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Toric varieties are algebraic varieties admitting a dense open subset isomorphic to an al-
gebraic torus, with an action of this torus on the variety extending the natural action
of the torus on itself. Each toric variety can be constructed from an underlying convex
polyhedral complex, and standard algebro-geometric properties of toric varieties can often
be restated as properties of polyhedral complexes. This makes toric varieties an especially
important class of examples of algebraic varieties, as we may calculate on and verify state-
ments concerning toric varieties through the combinatorics of convex geometry. On the
other hand, being toric is a highly non-generic property of algebraic varieties; for instance,
all singularities of a toric variety are rational. The key examples of toric varieties are affine
space and projective space.

There are multiple equivalent definitions one may adopt when dealing with toric vari-
eties. In this talk, we will introduce two further definitions of toric varieties to the one given
above. Both will involve constructing the toric variety in question from convex polyhedra.
We will first introduce some basic concepts from convex geometry.

1 Toric varieties from fans

1.1 Monoids

Monoids are simple algebraic objects consisting of a set and an associative commutative
operation, and an identity. The fundamental example of a monoid is (Nk,+). Monoids
play a key role in the theory of log geometry, and a more thorough treatment will be
undertaken during our later discussion of this topic.

Definition 1.1. A monoid is a pair (P,+), where P is a set and + is an operation

+ : P × P → P

that is commutative and associative, and for which an identity 0P ∈ P exists.
Given a monoid (P,+), define the monoid ring of P over a field k as

k[P ] :=
⊕
p∈P

kzp,

with k-bilinear multiplication extending

zp · zp′ = zp+p′ .
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A homomorphism of monoids from P to Q is a map f : P → Q such that f(0P ) = 0Q
and such that f(p+ p′) = f(p) + f(p′) for all p, p′ ∈ P .

A monoid P is finitely generated if there exists a surjective homomorphism of monoids
Nk → P for some r ≥ 0.

Note. See that if a monoid P is finitely generated, then the monoid ring of P over any
field k is finitely generated as a k-algebra.

1.2 Cones and fans

Our first definition of toric variety will begin with a cone generated over some lattice, from
which we may obtain a monoid and construct an algebra as above. For simplicity we choose
our lattice to be trivial. The dual lattice will also turn out to play an important role from
this perspective: denote

M = Zn, N = HomZ(M,Z).

Definition 1.2. A polyhedron in MR is a finite intersection of closed half-spaces of MR. A
face of a polyhedron σ is an intersection of σ with a hyperplane H for which σ is contained
within a closed half-space defined by H. A lattice polyhedron is an intersection of closed
half-spaces defined over Q. A polytope is a compact polyhedron.

A strictly convex rational polyhedral cone in MR := M⊗ZR is a lattice polyhedron with
exactly one vertex 0 ∈ MR.

Definition 1.3. If σ is a strictly convex rational polyhedral cone in MR, the dual cone σ∨

is the strictly convex rational polyhedral cone in NR defined by

σ∨ := {n ∈ NR | ⟨n,m⟩ ≥ 0 ∀m ∈ σ} .

Lemma 1.4 (Gordon’s lemma). Let σ be a strictly convex rational polyhedral cone in MR.
Then the monoid σ∨ ∩N is finitely generated.

Proof. See [1], Proposition 1.2.1.

Definition 1.5. A fan in MR is a set Σ of strictly convex rational polyhedral cones in MR
satisfying:

(1) if σ ∈ Σ and τ ⊆ σ is a face of σ, then τ ∈ Σ,
(2) If σ1, σ2 ∈ Σ, then σ1 ∩ σ2 is a face of σ1 and of σ2.

Denote |Σ| for the support of the fan Σ, defined as the union of the elements of Σ.

Definition 1.6. Given fans Σ1 in MR and Σ2 in M ′
R, where M ′ = Zm ⊆ Rm, a morphism

of fans from Σ1 to Σ2 is a group homomorphism φ : M → M ′ such that

∀σ1 ∈ Σ1, ∃σ2 ∈ Σ2 such that φR(σ1) ⊆ σ2.
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1.3 Toric varieties

Definition 1.7. Let σ be a strictly convex rational polyhedral cone in MR. For any field
k, the monoid ring k[σ∨ ∩N ] is a finitely generated k-algebra and therefore

Xσ := Speck[σ∨ ∩N ]

is an algebraic variety over k. We will call this an affine toric variety for reasons which
will soon become apparent.

Example 1.8. 1. σ = 0 ⊆ Rn. Then σ∨ ∩N = N ⊆ Rn, so

X0 = Spec (k[x1, . . . , xn, y1, . . . , yn]/(xiyi − 1)) = Speck[z±1
1 , . . . , z±1

n ],

so X0 is the n-dimensional algebraic torus.

2. σ = R≥0e1 + . . .+ R≥0en ⊆ Rn. Then σ∨ ∩N = Nn ⊆ Rn, so

Xσ = Speck[z1, . . . , zn] = An
k .

