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...she took her hand and raised her
brush. For a moment it stayed
trembling in a painful but exciting
ecstacy in the air. Where to begin? —
that was the question at what point
to make the first mark. One line
placed on the canvas committed her
to innumerable risks, to frequent and
irrevocable decisions. All that in idea
seemed simple became in practice
immediately complex; as the waves
shape themselves symmetrically
from the cliff top, but to the
swimmer among them are divided by
streep gulfs, and foaming crests. Still
the risk must run; the mark made.

V. Woolf, To the lighthouse.

In this document, 𝑘 will always be an algebraically closed field of characteristic zero.

1. Introduction.

In the middle of the nineties, Mikhalkin found a way to reduce the question of counting (certain) holomorphic
curves in the projective plane to counting tropical curves (i.e. certain types of graphs). If Σ is a fan in a real
vector space of dimension 2 such that the toric variety 𝑋Σ is smooth, if Δ ∈ H2(𝑋Σ,ℤ) is a degree 1 and if
(𝑝1,… , 𝑝|Δ|−1) ∈ 𝑋

|Δ|−1

Σ are in general position, we consider

𝑁
0,hol
Δ,Σ ∶=

|
|
|

{

𝑓 ∈ M 0,|Δ|−1(𝑋Σ,Δ)|| 𝑓 ∶ (𝐶, 𝑥1,… , 𝑥|Δ|−1) → 𝑋Σ torically transverse, 𝑓 (𝑥𝑖) = 𝑝𝑖

}
|
|
|

then, his curve counting formula can be formulated as follows:

Theorem (1.0.1.) (Mikhalkin’s curve counting formula.) — If Σ is a complete fan in a real vector space of
dimension 2 whose associated toric variety 𝑋Σ is smooth, then the number 𝑁 0,hol

Δ,Σ is finite and we have the equality

1If the toric variety 𝑋Σ is smooth, then 𝐻2(𝑋Σ,ℤ) ≅ 𝑇Σ. This tells us that, in that case, we can link the degree of a tropical curve
to a homology class, i.e. something that has to do with curve counting.
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𝑁
0,trop

Δ,Σ = 𝑁
0,hol
Δ,Σ

where 𝑁 0,trop

Δ,Σ is (up to the Mikhalkin multiplicity) the number of genus zero tropical curves in 𝑋Σ passing through
|Δ| − 1 general points — that has been defined in the third talk.

The strategy of the proof is to construct a degeneration of the toric variety 𝑋Σ which is in some sense adapted
to the general points 𝑃1,… , 𝑃|Δ|−1 ∈ 𝑀ℝ that we have chosen to define the number 𝑁 0,trop

Δ,Σ , in the sense that
the degeneration will be induced by a polyhedral decomposition of𝑀ℝ whose vertices are exactly the 𝑃𝑖’s. To
work on the central fiber of this degeneration, we will use logarithmic geometry (the central fiber will be a
log stable curve) and the nearby fiber will be an ordinary stable curve.
So far, we have seen:

• how to associate a paramet(e)rized tropical curve to a torically transverse pre-log curve via the graph
construction (talk 2).

• how to associateMult(ℎ) torically transverse marked log curves to a marked tropical curve ℎ (talk 3).

In this talk, we will see:

• how to associate a family of log curves (whose central fiber is a torically transverse pre-log curve) to a
family of rational curves.

• how to associate a (formal) family of marked rational curves to a torically transverse log curve of genus
zero.

2. From the classical world to the logarithmic world.

Let us introduce some terminology.

Definition (2.0.1.) — Let Σ be a fan in a real vector space 𝑀ℝ.
We say that a finite polyhedral decomposition P of 𝑀ℝ is a degeneration of Σ if it satisfies the two following
conditions:

1. All the cells of P have at least one vertex.

2. All the cones of Σ are recession cones of cell(s) of P .

We say that the degeneration is rational if in addition, all the cells of P have faces with rational slopes and
rational vertices.

Remark. — Since the polyhedral decomposition is finite, a rational degeneration of Σ can be supposed to
be integral, changing the lattice 𝑀 by the (bigger) lattice 𝑀[ 1

𝑑
] where 𝑑 is the lcm of all the denominators

appearing in the coordinates of the vertices and the slopes.

For convenience, we recall how a degeneration P of a fan Σ induces a one-parameter degeneration — usually
called a Mumford degeneration — of the toric variety 𝑋Σ. Let us consider

�̃� ∶= 𝑀 ⊕ ℤ

and �̃� the dual lattice of �̃� .

2.0.2. — For all cell 𝜎 of P , we consider the cone over it
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𝐶(𝜎) ∶= {(𝑟𝑚, 𝑟) ∈ �̃�ℝ ∣ 𝑟 ≥ 0 and 𝑚 ∈ 𝜎}.

The collection of the 𝐶(𝜎)’s for 𝜎 a cell of P form a fan that we denote by ΣP . Now, since

𝐶(𝜎) ∩ (𝑀ℝ ⊕ {0}) = Recc(𝜎)

for all cell 𝜎 of P , we deduce that Σ can be recovered from ΣP as follows:

Σ = {𝜏 ∈ ΣP ∣ 𝜏 ⊆ (𝑀ℝ ⊕ {0})}.

This gives some geometric justification to our terminology: the toric variety 𝑋ΣP
comes with a morphism

𝜋 ∶ 𝑋ΣP
⟶ 𝔸1

𝑘

induced on the algebras by the monomial 𝑧(0𝑁 ,1). In particular, 𝜋−1(0) is the union of the toric divisors on
which this monomial vanishes, which are exactly those corresponding to cones 𝐶(𝑣) where 𝑣 is a vertex of
P . Now, 𝑋ΣP

⧵ 𝜋−1(0) corresponds to the toric variety 𝑋Σ where Σ is seen as a fan in �̃�ℝ. As a consequence:

𝑋ΣP
⧵ 𝜋−1(0) ≅ 𝑋Σ × 𝔾m,𝑘

which shows that 𝜋 ∶ 𝑋ΣP
→ 𝔸1

𝑘 is indeed a one-parameter degeneration of 𝑋Σ.

