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1. Introduction.

Tropical geometry appeared in various fields of mathematics: computer science for network opti-
mization (Gaubert), real geometry (Viro), enumertive geometry (as we will see later on) and also in
physics under the name of Maslov dequantization: we renormalize the usual ring laws and make the
basis of the logarithm goes to 0, i.e.

logh̄(h̄
a + h̄b) −→

h̄→0
min(a, b) =: a⊕ b

and

logh̄(h̄
a · h̄b) −→

h̄→0
a + b =: a� b.

We will work with the triple Rtrop := (R,⊕,�). We usually add a neutral element for the addition
and consider the (idempotent) semi-ring 1 of tropical numbers or the min-plus algebra; it is defined by:

T := (−∞,+∞].

Note the tropicalization of the usual ring laws of R is valuative. Another convention is also some-
times used where the minimum is replaced by a maximum and −∞ is replaced by +∞; with that
convention, the tropicalization of the ring laws of R behaves like a non-archimedean absolute value.
These two points of view are of course equivalent since they are identified through x 7→ −x. Note
that in any case, we have T× = R hence T is even a semi-field which is non-archimedean. In this
talk, we will mostly restrict to this group of non-zero tropical numbers.

Let us give a (pocket) dictionnary between the tropical world and the world of affine geometry.

Tropical algebraic geometry Affine geometry
Tropical torus (T×)n Vector space Rn

(T×)n-torsor Affine space of dimension n
Monomials Integral linear forms

Monomial maps Integral linear maps
Polynomials Piecewise linear concave functions

Hypersurfaces Codimension one polyhedral subspaces in Rn

Maybe the terminology "dictionnary" is a little misleading because the correspondance is not one-
to-one (as we will see, for example, with polynomials and piecewise linear concave functions; it
should be understood as a correspondance of concepts and not really of single objects.

1The difference between a ring and a semi-ring is that a semi-ring need not to have additive inverses; in fact, here
+∞ is the only invertible element for the tropical addition.
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2. Tropical polynomials and polyhedral geometry.

2.1. Tropical polynomials.

In this section, we want to see how algebraic geometry over Rtrop looks like. To work in a coordinate-
free way, we consider the following setup:

• M is a lattice of rank n in some real vector space and N := Hom(M, Z).

• MR := M⊗Z R and NR := N ⊗Z R.

We have the usual duality pairing

〈·, ·〉 : M⊗Z N → Z.

Definition (2.1.1.) — A tropical (Laurent)2 polynomial is an element of Rtrop[x1, . . . , xn]. More ex-
plicitely, a tropical (Laurent) polynomial f can be written as follows:

f (x1, . . . , xn) := min
(i1,...,in)∈S

(
ai1,...,in +

n

∑
j=1

ijxj

)
where S ⊆ N is a finite subset called the support of f .

Remark. — The tropical function f : MR → R defined by f is piecewise integral affine and concave.

As polynomials are in general not the same things as polynomials functions, different tropical
polynomial can lead to the same tropical function MR → R. Let us detail another confusing point.

2.1.2. — We consider the three univariate tropical polynomials:

f1 := 0⊕ 1� x⊕ x�2, f2 := 0⊕ x⊕ x�2 and f3 := 0⊕ (−1)� x⊕ x�2.

If we draw (in plain black on the pictures below) the graphs of the associated functions, we see that
f1 and f2 define the same tropical function (whereas f2) even though they are not equal as tropical
polynomials.

Let us now take an example in two variables (we cannot really draw the graph of the associated
tropical function because it is three-dimensional). The black part below is the analogue of the red
part above — the non-differentiability locus of the tropical function.

Example (Tropical line.) — The tropical line corresponding to P(x, y) := 2� x⊕ 3� y⊕ 1 is min(x +
2, y + 3, 1); if we draw the corresponding regions in the real plane, we get the following regions:

2We will usually omit this precision.
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where the green (resp. blue, resp. red) region is the region where P(x, y) is equal to 1 (resp. x + 2,
resp. y + 3). The black region correspond to the domain where the minimum is attained (at least)
twice, it will play a particular role in the sequel.

Let us see how a tropical conic looks like.

Example — We consider the tropical polynomial f of degree 2 defined by

f (x, y) := 5� x�2 ⊕ 2� x� y⊕ 4� y�2 ⊕ 3� y⊕ 2� x⊕ 7.