3. σ = R≥0e1 + R≥0(e1 + re2) ⊆ R2, for r some positive integer. Then σ∨ = R≥0e2 +
R≥0(re1−e2) ⊆ R2. The monoid σ∨∩N is generated by e1, e2 and re1−e2. Therefore

Xσ = Spec (k[x, y, z]/(yz − xr)) = V(yz − xr).

The pictures below show the cone and dual cone for the case r = 2.

σ
MR

σ∨

NR

Definition 1.9. Let Σ be a fan in MR. For each τ, σ ∈ Σ such that τ is a face of σ, we
obtain a natural inclusion σ∨ ⊆ τ∨, inducing a natural inclusion of monoid rings and thus
in turn an open embedding Xτ ⊆ Xσ. We may therefore glue together the varieties Xσ (à
la [3], Exercise II.2.12) to obtain an algebraic variety XΣ over k, which we will call a toric
variety.

Note. To prove separatedness of this scheme, we need to show that Xσ1∩σ2 → Xσ1 ×Xσ2

is a closed embedding for all σ1, σ2 ∈ Σ. This follows from the so-called separation lemma
for polyhedral cones (see [1], Proposition 1.2.3).
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Example 1.10.
Σ = {σ1, σ2, σ3, ρ1, ρ2, ρ3, 0} ⊆ R2,

where
ρ1 = R≥0e1, ρ2 = R≥0e2, ρ3 = R≥0(−e1 − e2), σi = ρi + ρi+1.

Note that |Σ| = R2. Then

Xσ1 = Speck[x, y], Xσ2 = Speck[y−1, xy−1], Xσ3 = Speck[x−1, yx−1],

Xρ1 = Speck[x±1, y], Xρ2 = Speck[x, y±1], Xρ3 = Speck[xy, (xy−1)±1],

so we see that XΣ = P2
k.
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Any morphism of fans φ : Σ1 → Σ2 as in Definition 1.6 induces a morphism Xσ → Xσ′ for
any σ ∈ Σ, σ′ ∈ Σ′ by definition. These clearly patch together to give a morphism

φ : XΣ → XΣ′ .

Note. The converse is also true, in that any morphism of toric varieties (by which I mean
a morphism of algebraic varieties that preserves the torus action which we will later define)
is induced by a morphism of the underlying fans. So we see that not only are toric varieties
determined completely by their fans, but so are morphisms of toric varieties. i.e., we have
an equivalence of categories between the category of toric varieties (over some field k) and
the category of fans.

As promised, many geometric properties of toric varieties (morphisms, resp.) may be
restated in terms of the underlying fans (morphisms of fans, resp.). We won’t have the
time to prove any of these properties, but here are a few examples. See [1] for details.

1. XΣ is smooth if and only if every cone in the fan is standard, meaning that it is
generated by a subset of a basis of M .

2. A morphism φ : XΣ → XΣ′ is proper if and only if φ−1
R (|Σ′|) = |Σ|.
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3. A morphism φ : XΣ → XΣ′ is birational if and only if φ : M → M ′ is an isomorphism.
Thus a morphism φ is proper and birational if and only if φ is an isomorphism of
lattices and Σ is a refinement of Σ′. Note also that for any toric variety there is a
refinement of the underlying fan that induces a resolution of singularities.

A toric variety XΣ contains an open subset isomorphic to an algebraic torus in a natural
way; any fan Σ must contain the cone 0, being the intersection of all of the cones in Σ.
We can clearly see from Definition 1.9 that there is an open embedding X0 → XΣ, and we
showed in Example 3.1. that X0 is equal to the n-dimensional algebraic torus. Now there
is a natural action of the torus X0 on XΣ obtained by gluing together the maps induced
by the ring homomorphisms

k[σ∨ ∩N ] → k[N ]⊗k k[σ∨ ∩N ]; zn 7→ zn ⊗ zn.

Note that this group action clearly extends the action of X0 on itself.
The cones in the fan Σ are then in one-to-one correspondence with the orbits of the

action of X0 on XΣ, through the mapping that sends a cone σ ∈ Σ to the orbit

Oσ := Xσ\
⋃

τ∈Σ,τ⫋σ

Xτ .

Denote by Dσ the closure of this orbit. If σ is a one-dimensional cone (i.e., a ray), then
Dσ is a (Weil) divisor on XΣ. In fact every reduced effective Weil divisor invariant under
the torus action is equal to one of these divisors.

Example 1.11. σ = R≥0e1 + . . .+ R≥0en ⊆ Rn. Denote, for each I ⊂ [n],

σI =
∑
i∈I

R≥0ei, with σϕ := 0,

and write Σ = {σI | I ⊆ [n]}. Then Σ is clearly a fan and XΣ = Xσ = An
k . The action of

the torus is given by coordinate-wise multiplication. Now

OσI
= {(x1, . . . , xn) ∈ kn |xi = 0 ∀i ∈ I, xi ̸= 0 ∀i /∈ I} and DσI

=

{∏
i∈I

xi = 0

}
.