In that section, we start with a one parameter degeneration 𝜋 ∶ 𝑋 → 𝔸1
𝑘 of the toric variety 𝑋Σ coming from

a rational degeneration P of Σ.
Let us now formulate the theorem ([Gro11, Theorem 4.24.]) we are going to prove in this section.

Theorem (2.0.3.) — Let us consider the following data:

• a one-parameter degeneration 𝜋 ∶ 𝑋 → 𝔸1
𝑘 induced by a rational degeneration P of Σ.

• a discrete valuation ring 𝑅 with residue field 𝑘 and whose fraction field will be denoted by 𝐾 .

• a dominant morphism 𝜓 ∶ Spec(𝑅) → 𝔸1
𝑘 mapping the closed point 0 of Spec(𝑅) to the origin.

• a torically transverse stable map 𝑓 ∗ ∶ (𝐶∗, 𝑥∗1 ,… , 𝑥∗𝓁 ) → 𝑋 ⧵ 𝑋0 such that the square

(𝐶∗, 𝑥∗1 ,… , 𝑥∗𝓁 ) 𝑋 ⧵ 𝑋0

Spec(𝐾) 𝔾m,𝑘

𝜋 |𝑋⧵𝑋0

𝑓 ∗

𝜓

(1)

is commutative.

Then, we have the following conclusions:

1. Possibly after making a finite base change 𝑡 ∈ 𝔸1
𝑘 ↦ 𝑡𝑒 ∈ 𝔸1

𝑘 and replacing 𝑅 with 𝑆 ∶= 𝑅[𝑡]/(𝑡𝑑 − 𝜛)

where 𝜛 is a uniformizing element of 𝑅, there exists a refinement P̃ of P with integral vertices defining
a toric blow-up �̃� of 𝑋 such that the commutative square (1) extends to a commutative square

(𝐶, 𝑥1,… , 𝑥𝓁) �̃�

Spec(𝑆) 𝔸1
𝑘

𝜋

𝑓

𝜓

(2)

where the restriction of 𝑓 to the fiber over the closed point of Spec(𝑆) is a torically transverse pre-log curve
and if we write 𝔸1

𝑘 ∶= Spec(𝑘[𝑧]), then 𝜓∗(𝑧) is a uniformizing element of 𝑆.
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2. Moreover, the diagram (2) induces a diagram of logarithmic schemes

(𝐶†, 𝑥1,… , 𝑥𝓁) �̃�†

Spec(𝑆)† (𝔸1
𝑘)

†

𝜋†

𝑓 †

𝜓†

(3)

where all the logarithmic structures are divisorial: induced by 𝜕�̃� for �̃� , induced by {0} for Spec(𝑆), induced
by 𝑓 −1(𝜕�̃� ) ⊆ 𝐶 for 𝐶 and induced by {0} for 𝔸1

𝑘.

3. If, in addition, the following conditions are fulfilled:

• 𝐶0 has genus zero.

• the tropical curve associated to the pre-log curve 𝑓0 is simple

• 𝑓 −1

(
𝜕(�̃� − �̃�0))

is a disjoint union of sections of 𝐶 → Spec(𝑆)

then, 𝐶†

0 → Spec(𝑘)† is log smooth; in particular, 𝑓 †

0 yields a torically transverse log curve.

Remark. — The hypothesis of rationality of 𝐶0 and on the associated tropical curve allow us to deduce that
no singular point of 𝐶0 is mapped to a singular point of �̃�0 by 𝑓 . The third hypothesis allows us to prove that
at the points of 𝐶0 mapping into 𝜕�̃�0, the curve 𝐶0 is log smooth.

For time reasons, I will not give the full detailed proof, namely this lemma of toric geometry which will be
nevertheless useful for the proof.

Lemma (2.0.4.) — Let 𝑋 be a toric variety and 𝑊 ⊆ 𝑋 be a proper closed subset with no irreducible component
contained in 𝜕𝑋 . If codim(𝑊 ,𝑋 ) > 𝑐, then there exists a toric blow-up 𝜑 ∶ �̃� → 𝑋 such that the proper transform
of 𝑊 is disjoint from any toric stratum of dimension at most (possibly equal to) 𝑐.

We also state (without proof) a stable reduction theorem that will be useful — and that also comes into the
proof of the fact that the Deligne-Mumford stack M 𝑔,𝑛(𝑋, 𝛽) is proper.

Proposition (2.0.5.) (Stable reduction.) — Let 𝑆 be a smooth curve over 𝑘 and 𝑠 ∈ 𝑆.
If we have a family of stable maps 𝑓 ∶ (𝐶𝑈 , 𝜎1,… , 𝜎𝑛) → 𝑋 over 𝑈 ∶= 𝑆 ⧵ {𝑠} then, there exist an open
neighborhood 𝑉 of 𝑠, a finite morphism 𝜋 ∶ 𝑉 ′ → 𝑉 where 𝑉 ′ is a smooth curve and 𝑠′ ∈ 𝑉 ′ such that:

1. the morphism 𝜋 is étale on 𝑈 ′ ∶= 𝑉 ′ ⧵ {𝑠′}.

2. the pull-back family of stable maps 𝑓 ′ ∶= (𝐶𝑈 ×𝑈 𝑈
′, 𝜎′

1,… , 𝜎′
𝑛) → 𝑋 over 𝑈 ′ extends to a family of stable

maps over 𝑉 ′.

The proof of the theorem will be cut down in two steps: the proof of (1) and the proof of (2) and (3).