We obtain the following picture:
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Now, we would like to consider the zero locus of f but this does not make much sense (especially
on T, the 0 is −∞) hence if we extend f to a map Tn → T, then the zero locus would be the
empty set unless f = −∞ where we get Tn ; we thus have to find a better definition. Now, in
R, 0 is distinguished from other real numbers by the fact that it is "idempotent for the addition"
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hence something analoguous to zero (which will hopefully gives a more interesting locus) should
be idempotent for ⊕; therefore, we put the following definition for the zero locus of a tropical
polynomial. 3

Definition (2.1.3.) (Tropical hypersurface.) — The tropical hypersurface associated to a tropical polyno-
mial f := ⊕u∈Sauxu is the locus V( f ) of MR of points for which the minimum is attained at least twice. In
other words, we have:

V( f ) := {x ∈ MR | ∃(u, v) ∈ N2, u 6= v and f (x) = au + 〈u, x〉 = av + 〈v, x〉}.

Example — In the univariate example above, the tropical hypersurface of the fi’s is drawn in red. In
the two bivariate examples above, the tropical hypersurface defined by f is drawn in black. This is
much a more interesting definition and note that it has some link with f : it’s its non-differentiability
locus.

2.2. Polyhedral structure on tropical hypersurfaces.

We defined V( f ) as a subset of MR but it has much more strucutre, namely a polyhedral structure.
Let us introduce some polyhedral geometry notions to be able to talk about this extrastructure.

Definition (2.2.1.) —

• A polyhedron in MR is a finite intersection of closed half-spaces i.e., a subset of MR of the form
P := {x ∈ MR | ∀i ∈ J1, nK, 〈x, ui〉 ≤ ai} where n ≥ 0, (u1, . . . , un) ∈ Mn

R and (a1, . . . , an) ∈ Rn.

• The dimension of a polyhedron is the dimension of the vector subspace it spans.

• We say that a subset F of a polyhedron P is a face of P if there exists an (affine) hyperplane H such that
F = P ∩ H and P is contained in one of the two half-spaces defined by H.

• A facet is a face of codimension 0.

• The relative boundary ∂P of a polyhedron P is the union of all its proper faces.

• The relative interior of a polyhedron P is the complement in P of the relative boundary of P.

• A lattice polyhedron is a polyhedron where the ai in the definition lie in Q and all vertices of P lie in
M.

• A polytope is a compact polyhedron.

Remark. — We usually write τ ≺ σ to say that τ is a face of σ.

Example — The square P := [0, 1]2 is a polytope in R2. Its proper faces are defined by intersection
with the hyperplanes of equation x = 0, y = 0, x = 1 or y = 1. We see that its boundary is equal to
its topological boundary and its interior is equal to its topological interior. This polytope is in fact
even a lattice polytope.

Let us now describe the polyhedral structure on tropical hypersurfaces.

2.2.2. — Let us fix a tropical polynomial f = ⊕u∈Sauxu. For all u ∈ S, we consider the rational
polyhedron:

σu := {x ∈ MR | f (x) = auxu}.
3Using multivalued tropical addition, there is a way to make this definition stick to the usual definition of zero locus.
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In other words, the σu’s divide MR into linearity domains of f . Note that σu ∩ σv is either empty or
either a face of both σu and σv (defined by the intersection au + 〈x, u〉 = av + 〈x, v〉).

The collection of polyhedra S f := {τ ≺ σu for some u ∈ S} is a polyhedral decomposition of MR in
the following sense.

Definition (2.2.3.) — A polyhedral decomposition 4 of a subset S ⊆ MR is a finite collection P of
polyhedra in MR such that:

1. The polyhedra in P cover S.

2. The face of a polyhedron in P is a polyhedron in P .

3. The intersection of two polyhedra of P is a face of these two polyhedra — that could well be empty.

The union of the polyhedra in P is called the support of P and is denoted by |P |.

Let us see how this decomposition looks like on our three univariate examples.

Example — Let us write this in a table to make it easier to read.

f1 f2 f3
σ0 R+ R+ [1,+∞)
σ1 ∅ {0} [−1, 1]
σ2 R− R− (−∞,−1]

We see that the cells σu depend on the tropical polynomial and not only on the associated function.
On that example, we see that nonetheless S f only depends on the associated tropical function.

Remark. — We can even say that V( f ) is a purely (n− 1)-dimensional polyhedral decomposition of
MR, meaning that all the maximal cells of S f have dimension n− 1. The polyhedral decomposition
S f constructed here is the decomposition that Gross denotes by P̌ and the map that he denotes
by ϕ is probably the Legendre transform of (the tropical function associated to) f in the sense of
convex geometry.

2.3. The reduced representation of a tropical polynomial.

Let us clarify a little bit the gap between tropical polynomials and tropical functions. In this sub-
section, we will define the reduced form of a tropical polynomial which will satisfy the following
property: two tropical polynomials induce the same tropical function if and only if they have the
same reduced form.

Definition (2.3.1.) — Let f := ⊕u∈Sauxu be a tropical polynomial.

