the genus of h.
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Definition 1.6. Two parametrized marked tropical curves h : (Γ, {xi}) → MR and h′ :

(Γ′, {x′
i}) → MR are called equivalent if there is a homeomorphism φ : Γ → Γ′ with φ(Exi) = Ex′

i

and h = h′ ◦ φ. An equivalence class of parametrized marked tropical curves is called a marked

tropical curve.

Remark 1.7. The balancing condition implies that the edges connecting a vertex of valency

2 are mapped opposite to each other (i.e. m2 = −m1) and that they have the same weight, so

there is an equivalent parametrized marked tropical curve whose underlying graph has the vertex

removed and the edges replaced with a single edge connecting the opposite vertices. Hence, from

now on we assume the graphs underlying the parametrized marked tropical curves have no

vertices of valency 2.

Example 1.8. Continuing the above examples, a marked tropical curve can be drawn as:

Γ :

1

x1
1

1

11 11

x3 x2 11

7−→ h(Γ) :

x1 = (0, 0)

(−1,−1)

x2 = (−1,−5)

x3 = (−5,−1)

(1.3)

A parametrized marked tropical curve is obtained by choosing (continuously) the image of every

point of Γ (a “parametrization” of the edges of h(Γ)”). Note that the images of the vertices

are fixed by the marked tropical curve. Also note that the balancing condition is satisfied at all

vertices. ♢

2. Marked tropical curves in a toric variety

Let XΣ be the toric variety defined by the fan Σ, and denote by Σ[1] the set of one-dimensional

cones (“rays”) in Σ. We write TΣ for the free abelian group generated by the rays: namely,

TΣ =
⊕

ρ∈Σ[1] Ztρ for tρ a formal generator corresponding to the ray ρ. As ρ ⊂ MR is contained

in a line of rational slope, there exists a primitive mρ ∈ M such that ρ = R≥0mρ. Hence we

obtain a map TΣ → M by sending tρ 7→ mρ.

Definition 2.1. A marked tropical curve h lies in XΣ if for every unmarked unbounded edge

E ∈ Γ
[1]
∞ its image h(E) is a translate of some ρ ∈ Σ[1]. In other words, if mE is the primitive

tangent vector to h(E) pointing to the vertex “at infinity”, then mE = mρ for some ρ ∈ Σ[1].

For a given ray ρ ∈ Σ[1], denote by

dρ =
∑

E∈Γ
[1]
∞ : mE=mρ

w(E)

the number of (unmarked, else w(E) = 0) unbounded edges E ∈ Γ
[1]
∞ with h(E) a translate of ρ

counted with weight. The degree ∆(h) ∈ TΣ of h is defined as

∆(h) =
∑

ρ∈Σ[1]
dρtρ.

Moreover, we set |∆| =
∑

ρ∈Σ[1] dρ.

Summing over the balancing conditions on the vertices of a marked tropical curve gives:
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Lemma 2.2 ([Gross], Lemma 1.13). r(∆(h)) = 0, where r(∆(h)) =
∑

ρ∈Σ[1] dρmρ ∈ M .

Example 2.3. The marked tropical curve in (1.3) lies in P2: Recall from the first talk that P2

is obtained from the complete fan with rays in the directions (1, 0), (0, 1) and (1, 1), and note

that the unbounded edges of the marked tropical curve point in the same directions. ♢

3. Marked tropical curves as tropical hypersurfaces in dimension two

Let h be a marked tropical curve, then we can see h(Γ) as a one-dimensional polyhedral com-

plex. On the other hand, for a tropical polynomial f ∈ Rtrop[x1, . . . , xn] its tropical hypersurface

V (f) (the locus of non-linearity of f) is a polyhedral complex as well. However, V (f) comes

with a natural weight map assigning to each of its codimension-one polyhedra a weight. Hence,

we would like to turn h(Γ) into a weighted polyhedral complex as well.