2.1. Extending the family over zero.

In this step of the proof, we will show (1) of the theorem 2.0.3 i.e., after a finite base change on the base
and a toric blow-up on the target, we can extend the family over the central fiber and for each irreducible
component 𝑍 of �̃�0, the map 𝑓 |𝑓 −1(𝑍) is a torically transverse stable map.
We will first prove that we can reduce to the case where 𝐶∗ is geometrically irreducible.
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2.1.1. — Let us consider the normalization 𝐶∗ of 𝐶∗. Since the nodal points of 𝐶∗ are closed points and the
normalization is a finite morphism, the (finintely many) points in the preimage of the singular locus of 𝐶∗ are
defined over a common finite extension of 𝐾 which is the fraction field of some 𝑅[𝑡]/(𝑡𝑑 − 𝜛) — that we will
still denote by 𝑅 and not 𝑆 for convenience — where 𝜛 is a uniformizing element of (the old) 𝑅.
Now, it is enough to prove that a toric blow-up �̃� exists for each marked curve (𝐷∗, 𝑥∗𝑖1 ,… , 𝑥∗𝑖𝓁 , 𝑦

∗
𝑗1
,… , 𝑦∗𝑗𝑚) de-

fined over𝐾 where𝐷∗ ⊆ 𝐶∗ is an irreducible component andwhere the 𝑥𝑖’s map to themarked points of𝐶∗ and
the 𝑦𝑖’s map to singular points of 𝐶∗. Indeed, it is then enough to glue together the (𝐷, 𝑥𝑖1 ,… , 𝑥𝑖𝓁 , 𝑦𝑗1 ,… , 𝑦𝑗𝑚) →

�̃� we obtained along the 𝑦𝑖’s the same way that 𝐶∗ is obtained from 𝐶∗.
Now, if we construct a refinement P̃ of P for every irreducible component of 𝐶∗, since 𝐶∗ has finitely many
irreducible components, we can find a common refinement of all the P̃ ’s which works. We a priori get some-
thing with vertices in 𝑀ℚ but we can making a finite base change 𝑡 ∈ 𝔸1

𝑘 ↦ 𝑡𝑒 ∈ 𝔸1
𝑘 for some 𝑒 ≥ 1 to clear

denominators and get integral vertices.

From now on, we suppose that 𝐶∗ is geometrically irreducible.

Let us denoted by 𝑊 the closure of the image of 𝑓 ∗ ∶ 𝐶∗ → 𝑋 ⧵ 𝑋0. Since 𝐶∗ is a curve, 𝑊 is a closed
subset of dimension at most 2. In addition, it must also have dimension at least one since the composition
𝜋 ◦ 𝑓 ∗ ∶ 𝐶∗ → 𝑋 ⧵ 𝑋0 → 𝔾m,𝑘 is dominant — since 𝜓 is and by commutativity of the square (1). We now treat
these two cases separately.

2.1.2. — If 𝑊 has dimension 1.
In that case, 𝑓 ∗ is constant on 𝐶∗ since it is a family of curves over a one-dimensional base and also because
𝐶∗ is geomtrically irreducible hence connected. We deduce from this that𝑊 is the closure of its generic point
𝑓 (𝐶∗). Since 𝑓 ∗ is torically transverse, 𝑊 is not contained in 𝜕𝑋 , so we can apply the toric geometry lemma
2.0.4 to 𝑊 — which has codimension two in 𝑋 since 𝑋 has dimension 3 —, we get a toric blow-up �̃� of 𝑋
such that the proper transform of 𝑊 is disjoint from any toric stratum of dimension 1 of 𝑋 . Moreover, we
can choose the toric blow-up such that �̃� ⧵ �̃�0 is isomorphic to 𝑋 ⧵ 𝑋0 since 𝑊 is disjoint from 𝜕(𝑋 ⧵ 𝑋0)

— otherwise, we would contradict the fact that 𝑓 ∗ is torically transverse. Therefore, we can assume that P̃
comes from a refinement of P .
Now, since 𝑓 ∗ is constant, it factors 2 through Spec(𝐾)

𝐶∗ 𝑊

Spec(𝐾)

𝑓 ∗

𝑔

and using the stable reduction theorem (proposition 2.0.5) with 𝑆 ∶= Spec(𝑅) and 𝑠 = 0, we obtain a family
(𝐶, 𝑥1,… , 𝑥𝑛) → Spec(𝑅) of stable curves after (possibly) a finite base change on Spec(𝑅). Since our degener-
ation 𝜋 is assumed to be proper, its restriction 𝜋 |𝑊 ∶ 𝑊 → 𝔸1

𝑘 to the closed subscheme 𝑊 of 𝑋 is proper as
well; therefore, the valuative criterion for properness yields a unique morphism Spec(𝑅) → 𝑊 fitting in the
following commutative square:

Spec(𝑅) 𝑊

Spec(𝐾) 𝔸1
𝑘𝜓|Spec(𝐾)

𝜋 |𝑊
𝑔

The map 𝑓 ∶ 𝐶 → �̃� is now just constructed as the composition

𝐶 → Spec(𝑅) → 𝑊 ↪ �̃� .
2On the diagrams, the dashed arrows do not mean that the map is rational but it is simply a way to highlight them.
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Since 𝑊 is disjoint from any one dimensional toric stratum of �̃� , 𝑓 is a stable torically transverse map over
any irreducible component of �̃�0 intersecting𝑊 and the other irreducible do not contribute because they are
disjoint from the schematic image of 𝑓 .

We now pass to the case where𝑊 is of dimension 2. In that case, things become more difficult because𝑊 has
codimension 1 in 𝑋 so the toric geometry lemma only tells us that the proper transform of𝑊 will be disjoint
from the zero-dimensional toric strata of𝑋 but for toric transversality, we also need that𝑊 is disjoint from all
toric strata of 𝑋 with codimension strictly greater than one i.e., of dimension zero (already controlled by the
toric geometry lemma) and dimension one; in fact, in the next paragraph, we will construct our toric blow-up
�̃� of 𝑋 such that it is true.