• The reduced support of f is defined by

Sred := {u ∈ S | dim(σu) = n}.

• The reduced form of f is the tropical polynomial defined by

fred :=
⊕

u∈Sred

auxu.

4We also say that P is a polyhedral complex in MR.
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Remark. — The tropical functions defined by f and fred are the same since the σu with dimension
n cover MR, hence any x ∈ MR will lie in some σu with dimension n and by definition f (x) =
au + 〈u, x〉 = fred(x). Conversely, if two tropical polynomials induce the same tropical function,
they have the same reduced support since the latter can be described as the set of the differentials
d fx for x varying in MR − V( f ) since d fx = u for all x ∈ Int(σu). Now, the value f (x) determines
the coefficient au uniquely on the cell σu; therefore, these two tropical polynomials have the same
reduced form.

Let us see what it gives on our univariate examples.

Example — The reduced form of f1 and f2 should be equal and they are indeed both equal to
0⊕ x�2. The reduced form of f3 is equal to f3 itself.

Remark. — In the book of Gross, fred is equal to (the tropical function associated to) ϕ̌. The dual
decomposition of f is the decomposition that Gross denotes by P in his book.

3. The dual decomposition of the Newton polytope.

In the previous section, we discussed a polyhedral decomposition of MR whose (n − 1) skeleton
(i.e., the union of cells of dimension at most n− 1) was V( f ). Now, we will associate to f a polytope
in the dual space NR and will construct a polyhedral decomposition of the latter which will be dual
to the polyhedral decomposition constructed in the previous section.

Definition (3.0.1.) (Newton polytope.) — Let f := ⊕u∈Sauxu be a tropical polynomial.
The Newton polytope of f is the integral polytope NP( f ) defined by

NP( f ) := Conv(S) ⊆ NR.

Example — For our three univariate examples, the Newton polytope is equal to [0, 2]. For the first
bivariate example, we get the right triangle with vertices (0, 0), (1, 0) and (0, 1).

Let us now construct a polyhedral subdivision of NP( f ).

3.0.2. — Let f := ⊕u∈Sauxu be a tropical polynomial. Let us consider NP( f ) defined as the upper
convex hull of the set

S̃ := {(u, au) ∈ N ×R | u ∈ S}.

In other words, we have:

NP( f ) := {(u, λ) ∈ NR ×R | ∃(u, µ) ∈ Conv(S̃), µ ≤ λ}.

The projection of the faces of NP( f ) gives a polyhedral decomposition of NP( f ) called the dual
subdivision of f .

Let us describe all these objects on our three univariate examples.

Example — Let us describe them successively.

• For f1, NP( f ) is equal to [0, 2]×R+ and the dual decomposition splits the Newton polynomial
of f1 in 1 facet [0, 2] and two 0-cells {0} and {1}.

• For f2, NP( f ) is equal to [0, 2]× {0} and the dual decomposition is the same as the one for f1.
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• For f3, NP( f ) is equal to the union of [0, 2]×R+ with the triangle with vertices (0, 0), (2, 0)
and (1,−1). In that case, the dual decomposition is different: it has still this facet but it has
three 0-cells : {0}, {1} and {2}.

The fact that the dual decomposition of f1 and f2 are similar is no surprise: this decomposition only
depends on the tropical function and not on the tropical polynomial.

On this example, we also notice an inclusion-reversing duality between the cells of S f and the dual
subdivision of f which holds in general and can be formulated as follows:

3.0.3. — If σ is a cell of S f , then we consider the set of monomials which are minimal on σ i.e.,

Aσ := {u ∈ S | σ ⊆ σu}

and we denote by Dσ the convex hull of Aσ in NR. Now, the duality can be written as follows: the
map σ 7→ Dσ is an inclusion-reversing bijection between cells of S f and the dual subdivision of f .
Moreover, for all cell σ of S f , we have dim(σ) + dim(Dσ) = n and L(σ)⊥ = L(Dσ) where L stands
for the span as a real vector space.

4. Weights and the balancing condition.

In this section, we want to prove that in fact, a tropical hypersurface has more structure than being
a polyhedral decomposition of NR: it is a weighted polyhedral decomposition of NR which satisfies
the balancing condition.

Let us first introduce all the terminology needed about weights.

Definition (4.0.1.) —

• A weight function on a polyhedral complex P is a function w : P → Z that associates to any cell σ
of P with maximal dimension an integer w(σ) called the weight of σ.

• A weighted polyhedral complex is a polyhedral complex with a weight function.

We now come to the definition which will allow us to formulate an important property of tropical
hypersurfaces.