We already have a weight map on Γ, the marked weighted graph underlying h : (Γ, {xi}) →
MR. The image h(Γ) is a piecewise linear space itself, as h is continuous, so the idea to define

a weight on each of the linear segments is simply to add up all the weights of the edges of Γ

mapped to that given linear segment by h.

To define this more carefully, proceed as follows: let Ẽ be an “edge” (linear segment) of

h(Γ) ⊂ MR, and take a point m ∈ Ẽ that is not a “vertex” (nonlinear point) of h(Γ) nor the

image of a vertex of Γ, then

w(Ẽ) =
∑

E∈Γ[1]: m∈h(E)

w(E).

The balancing condition on h implies that w(Ẽ) does not depend on m ∈ Ẽ, and moreover that

h(Γ) satisfies the balancing condition.

Now, restrict to the case dim(MR) = 2, i.e. dim(XΣ) = 2, then marked tropical curves and

tropical hypersurfaces are both weighted one-dimensional polyhedral complexes. It turns out

that:

Proposition 3.1 ([Gross], Proposition 1.15). For every marked tropical curve h : Γ → MR with

dim(MR) = 2 there exists a tropical polynomial f ∈ Rtrop[x1, x2] such that h(Γ) = V (f) as

weighted one-dimensional polyhedral complexes.

Proof (sketch). Let us start with an easy example. Consider the marked tropical curve given by

Γ :
1

11

7−→ h(Γ) : (1, 1)

Clearly, h(Γ) defines a polyhedral decomposition: the closures of the complements of h(Γ) are

the two-dimensional cells (so here the top right quarter, the lower third and the left third of the

plane), the edges of h(Γ) are one-dimensional cells and the vertices the zero-dimensional cells.

To define the a tropical function, pick one of the components, say the top-right. Take the

function 0 on this component. Now, move to another adjacent component, say the bottom right

one. To obtain a tropical function whose hypersurface has a half-line going right from (1, 1), we

consider a linear function that is zero on this half-line, less than zero below it, and more than

zero above it, for example x2− 1. Of course, any multiple of x2− 1 will be zero on half half-line;

however, we want the tropical hypersurface to have weight 1 on the half-line to match with the

marked tropical curve. Hence, we have to take 1 as constant coefficient. The function so far is

now min{0, 1 · (x2 − 1)}. Move from the lower component to the left component: we now want

a function that equals x2 − 1 on the half-line {(1, 1) + r(−1, 1) | r ∈ [0,∞⟩}, that is bigger than
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x2 − 1 to the right of it, and is smaller than x2 − 1 to the left of it. Clearly, any multiple of

x1 − 1 satisfies this. Since the half-line has weight 1, we take the scalar multiple 1 · (x1 − 1).

Now, we have the tropical function min{0, x1 − 1, x2 − 1}, but we still have to check we get

the last half-line separating the left and upper-right components: Luckily, x1−1 equals 0 on the

line going up from (1, 1), so this works out. However, this is not lucky at all, but guaranteed

by the balancing condition of the marked tropical. Hence, turning the tropical function into the

tropical polynomial 0⊕ [(−1)⊙ x1]⊕ [(−1)⊙ x2], we get the result.

The general case goes analogously: (i) start at a certain component with the function 0; (ii)

cross a line segment to another component; (iii) take a linear function that equals the previous

function along the line segment, is bigger than that function on the previous component and

smaller than that function on the new component; (iv) use the weight of the line segment to

determine the required scalar multiple; (v) add the new function to the minimum of functions

obtained so far; then choose another line segment and repeat steps (ii)—(v). The balancing

condition ensures the function is well-defined. □

4. Moduli space of marked tropical curves in a toric variety

Just as stable curves can be distinguished on the number of irreducible components and the

distribution of the marked points over the irreducible components, marked tropical curves can

be distinguished by their combinatorial type.