2.1.3. — If 𝑊 has dimension 2.
Since 𝑓 ∗ is torically transverse, no irreducible component of𝑊 is mapped into 𝜕𝑋 , therefore, the toric geom-
etry lemma 2.0.4 guarantees the existence of a toric blow-up �̃� of 𝑋 such that the proper transform of 𝑊 in
�̃� is disjoint from any zero-dimensional toric stratum of 𝑋 . As in the previous case, this procedure can be
done preserving the complement of the central fiber and we can assume that it comes from a refinement P̃
of P .
Let 𝜏 be an edge of P̃ and let us denote by 𝐷𝜏 the corresponding one-dimensional stratum of �̃� and by
𝑋𝜏 ∶= 𝑋𝐶(𝜏) the corresponding affine subset of �̃� . Then, we have

𝑋𝜏 ≅ 𝔾m,𝑘 × 𝑉𝑒

where 𝑉𝑒 ∶= Spec(𝑘[𝑥, 𝑦, 𝑡]/(𝑥𝑦 − 𝑡𝑒)) where 𝑒 is the affine length of 𝜏. Now, let us consider

𝐶∗
𝜏 ∶= 𝑓 −1(𝑋𝜏) ⊆ 𝐶

∗

and consider the composition

ℎ∗ ∶ 𝐶∗
𝜏 𝑋𝜏 𝑉𝑒

𝑓 ∗ pr2 .

Now, since ℎ∗ is locally of finite type, there exists an open subset 𝑈 ⊆ 𝐶∗
𝜏 — possibly empty — on which ℎ∗

is étale; moreover, if ℎ∗ is dominant then, it is non-empty 3. Let 𝑍𝜏 ⊆ 𝑉𝑒 be the smallest closed subscheme
containing the image of 𝐶∗

𝜏 ⧵ 𝑈 and the images of the marked points of 𝐶∗
𝜏 . Since 𝑓 ∗ is torically transverse,

ℎ∗ is and the image of 𝐶∗
𝜏 is therefore disjoint from 𝜕𝑉𝑒 (which is the divisor with equation 𝑡 = 0 in 𝑉𝑒); it

implies that no irreducible component of 𝑍𝜏 is contained in 𝜕𝑉𝑒. Hence, by the toric geometry lemma 2.0.4,
there exists a toric blow-up 𝑉𝑒 of 𝑉𝑒 such that the proper transform of 𝑍𝜏 is disjoint from the zero-dimensional
stratum of 𝑉𝑒. In polyhedral terms, this toric blow-up of 𝑉𝑒 is given by a subdivision of the edge 𝜏, so we can
choose a refinement P̃ of P inducing this subdivision on the cell 𝜏.
We do this operation for every edge 𝜏 of P̃ whose corresponding toric stratum intersect𝑊 — this terminates
because P has only finitely many cells. This gives us our sought-for toric blow-up.
Now, we apply the stable reduction theorem 2.0.5 to 𝑓 ∗ ∶ (𝐶∗, 𝑥∗1 ,… , 𝑥∗𝓁 ) → �̃� over Spec(𝐾) and we get a
stable map 𝑓 ∶ (𝐶, 𝑥1,… , 𝑥𝓁) → �̃� over Spec(𝑅) after possibly a finite base change. Note that the image of 𝑓 is
contained in the proper transform of𝑊 inside �̃� which, by construction, avoids zero-dimensional toric strata
of �̃� . In particular, no irreducible component of 𝑓 (𝐶0) can be contained in a one-dimensional toric stratum
of �̃� .

To prove that 𝑓 is torically transverse, we now have to prove that what we have added (the central fiber) does
not destroy the toric transversality of 𝑓 ∗: we need to make us sure that 𝑓 does not contract an irreducible
component of 𝐶0 to a point in a one-dimensional stratum of �̃� ; this is what we prove in the last paragraph of
this section.

3Probably since in that case the target is integral.
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2.1.4. — Recall that we still suppose that 𝑊 of 𝑓 ∗ is two-dimensional. We proceed by contradiction: let us
assume that there exists an irreducible component of 𝐶0 contracted to a point in a one-dimensional toric
stratum of �̃� defined by an edge 𝜏 of P̃ . As before, we can consider 𝑋𝜏 , 𝐶𝜏 ∶= 𝑓 −1(𝑋𝜏) ⊆ 𝐶 and we have
again 𝑋𝜏 ≅ 𝔾m,𝑘 × 𝑉𝑒 for some 𝑒 ≥ 1. We can also construct, as before, 𝑍𝜏 which is disjoint from the singular
point of 𝑉𝑒.
If ℎ∗ were not dominant, we would be done because 𝑍𝜏 would contain the image of 𝐶∗

𝜏 , hence the image of
�̃� ∩𝑋𝜏 where �̃� is the proper transform of 𝑊 in �̃� . This would in particular imply that �̃� would be disjoint
from the one-dimensional stratum of �̃� .

We can suppose that ℎ ∶ 𝐶∗
𝜏 → 𝑉𝑒 is dominant.

Let now 𝑍𝜏 ⊆ 𝑋𝜏 be the preimage of 𝑍𝜏 under the projection 𝑋𝜏 → 𝑉𝑒 and put 𝑍 ′
𝜏 ∶= 𝑓 −1(𝑍𝜏) ⊆ 𝐶∗

𝜏 . The
morphism 𝑓 ∶ 𝐶𝜏 ⧵ 𝑍

′
𝜏 → �̃� factors as

𝐶𝜏 𝑋𝜏

𝐶𝜏 ⧵ 𝑍
′
𝜏 𝑋𝜏 ⧵ 𝑍𝜏

Spec(𝑅) ×𝔸1
𝑘
𝑋𝜏 ⧵ 𝑍𝜏

𝑓 |𝐶𝜏

𝑓 |
𝐶𝜏⧵𝑍

′
𝜏

𝑓 ′

where 𝑓 ′ is proper and where the morphisms to 𝔸1
𝑘 are respectively 𝜓 and the restriction of 𝜋. Since 𝑓 ′ is

proper, we know it is finite over the complement of a finite subset 𝑇 ⊆ Spec(𝑅) ×𝔸1
𝑘
𝑋𝜏 ⧵𝑍𝜏 on which the fibers

of 𝑓 are not finite. Let us now consider the Stein factorization of 𝑓 ′

𝐶𝜏 ⧵ 𝑍
′
𝜏 Spec(𝑅) ×𝔸1

𝑘
𝑋𝜏 ⧵ 𝑍𝜏

𝑌𝜏

𝑓 ′

𝑓 ′′ 𝑔

which means that 𝑓 ′′ is proper with connected fibers and 𝑔 is finite. Since 𝑓 ′ is finite over the complement of
𝑇 , the unicity in Stein factorization implies that 𝑓 ′′ is an isomorphism away from 𝑓 ′−1(𝑇 ). The map 𝑌𝜏 → �̃�

therefore glues to 𝑓 |𝐶⧵𝑓 −1(𝑇 ) to give a map 𝑔 ′ ∶ 𝐶′ → �̃� . This map is marked as well since we have the
compositions 𝑥𝑖 ∶ Spec(𝑅) → 𝐶 → 𝐶′ and we glue outside 𝑍 ′

𝜏 which contains the marked points. We now get
our contradiction:

the map 𝑔 ′ ∶ (𝐶′, 𝑥1,… , 𝑥𝓁) → �̃� is stable.