Definition (4.0.2.) — Let P be a positively weighted polyhedral complex in MR.
We say that P is balanced if for all cell τ of codimension 1, we have

∑
τ≺σ

w(σ)νσ/τ ∈ L(τ)

where L(τ) is the subspace of MR spanned by τ and νσ/τ ∈ M satisfies (L(σ)∩M) = (L(τ)∩M)⊕Zνσ/τ

and is pointing from τ in the direction of σ.

Remark. — One can dually formulate this balancing condition as follows: let uσ/τ ∈ M/(L(τ)∩M)
such that νσ/τ + L(τ) = uσ/τ, the balancing condition now rewrites as:

∑
τ≺σ

w(σ)uσ/τ = 0 ∈ MR/L(τ).

Now, let us describe how we put weights on tropical hypersurfaces. We first need a definition from
lattice theory.
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Definition (4.0.3.) — The index of m ∈ N is the biggest r > 0 such that there exists m′ ∈ N satisfying
m = rm′. We say that m is primitive if it has index 1.

Remark. — If we choose a basis, the index of m := (m1, . . . , mn) is just gcd(m1, . . . , mn).

4.0.4. — Let f be a tropical polynomial. If τ is a codimension one cell of S f then, it is the face of
two facets σ1 and σ2 which will correspond to two linearity domains of f . We denote respectively
by u1 and u2 the exponent of f on σ1 and σ2. We now define the weight of τ as the index of u1− u2.
Note that this is well-defined since the index of an element is equal to the index of its opposite.

Now, we state an important theorem that we will prove only for n = 2 since it is the only case that
we will really use.

Theorem (4.0.5.) — If f is a tropical polynomial, then V( f ) is a balanced polyhedral complex.

Proof. — If we pick a codimension one cell v of S f (a vertex in that case), then locally around v, the
subdivision S f looks like the normal fan of Dv by duality. In particular, for each edge τ containing
v, the primitive generator ντ/v is orthogonal to the dual edge Dτ in Dv (by duality again) and w(τ)
is the integer length of Dτ by definition. Therefore, summing all vectors w(τ)ντ/v in clockwise
order gives zero since the boundary of Dσ is "closed", in the sense of curves i.e., its complement has
two connected components.

We will now verify this on some examples. First, note that if f is a univariate tropical polynomial,
then its tropical hypersurface is just a finite number of points hence the balancing condition is
empty. Let us start with the example of the tropical line.

Example — In that case, the Newton polytope is the right triangle with vertices (0, 0), (1, 0) and
(0, 1). There is only one codimension one cell in S f , let us check the balancing condition there. The
weights appearing in the sum are all equal to 1 hence we have:

1 · (1, 0) + 1 · (0, 1) + 1 · (−1,−1)

which is indeed equal to zero.

Let us now try to check it on the example of the tropical conic.

Example — In that case, the Newton polytope is the right triangle with vertices (0, 0), (2, 0) and
(0, 2). There are four codimension one cells in S f , which appears on the Newton polytope as four
triangles. Here is the subdivision of the Newton polytope induced by the dual decomposition:
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m n
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Let us treat (for example) the case of the vertex (−3, 0). It’s the face of three facets which all have
weight 1. We thus indeed have:

(1, 0) + (0, 1) + (−1,−1) = (0, 0).

All the other vertices are similar since all the weight of the facets will be equal to 1.

Let us try to work-out an example with three variables.

Example — We consider the tropical polynomial f (x, y, z) := x ⊕ y⊕ z⊕ 0. Let us check the bal-
ancing condition for the codimension one cell τ of S f given by the equation x = y = z. We denote
by σx,y (resp. σx,z, resp. σy,z) the facets admitting τ as a face — they are respectively defined by the
equation x = y, x = z and y = z. Now we have:

L(τ) = Span((1, 1, 1)).

We choose the following vectors:

νσx,y/τ = (1, 1,−2), νσy,z/τ = (−2, 1, 1) and νσx,z/τ = (1,−2, 1).

Now, for τ the balancing condition is indeed vertified since

(1, 1,−2) + (1,−2, 1) + (1, 1,−2) = (0, 0, 0) ∈ L(τ).

It is nevertheless a little disappointing since we do not use the full power of the sum belonging in
L(τ) — which is non-zero in that case, whereras before! Here, the vector were too well-chosen: we
choose normal vectors to (1, 1, 1). Let us choose less well-chosen vectors, for instance:

νσx,y/τ = (1, 1, 3), νσy,z/τ = (3, 1, 1) and νσx,z/τ = (1, 3, 1).

With these vectors, we have:

(1, 1, 3) + (1, 3, 1) + (1, 1, 3) = (5, 5, 5) ∈ L(τ)

and they are relative primitive generators.
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