Definition 4.1. The combinatorial type of a marked tropical curve h = (Γ, w, {xi}, h) is the

tuple (Γ, w, {xi}, {m(V,E)}) where (Γ, w, {xi}) is the marked graph underlying h and where

{m(V,E)} is a set of primitive vectors in M tangent to h(E) pointing away from h(V ), one for

each flag (V,E) with V ∈ Γ
[0] \ Γ

[0]

∞ and E ∈ Γ
[1]

connected to V . A combinatorial type is a

combinatorial equivalence class; the combinatorial type of a given marked tropical curve h is

denoted by [h].

Example 4.2. The combinatorial type of the marked tropical curve in (1.3) is simply forgetting

the location of the vertices of h(Γ), only the direction of the edges under an embedding is

remembered. ♢

Definition 4.3. The moduli space of k-marked, genus-g tropical curves of degree ∆ lying in

XΣ is denoted Mg,k(Σ,∆). The subset of those tropical curves of a given combinatorial type is

denoted M[h]
g,k(Σ,∆).

Proposition 4.4 ([Gross], Proposition 1.17). We have Mg,k(Σ,∆) =
⊔

[h] M
[h]
g,k(Σ,∆) with [h]

running over all possible combinatorial types.

For fixed combinatorial type [h], M[h]
g,k(Σ,∆) is the interior of a polyhedron of dimension

greater or equal to

D
[h]
g,k = (3− dimMR)(g − 1) + k + e− ov(Γ),

where ov(Γ) =
∑

V ∈Γ
[0]\Γ[0]

∞

(
Valency(V )−3

)
and e is the number of unmarked, unbounded edges

in Γ
[1]

∞ .

Proof (sketch). The idea of this proof is the observation that a marked tropical curve is obtained

from a combinatorial type by fixing the location of the vertices. However, once we fix the location

of one of the vertices, the vertices connected to it must lie in the direction dictated by the

combinatorial type: hence these vertices will be determined by fixing the distance to the first

vertex. Subsequently, all vertices connected to these vertices must lie in the direction dictated
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by the combinatorial type, so again their position is determined by fixing the distance from the

other vertices.

Hence the moduli space is some subset of MR ×R#(Γ[1]\Γ[1]
∞ )

>0 , where MR is the location of the

vertex and where each positive real number determines the length of a compact edge (i.e. edge

in Γ[1] \ Γ[1]
∞). The number of edges is determined using the topological Euler characteristic of

the underlying graph χ(Γ) = 1− g = #Γ
[0] −#Γ

[1]
. From this the

On the other hand, the lengths of the compact edges are not independent of each other: for

every cycle in the graph, the line segments need to start and end at the same vertex, forcing the

moduli space to lie in some polyhedron of lower dimension. □

Remark 4.5. If dim(MR) ≥ 3 and g ≥ 1 there exist marked tropical curves that are neither

trivalent nor limits of trivalent curves.

Definition 4.6. If dim
(
M[h]

g,k(Σ,∆)
)
> D

[h]
g,k, then [h] is called superabundant. Else, [h] is called

regular.

If g ≥ 1, there exist superabundant combinatorial types.

5. Simple tropical curves in a two-dimensional toric variety

Restrict to the case dim(MR) = 2:

Definition 5.1. A simple tropical curve (in two dimensions) is a marked tropical curve h =

(Γ, w, {xi}, h) such that:

(i) The underlying (topological) graph Γ is trivalent, i.e. every V ∈ Γ
[0] \Γ[0]

∞ has valency 3.

(ii) Distinct vertices of Γ are mapped to distinct points under h.

(iii) There are no disjoint edges E1 and E2 connected to the same vertex for which h|E1
and

h|E2 are non-constant and h(E1) ⊆ h(E2).

(iv) Each unmarked E ∈ Γ
[1]

∞ has w(E) = 1.