Indeed, it contradicts the fact that 𝑓 has finite automorphism group since we can do anything on 𝑓 ′−1(𝑇 )

(infinite fibers of 𝑓 ′); therefore, 𝑇 must be empty, which means that 𝑓 ′ must be finite and in that case, 𝑓
cannot contract an irreducible component of 𝐶0 to a point because the 𝑓 ′ has finite fibers which implies that
𝑓 has finite fibers.

Now, we would have to prove that 𝑔 ′ ∶ (𝐶′, 𝑥1,… , 𝑥𝓁) → �̃� is a stable map, see the second to last paragraph
of [Gro11, p. 163].
Before we move to the second part of the proof, we conclude the proof of the first point of the theorem 2.0.3
by proving that the pullback of the coordinate of 𝔸1

𝑘 to Spec(𝑅) is a uniformizing element in 𝑅.
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2.1.5. — Let us consider the map 𝜓 ∶ Spec(𝑅) → 𝔸1
𝑘 in the diagram (2) we have just constructed. Let us

denote by 𝑧 the coordinate on 𝔸1
𝑘 and suppose that 𝜓∗(𝑧) ∈ m𝑑 ⧵ m𝑑−1 for 𝑑 ≥ 1; in particular, 𝜓∗(𝑧) = 𝜛𝑑

where 𝜛 is a uniformizing element in 𝑅. If 𝑑 = 1, we are done. If 𝑑 > 1, we make a degree 𝑑 base change
𝑡 ∈ 𝔸1

𝑘 ↦ 𝑡𝑑 ∈ 𝔸1
𝑘 and we replace 𝑅 by

Spec(𝑅) ×𝔸1
𝑘
𝔸1

𝑘 = Spec
(
𝑅[𝑡]/(𝑡𝑑 − 𝜛𝑑)

)

which has 𝑑 irreducible components, each of them being isomorphic to Spec(𝑅); we pick one of them and we
have 𝜓∗(𝑧) = 𝜛.

2.2. The restriction to the central fiber is a torically transverse pre-log curve.

Now that we have filled our diagram (1) to a diagram (2), we would like to prove that this procedure was well
done and that the central fiber we obtain is logarithmically nice — in that context, it means that the restriction
of our stable map 𝑓 to the central fiber is a torically transverse pre-log curve 4.

2.2.1. — Let 𝑥 ∈ 𝐶0 be a closed point mapping to a singular point of �̃�0. The (local) ring homomorphism 𝑓 ♯

induces a homomorphism of complete local 𝑘J𝑡K-algebras

𝑓 ♯𝑥 ∶ Ô�̃� ,𝑓 (𝑥) ⟶ Ô𝐶,𝑥

Now, since 𝑓 is stable, 𝑥 is either a smooth point of 𝐶0 or either a double point of 𝐶0. In fact, because of
[Gro11, Proposition 4.9.], the first case cannot happen. Indeed if 𝐶 is smooth over 𝑅 at 𝑥 , the logarithmic
structure on 𝐶 induced by 𝑓 −1(𝜕�̃� ) is log smooth at 𝑥 . Restricting this logarithmic structure to 𝐶0 yields
a curve 𝐶†

0 → Spec(𝑘)† which is log smooth at 𝑥 and a morphism of logarithmic schemes 𝐶†

0 → �̃�
†

0 over
Spec(𝑘)†. Now, since 𝑓 (𝑥) lies in the singular locus of �̃�0, [Gro11, Proposition 4.9.] implies that 𝑥 must be a
double point of 𝐶0.
Therefore, 𝑥 is a double point of 𝐶0, thus

Ô𝐶0,𝑥 = 𝑘J𝑥, 𝑦K/(𝑥𝑦).

This implies that:

Ô𝐶,𝑥 = 𝑘J𝑥, 𝑦, 𝑡K/(𝑥𝑦 − 𝑓 𝑡𝑒)

for some 𝑒 ≥ 1 and some 𝑓 ∈ 𝑘J𝑥, 𝑦, 𝑡K. In fact, we have

𝑘J𝑥, 𝑦, 𝑡K/(𝑥𝑦 − 𝑓 𝑡𝑒) ≅ 𝑘J𝑥, 𝑦, 𝑡K/(𝑥𝑦 − 𝜆𝑡𝑒)

as 𝑘J𝑡K-algebras, where 𝜆 ∈ {0, 1}. We now distinguish two cases:

• If 𝜆 is zero, then locally around 𝑥 for the étale topology, 𝐶 is reducible with two smooth components;
we can then restrict to one of them and argue as before using [Gro11, Proposition 4.9.] to get a contra-
diction.

• If 𝜆 is one, then endowing 𝐶 with the logarithmic structure defined by 𝑓 −1(𝜕�̃� ) ⊆ 𝐶, we have that 𝐶† →

Spec(𝑅)† is log smooth around 𝑥 , which exactly means that 𝑓0 (or rather 𝑓 †

0 ) is a torically transverse
pre-log curve.

This terminates the proof of the second step. We don’t know yet that the curve 𝑓0 is log smooth, we just have
proved it around points of 𝐶0 mapping via 𝑓 to singular points of �̃�0.

