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So far we have encountered two key examples of semi-infinite variations of Hodge structure,
the A-model structure on Pn and the B-model structure on its “mirror” ((C∗)n,W0). In
this talk we will try to understand precisely what the statement “Mirror Symmetry for
Pn” means, in terms of the semi-infinite variations of Hodge structure that we have built
up on both sides.

First I will give a quick summary of some of the data we have constructed on the A-
and B-model sides, respectively.

A-model

• M̃A := (Cy1 ,OM̃A), where local sections are formal power series
∑
fi0i2...iny

i0
0 y

i2
2 . . . y

in
n ,

with fi0i2...in holomorphic.

• J = S−1 : EA = H∗(Pn,C) ⊗C OM̃A{ℏ} −→ HA = H∗(Pn,C) ⊗C OM̃A{ℏ, ℏ−1}
inclusion.

• sA0 = J(T0) = JPn ∈ EA the Givental J-function, a miniversal section for the A-model
semi-infinite variation of Hodge structure (meaning that J is determined completely
by JPn) (this section of HA is seen as a section of EA by identifying EA with its image
under J).

B-model

• M̃B := (Ct1 ,OM̃B), where local sections are formal power series
∑
fi0i2...int

i0
0 t

i2
2 . . . t

in
n ,

with fi0i2...in holomorphic.

• R the local system of C-vector spaces on M̃B × C∗
ℏ whose fibre over (t1, ℏ) is

Hn(π
−1(t1),Re(W |π−1(t1)/ℏ) << 0 ; C) (which always has dimension n + 1) (W the

universal unfolding of W0). R the associated locally free sheaf on M̃B × C∗
ℏ. R∨ its

dual.

• [Sections of R∨ are given by one-forms [fΩ], where Ω = dx1 . . . dxn/x1 . . . xn and f is
holomorphic with algebraic fibres, where the associated map R → OM̃B×C∗

ℏ
is given

by Ξ 7→
∫
Ξ
eW/ℏfΩ.]
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R∨ the extension ofR∨ to M̃B×Cℏ, where we impose that f extends holomorphically
over ℏ = 0.

• EB the OM̃B{ℏ}-module of sections of R∨ “near ℏ = 0” (i.e., over U , sections [fΩ]
with f holomorphic on some U × {ℏ : |ℏ| < ϵ}).

• Ξ0, . . . ,Ξn local basis of R satisfying formula (2.38) of [2]. We then write

[fΩ] =
n∑

i=0

αi

∫
Ξi

feW/ℏΩ,

under the natural identification of an (n+1)-dimensional C-vector space with C[α]/(αn+1).

• HB is then the free OM̃B{ℏ, ℏ−1}-module generated by the (single-valued) sections
ℏ−(n+1)ααi of EB ⊗OM̃B {ℏ} OM̃B{ℏ, ℏ−1}, for i = 0, . . . , n.

• A miniversal section sB0 of EB (satisfying [Ω] ≡ sB0 mod HB
−) (defined on some open

neighbourhood of 0 ∈ M̃B).

Looking at the lists above, we know precisely what sA0 is. We’d like firstly to understand a
little better what sB0 should look like, in order to assist us in seeing what results from the

“mirror map” between M̃A and M̃B mapping sA0 to sB0 .

Lemma 1.

sB0 = ℏ−(n+1)α

n∑
i=0

φi(t, ℏ−1)(αℏ)i,

where

φi(t, ℏ−1) = δ0,i +
∞∑
j=1

φi,j(t)ℏ−j,

for some φi,j(t) local sections of M̃B. Moreover, φi,1(t) form a system of coordinates for

M̃B in some open neighbourhood of 0 ∈ M̃B.

Proof. By the choice of basis Ξ0, . . . ,Ξn,

[Ω] =
n∑

i=0

αi

∫
Ξi

eW/ℏΩ
(2.38)
= (ξ(ℏ, α) =) ℏ−(n+1)α mod HB

−,

so that when we write

ℏ−(n+1)α

n∑
i=0

φi(t, ℏ, ℏ−1)(αℏ)i,

we obtain the expression for φi as required, since [Ω] ≡ sB0 mod HB
−. The fact that the

φi,1(t) form a system of coordinates follows by the expression of the Barannikov period
map; see below.



3

Now we may define a map of germs

m : (M̃A, 0) → (M̃B, 0) ; yi 7→ φi,1,

which is a local isomorphism by the above lemma. This is called the mirror map. Using
it, we can now give a very concise statement of mirror symmetry for Pn. We’re not going
to prove it here.

Theorem 2 (Barannikov, [1]). The mirror map m induces an isomorphism between the
A-model semi-infinite variation of Hodge structure and the B-model semi-infinite variation
of Hodge structure.

Note. This means the vector bundles EA and EB are identified, as well as the connec-
tions and pairings and miniversal sections. Note moreover that the gradings and opposite
subspaces are identified under this isomorphism of vector bundles.

Now we’ll try to unpack some of what this statement means in terms of the data we’ve
collected at this start of these notes. Some conclusions are:

Corollary 3. Assuming Theorem 2, the following conditions hold:

1. Write the Givental J-function as

J(y0, . . . , yn, ℏ−1) =
n∑

i=0

Ji(y0, . . . , yn, ℏ−1)Ti.

Then in the C-vector space C[[y0, . . . , yn, ℏ−1]],

Ji = φi for all 0 ≤ i ≤ n.

2. Under the mirror map m : (M̃A, 0) → (M̃B, 0), the vector fields EA and EB are
identified.

3. ∫
Pn

Ti ∪ Tj = (ℏ−(n+1)α(ℏα)i, ℏ−(n+1)α(ℏα)j)EB |ℏ=∞.

Proof. The induced mirror map on the vector bundles E• is the composition of the so-
called Barannikov period maps that are obtained from the miniversal sections s•0 with m.

Under these local isomorphisms, (M̃A, 0) and H∗(Pn,C) are idenitified, by mapping yi
to Ti, and (M̃B, 0) and C⟨ℏ−(n+1)α(αℏ)i⟩ are identified, by mapping φi,1 to ℏ−(n+1)α(αℏ)i
(since ψB(t) =

∑n
i=0 φi,1(t)ℏ−(n+1)α(ℏα)i, see [2], proof of Proposition 2.45). So the mirror

map m induces a map

m : H∗(Pn,C) → C⟨ℏ−(n+1)α(αℏ)i⟩ ; Ti 7→ ℏ−(n+1)α(αℏ)i.

This induces maps
EA → EB, HA → HB,

which are precisely the maps that the theorem above claims are isomorphisms. Now:
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1. Under the mirror map, Ti 7→ ℏ−(n+1)α(αℏ)i and sA0 7→ sB0 by Theorem 2. Since
J = sA0 , the result follows immediately.

2. This also follows immediately.

3. This follows since the two pairings are equal by Theorem 2, and the left and right
hand sides of the equation in 3. are the metrics associated to these pairings (that
appear in the associated Frobenius manifold structures).

Note. Note also that a stronger converse statement is true, see Proposition 2.45 of [2].
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