Note that the number e of unmarked, unbounded edges of a simple tropical curve h equals |∆|.
It can be shown that simple tropical curves in two dimensions are always regular (Proposition

2.21 of Mikhalkin).

We now consider tropical curves passing through a general set of points in a toric variety XΣ:

Definition 5.2. A set of points (P1, . . . , Pk), Pi ∈ MR, is general if it lies in some dense open

subset of Mk
R . We say that a marked tropical curve h : (Γ, {x1, . . . , xk}) → MR passes through

the points (P1, . . . , Pk) if h(xi) = Pi for all i.

(Recall that h(xi) = h(Exi).)

Lemma 5.3 ([Gross], Lemma 1.20). Let Σ be a fan in MR, dimMR = 2, and let ∆ ∈ TΣ. For

any given general set of points (P1, . . . , Pk) in MR, where k = |∆|−1, there exist a finite number

of marked, genus-0 tropical curves h : (Γ, {x1, . . . , xk}) → MR in XΣ with h(xi) = Pi. Moreover,

these curves are simple, and there is at most one such curve of a given combinatorial type.

Proof (sketch). First, we observe that there are only finitely many combinatorial types of marked

tropical curves lying in XΣ: The idea is that a combinatorial type corresponds to regular (lattice)

subdivision of the Newton polytope defined by the degree ∆; this works through the identification

of a marked tropical curve in MR where dim(MR) = 2 with a tropical hypersurface as given in

Proposition 3.1.
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This allows us to consider a fixed combinatorial type [h]. Now, we look at Proposition 4.4

and its proof, which tells us for genus 0 that

M[h]
0,|∆|−1(Σ,∆) ∼= MR × Re+|∆|−4−(Γ)

>0 .

On the other hand, the evaluation map sending a marked tropical curve h to (h(x1), . . . , h(x|∆|−1))

is an affine linear map to (MR)
|∆|−1: it depends on the location h(V ) ∈ MR of the first reference

vertex and on the lengths of the line segments connecting h(xi) to h(V ).

From this, we conclude that a curve of combinatorial type [h] can only pass through a general

set of |∆|−1 points if the dimension of the moduli space is at least |∆|−1. Using Proposition 4.4,

we conclude that the number of unbound, unmarked edges must be |∆| and the overvalency must

be 0. This means that all unbounded, unmarked edges have weight 1 and Γ is trivalent. Finally,

we can conclude that the existence of some marked tropical curve going through (Pi) implies

that the evaluation map is a local isomorphism, so that there is at most one going through (Pi)

in general position.

Checking that this trivalent curve is simple is then a simple check. □

Hence, we are able to count the number of tropical curves passing through a general set of

points. To get a meaningful count, we have to add a multiplicities to each of these curves:

Definition 5.4. The Mikhalkin multiplicity of a simple tropical curve in two dimensions is

defined as Mult(h) =
∏

V ∈Γ[0] MultV (h), where MultV (h) is 1 if one of the three connected edges

are marked, and where MultV (h) equals

w(E1)w(E2) |mE1
∧mE2

| = w(E2)w(E3) |mE2
∧mE3

| = w(E3)w(E1) |mE3
∧mE1

|

otherwise. Here mEi
denotes a primitive vector tangent to h(Ei) pointing away from h(V ), and∧2

M is identified with Z.

The three expressions above are equal due to the balancing condition.

Definition 5.5. N0,trop
Σ,∆ =

∑
h Mult(h) with h running over all h ∈ M0,|∆|−1(Σ,∆) passing

through a general set of |∆| − 1 points in MR.

Technische Universität Chemnitz, Germany

Email address: peter.spacek@math.tu-chemnitz.de


	1. Parametrized and marked tropical curves
	2. Marked tropical curves in a toric variety
	3. Marked tropical curves as tropical hypersurfaces in dimension two
	4. Moduli space of marked tropical curves in a toric variety
	5. Simple tropical curves in a two-dimensional toric variety