4The term pre-log just means that the curve is not necessarily log smooth.
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2.3. Under some hypothesis, it is even log smooth.

We nowwant to prove that under some conditions, the torically transverse pre-log curve is in fact a log curve,
which just means that it is in addition log smooth. In the previous subsection, we have already considered
points mapping via 𝑓 to singular points of �̃�0, we have two other types of points: the points mapping to 𝜕�̃�0

and the others. Note that these three cases match with Kato’s theorem [Gro11, Example 3.26.] about structure
of log smooth curves: smooth, simple normal crossing or image of a section.
We treat the two cases in order.

2.3.1. — If 𝑥 ∈ 𝐶0 is a smooth pointmapping to 𝜕�̃�0⧵Sing(�̃�0), then the hypothesis ensuring that 𝑓 −1

(
𝜕(�̃� ⧵ �̃�0))

is a disjoint union of sections of 𝐶 → Spec(𝑅) implies that 𝐶†

0 → Spec(𝑘)† is log smooth at 𝑥 since it corre-
sponds to the second case in Kato’s structure theorem.

2.3.2. — If 𝑥 ∈ 𝐶0 is a smooth point mapping to a smooth point of �̃�0 such that 𝑓 (𝑥) ∉ 𝜕�̃�0, then 𝐶
†

0 →

Spec(𝑘)† is log smooth at 𝑥 since outside from the divisor 𝑓 −1(𝜕�̃�0) defining the logarithmic structure on 𝑋 ,
the morphism 𝐶0 → Spec(𝑘) is strict; hence, since 𝑥 is a smooth point of 𝐶0, it is also log smooth.

We now rule out the case of the singular points (i.e. nodal) mapping into the smooth locus of 𝑋0 thanks to
the hypothesis on the induced tropical curve.

2.3.3. — Since the tropical curve ℎ ∶ Γ → 𝑀ℝ associated to the pre-log curve 𝑓0 is simple, we deduce that for
any vertex 𝑣 of P such that ℎ−1(𝑣) ≠ ∅, two cases are possible:

• If ℎ−1(𝑣) is a single trivalent vertex of Γ, then since 𝐶0 is rational, 𝑓 −1(𝐷𝑣) is rational as well and is
thus a single line.

• If ℎ−1(𝑣) is a finite number of points in the interior of edges of Γ, then 𝑓 −1(𝐷𝑣) is a disjoint union
of bivalent lines.

In the two cases, 𝐶0 does not have double points which are not mapped into the singular locus of 𝑋0 by 𝑓 .

Now, since 𝐶0 is stable, this implies that all the possible cases have been treated; therefore, the morphism of
log schemes 𝐶†

0 → Spec(𝑘)† is log smooth.

3. From the logarithmic world to the classical world.

In this section, we go the other way around: we start with points 𝑃1,… , 𝑃𝑠 of the lattice𝑀 (where 𝑠 ∶= |Δ|−1),
with a good lattice polyhedral decomposition P of 𝑀ℝ and general points 𝑄1,… , 𝑄𝑠 in 𝔾(�̃�). These data
induces for all 1 ≤ 𝑖 ≤ 𝑠, a section 𝜎𝑖 ∶ 𝔸1

𝑘 → 𝑋 and a point 𝑞𝑖 ∈ 𝑋0 such that 𝑞𝑖 ∶= 𝜎𝑖(0).
We want to prove the following theorem:

Theorem (3.0.1.) — Let 𝑓0 ∶ (𝐶
†

0 , 𝑥1,… , 𝑥𝑠) → 𝑋
†

0 be a torically transverse log curve of genus zero with 𝑓 (𝑥𝑖) = 𝑞𝑖

for all 1 ≤ 𝑖 ≤ 𝑠 and with associated tropical curve ℎ ∶ Γ → 𝑀ℝ. If ℎ is simple then, there exists a unique marked
rational curve (𝐶∞, 𝑥

∞
1 ,… , 𝑥∞𝑠 ) over Spec(𝑘J𝑡K) sitting in a commutative square

(𝐶∞, 𝑥
∞
1 ,… , 𝑥∞𝑠 ) 𝑋

Spec(𝑘J𝑡K) 𝔸1
𝑘𝜓∞

𝑓∞

𝜋 (4)

and satisfying the following three conditions:
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1. The morphism 𝜓∞ is induced by the inclusion 𝑘[𝑡] ↪ 𝑘J𝑡K.

2. For all 𝑖 ∈ J1, 𝑠K, we have the equality 𝜎𝑖 ◦ 𝜓∞ = 𝑓∞ ◦ 𝑥∞𝑖 .

3. If 𝐶∞ is given the logarithmic structure induced by 𝑓 −1
∞ (𝜕𝑋 ) ⊆ 𝐶∞ and if Spec(𝑘J𝑡K) is given the logarithmic

structure pulled back from the one on 𝔸1
𝑘, then the induced morphism of logarithmic schemes

(𝐶
†

0 , 𝑥1,… , 𝑥𝑠) ⟶ 𝑋
†

0

over Spec(𝑘)† coincide with 𝑓0.

The proof of this theorem will be divided in two main parts: in the first one, we show that the logarithmic
deformations of 𝑓0 ∶ 𝐶†

0 → 𝑋† are unobstructed (this is easy since 𝐶0 is a curve but one has to see that we can
extend the marked points and that they indeed satisfy the second item of the theorem) and we can then lift it
to any order; the second part if the proof starts with the formal logarithmic deformation of 𝑓0 (which will be
the candidate for 𝐶∞) and shows that it is a marked rational curve and that it is the unique one satisfying the
three conditions of the theorem.
For convenience (and since it was probably not introduced before), we recall a result of logarthmic deforma-
tion theory that is used in the proof — see [Gro11, Theorem 3.43.].

Proposition (3.0.2.) — Let 𝑓 †

0 ∶ (𝐶
†

0 , 𝑥1,… , 𝑥𝑠) → 𝑋
†

0 ↪ 𝑋† be as above. If the morphism

(𝑓0)∗ ∶ T𝐶0/𝑘(log) ↪ 𝑓 ∗
0 T𝑋/𝔸1

𝑘
(log)

is injective and if 𝑓0 ◦ 𝑥𝑖 = 𝜎𝑖 ◦ 𝜄 for all 1 ≤ 𝑖 ≤ 𝑠 where 𝜄 ∶ Spec(𝑘) ↪ 𝔸1
𝑘, then there is a natural map

Ξ ∶ H
0
(𝐶0,N𝑓0,(𝑥1,…,𝑥𝑠)) ⟶

𝑠

∏

𝑖=1

T𝑋/𝔸1
𝑘
(log)𝜎𝑖(0),

it lifts a section of N𝑓0,(𝑥1,…,𝑥𝑠) locally around 𝑥𝑖 to a section of 𝑓 ∗
0 T𝑋/𝔸1

𝑘
(log) which is then evaluated at 𝑥𝑖 to get

an element of 𝑓 ∗
0 T𝑋/𝔸1

𝑘
(log)𝜎𝑖(0). Then, given a lift 𝑓𝑘−1 of 𝑓0 to (𝑘 − 1)-th order (compatible with the marking),

there exists a lift of 𝑓0 to the 𝑘-th order (compatible with the marking) if Ξ is surjective. Moreover, if a lift exists,
the set of such lifts is a torsor under Ker(Ξ).

In fact, one can prove that the map Ξ in the proposition 3.0.2 is in fact an isomorphism — see [Gro11, pp.
165–168]. Note that the proposition implies that lifts of 𝑓 †

0 exist but there are unique since Ξ is also injective!
Now, we finish the proof of the theorem 3.0.1.

3.0.3. — From the previous step, we get a commutative square

(𝐶∞, 𝑥
∞
1 ,… , 𝑥∞𝑚 ) 𝑋

Spec(𝑘J𝑡K) 𝔸1
𝑘

𝑓∞

𝜋

𝜓∞

where 𝑓∞ is a stable map. The log smoothness of 𝐶†
∞ → Spec(𝑘J𝑡K)† can be checked locally for the étale

topology around double points and marked points of 𝐶∞.

• If 𝑥 ∈ 𝐶∞ is a double point, we have already observed that as 𝑘J𝑡K-algebras, we had an isomorphism:

Ô𝐶∞,𝑥 ≅ 𝑘J𝑥, 𝑦, 𝑡K/(𝑥𝑦 − 𝜆𝑡𝑒)
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for some 𝑒 ≥ 1 and 𝜆 ∈ {0, 1}. By Kato’s classification of log smooth and integral families of curves
[Gro11, Example 3.26.], we have that 𝜆 = 1 and 𝑒 is determined by the requirement M 𝐶0,𝑥 = 𝑆𝑒. There-
fore, the morphism of logarithmic schemes 𝐶†

∞ → Spec(𝑘J𝑡K)† is log smooth at 𝑥 .

• If 𝑥 ∈ 𝐶∞ is a marked point, since 𝑓 †

𝑘
∶ 𝐶

†

𝑘
→ Spec(𝑘[𝑡]/(𝑡𝑘+1))† is log smooth, we have that

𝑓 −1
𝑘 (𝜕(𝑋 ⧵ 𝑋0)) is a disjoint union of sections of𝐶 → Spec(𝑘J𝑡K) hence it is also the case for 𝑓 −1

∞ (𝜕(𝑋 ⧵ 𝑋0)),
we deduce that 𝑓 †

∞ is log smooth at 𝑥 .

Now, if we restrict this logarihtmic structure to 𝐶0, we get another torically transverse log curve (𝐶′
0)

† → 𝑋
†

0

over Spec(𝑘)†. Since the logarithmic structure on 𝐶0 is uniquely determined away from the nodes and since
at the nodes, they are determined according to Kato’s description, we deduce that these two logarihtmic
structure in fact coincide. This proves the existence in the third item of the theorem 3.0.1.

Let us now finish the proof by proving the unicity.

3.0.4. — If we have 𝑓∞ ∶ 𝐶∞ → 𝑋 as in the theorem 3.0.1, we obtain a commutative square

𝐶†
∞ 𝑋†

Spec(𝑘J𝑡K)† (𝔸1
𝑘)

†

𝑓
†
∞

𝜋†

𝜓
†
∞

where the logarithmic structure on 𝐶∞ is induced by 𝑓 −1
∞ (𝜕𝑋 ) and the logarithmic structure on Spec(𝑘J𝑡K) is

pulled-back from the divisorial one on 𝔸1
𝑘. By assumption, the induced logarithmic structure on the central

fiber 𝐶0 coincide with the one we started with — associated with 𝑓0. This implies that 𝐶†
∞ is log smooth over

Spec(𝑘J𝑡K)† and by unicity of the log smooth lifting in deformation theory at each order, this proves that 𝐶†
∞

is uniquely determined.

Remark. — In fact, the proof of unicity above is not entirely correct: it just proves that the log curve 𝐶†
∞

is unique but it does not say anything about the unicity of the marking. In fact, since the map Ξ of the
proposition 3.0.2 is injective, it proves the unicity of the log marked curve.

4. The coda of the proof.

In this section, we want to prove that

𝑁
0,trop

Δ,Σ = 𝑁
0,hol
Δ,Σ .

We have fixed points 𝑃1,… , 𝑃𝑠 ∈ 𝑀ℚ such that all tropical rational curves passing through these points are
simple; in fact, we have rescaled the lattice 𝑀 such that 𝑃𝑖 ∈ 𝑀 for all 𝑖 ∈ J1, 𝑠K. After having chosen a good
polyhedral decomposition P of 𝑀ℝ, we can rescale the lattice 𝑀 again in such a way that for every tropical
rational curve ℎ ∶ (Γ, 𝑥1,… , 𝑥𝑠) → 𝑀ℝ with ℎ(𝑥𝑖) = 𝑃𝑖 for all 𝑖 ∈ J1, 𝑠K, the image of each edge of Γ̃ has
affine length divisible by its weight. Now, [Gro11, Theorem 4.14.] tells us that there exist Mult(ℎ) torically
transverse marked log curves passing though the 𝑃𝑖’s whose associated tropical curve is ℎ.
After choosing, for all 𝑖 ∈ J1, 𝑠K, a section 𝜎𝑖 ∶ 𝔸1

𝑘 → 𝑋 to 𝜋 and considering 𝑞𝑖 ∶= 𝜎𝑖(0) ∈ 𝑋0, [Gro11,
Theorem 4.14.] implies that we get 𝑁 0,trop

Δ,Σ torically transverse marked log rational curves

𝑓 ∶ (𝐶†, 𝑥1,… , 𝑥𝑠) ⟶ 𝑋
†

0

with 𝑓 (𝑥𝑖) = 𝑞𝑖 for all 1 ≤ 𝑖 ≤ 𝑠. The set of such curves will be denoted by
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M 0,log

Δ,Σ (𝜎1,… , 𝜎𝑠).

On the other hand, if 𝜅 stands for the field of Puiseux series over 𝑘 (i.e., the algebraic closure of 𝑘((𝑡))), the
inclusion 𝑘[𝑡] ↪ 𝑘((𝑡)) ↪ 𝜅 induces a morphism of 𝑘-schemes Spec(𝜅) → 𝔸1

𝑘 and we have:

𝑋 ×𝔸1
𝑘
Spec(𝜅) ≅

(
𝑋 ×𝔸1

𝑘
Spec(𝑘)

)
×𝑘 Spec(𝜅) ≅ 𝑋Σ ×𝑘 Spec(𝜅).

Moreover, each section 𝜎𝑖 defines a 𝜅-valued point of 𝑋Σ ×𝑘 Spec(𝜅) that we still denote by 𝜎𝑖.
We now want to show the following proposition:

Proposition (4.0.1.) — There is a bijection between

• the set M 0,log

Δ,Σ (𝜎1,… , 𝜎𝑠).

• the set M 0,hol
Δ,Σ (𝜎1,… , 𝜎𝑠) of torically transverse rational curves

𝑓 ∶ (𝐶, 𝑥1,… , 𝑥𝑠) → 𝑋Σ ×𝑘 𝜅

over 𝜅 with 𝑓 (𝑥𝑖) = 𝜎𝑖 for all 1 ≤ 𝑖 ≤ 𝑠.

Remark. — Since the first set has cardinality𝑁 0,trop

Δ,Σ , it will prove Mikhalkin’s curve counting formula because
the statement does not depend on a specific algebraically closed field of characteristic zero — since 𝑁 0,hol

Δ,Σ does
not.

Proof. — Let us start with a torically transverse log curve 𝑓 ∶ (𝐶
†

0 , 𝑥
0
1 ,… , 𝑥0𝑠 ) → 𝑋 in M 0,log

Δ,Σ (𝜎1,… , 𝜎𝑠). By the
theorem 3.0.1, this gives us a (formal) curve

𝑓∞ ∶ (𝐶∞, 𝑥
∞
1 ,… , 𝑥∞𝑠 ) → 𝑋

over 𝑘J𝑡K. The inclusion 𝑘J𝑡K ⊆ 𝜅 induces a scheme morphism Spec(𝜅) → Spec(𝑘J𝑡K) and we thus get a curve

𝐶 ∶= 𝐶∞ ×𝑘J𝑡K Spec(𝜅)

over 𝜅 equipped with a morphism of 𝑘-schemes

𝑓 ∶ 𝐶 → 𝑋 ×𝔸1
𝑘
Spec(𝜅) ≅ 𝑋Σ ×𝑘 Spec(𝜅)

which maps the point 𝑥∞𝑖 to 𝜎𝑖 for all 1 ≤ 𝑖 ≤ 𝑠. In other words, 𝑓 ∈ M 0,hol
Δ,Σ (𝜎1,… , 𝜎𝑠).

Conversely, if 𝑓 ∈ M 0,hol
Δ,Σ (𝜎1,… , 𝜎𝑠), then the curve 𝐶 is defined over the field 𝑘(( 𝑑

√
𝑡)) for some 𝑑 ≥ 1 since

𝐶 is of finite type over 𝜅 and 𝜅 is the union of these fields. Now, we get a commutative square similar to (1)
with 𝑅 ∶= 𝑘J 𝑑

√
𝑡K and 𝐶∗ ∶= 𝐶.

Now, the theorem 2.0.3 (classical to log) implies that up to replacing 𝐾 by 𝑘(( 𝑑𝑒
√
𝑡)) for some 𝑒 ≥ 1, making a

finite base change𝔸1
𝑘 → 𝔸1

𝑘 and replacing 𝑋 by a toric blow-up corresponding to a subdivision of P , we get
a diagram similar to (2). Restricting the stable map 𝑓 to the central fiber yields a torically transverse pre-log
curve

𝑓0 ∶ (𝐶
†

0 , 𝑥
0
1 ,… , 𝑥0𝑠 ) → �̃�

†

0 .

The tropical curve ℎ ∶ (Γ, 𝑥1,… , 𝑥𝑠) → 𝑀ℝ associated to 𝑓0 passes through the 𝑃𝑖’s and since the latter were
chosen generically, ℎ must be simple and 𝑓0 is therefore log smooth by the third point in the theorem 2.0.3.
Now, this curve belongs to the 𝑁 0,trop

Δ,Σ such tropical curves; in particular, this log curve gives a unique family
which is already defined over 𝑘J𝑡K and this implies that 𝑑𝑒 = 1 and no finite base change is needed. In
particular, all the torically transverse log curves defined over 𝜅 are in fact defined over 𝑘((𝑡)). Therefore, we
have ℎ ∈ M 0,log

Δ,Σ (𝜎1,… , 𝜎𝑠). These two assignments are inverse one from another.
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She looked at the steps; they were
empty; she lookoed at her canvas; it
was blurred. With a sudden intensity,
as if she saw it clear for a second, she
drew a line there, in the centre. It
was done; it was finished. Yes, she
thought, laying down her brush in
extreme fatigue, I have had my
vision.

V. Woolf, To the lighthouse.
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