2 Toric varieties from polytopes

We have seen that projective space can be constructed using the theory of cones and fans
developed in the previous section, by gluing together affine charts. We are well aware
however that projective space can be constructed in a more canonical manner by applying
the Proj construction to a graded algebra. It is therefore natural to ask whether a more
canonical construction for projective toric varieties exists. This is what we will discuss in
the final section of this talk.
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Let ∆ be any lattice polyhedron in NR with at least one vertex. We define the cone over
∆ to be

C(∆) = {(rn, r)|n ∈ ∆, r ≥ 0} ⊆ NR ⊕ R.

This is a rational polyhedral cone, and k[C(∆) ∩ (N ⊕ Z)] is a finitely generated graded
k-algebra, with the grading generated by deg z(n,d) = d. So we may apply the Proj functor
to obtain a variety

P∆ := Proj k[C(∆) ∩ (N ⊕ Z)].

This is projective over Spec k[C(∆) ∩ (N ⊕ {0})].

Example 2.1. ∆ = Conv{(0, 0), (1, 0), (0, 1)} ⊆ R2. Then

k[C(∆) ∩ (N ⊕ Z)] ≃ k[x0, x1, x2],

given the standard grading, under the identification z(0,0,1) ↔ x0, z
(1,0,1) ↔ x1, z

(0,1,1) ↔ x2.
Therefore we see that

P∆ ≃ P2
k,

which is indeed projective over Spec k[C(∆) ∩ (N ⊕ {0})] = Speck.

P∆ is in fact a toric variety in the sense of the previous section; for each face σ ⊆ ∆ of the
polyhedron ∆, the normal cone to ∆ along σ is defined to be

N∆(σ) = {m ∈ MR | ⟨σ,m⟩ = pt, ⟨n,m⟩ ≥ ⟨n′,m⟩ ∀n ∈ ∆, n′ ∈ σ}.

Then the normal fan to the polyhedron ∆ is

Σ∆ := {N∆(σ) |σ is a face of ∆}.

This is a fan in MR as you may expect.

Theorem 2.2. P∆ ≃ XΣ∆
.

Example 2.3. Returning to the previous example, the faces of the cone ∆ are

p1 = (0, 0), p2 = (1, 0), p3 = (0, 1), l1 =
−−→p3p1, l2 =

−−→p1p2, l3 =
−−→p2p3, ∆,

and the respective normal cones along these faces are (recalling the notation we introduced
earlier)

σ1, σ2, σ3, ρ1, ρ2, ρ3, 0.

So Σ∆ equals the fan Σ that we wrote down earlier. The theorem above thus gives us
another way of seeing that XΣ ≃ P2

k.

Now that we have all the basic technical tools from toric geometry that we will need, we
introduce a certain method of constructing families of toric varieties that will play a vital
role in later sections of the reading group.



REFERENCES 7

Example 2.4 (Mumford Degeneration). Let ∆ be a lattice polytope inNR, P a polyhedral
decomposition of ∆ into lattice polyhedra, and φ : (∆,P) → R a piecewise-linear convex
function with integral slopes. This data induces a lattice polyhedron

∆̃ := {(n, r) ∈ NR ⊕ R |n ∈ ∆, r ≥ φ(n)}

in NR ⊕ R. Then P∆̃ is projective over

Spec k[C(∆̃) ∩ (N ⊕ Z⊕ {0})] = Speck[{0} ⊕ N⊕ {0}] = A1
k.

We will write π : P∆̃ → A1
k for this projective map (induced by t 7→ z(0,1,0)).

Now see that a proper face of ∆̃ is either a “horizontal face”, projecting homeomorphi-
cally onto a face of ∆, or a “vertical” face, projecting non-homeomorphically onto a face of
∆. The normal cone of a vertical face σ̌ is N∆(σ)⊕ {0} ⊆ MR ⊕R, while the normal cone
to a maximal horizontal face τ is the ray generated by (−mτ , 1), where mτ is the slope of
φ on the projection of τ .

π−1(0) is the union of all of the toric strata that vanish at z(0,1,0), so is by the above the
union of the toric divisors of P∆̃ corresponding to the maximal horizontal faces. Therefore

π−1(0) =
⋃

σ∈Pmax

Pσ,

with gluing data prescribed by (P, φ).

For the generic fibres of the family, notice that the localisation of the ring k[C(∆̃) ∩
(N ⊕ Z⊕ Z)] at z(0,1,0) is isomorphic to k[C(∆× R) ∩ (N ⊕ Z⊕ Z)], which shows that

P∆̃\π
−1(0) ≃ P∆ ×k Gm.

So we finally see that π is a degeneration of toric varieties, whose central fibre is a
union of toric varieties with intersection data prescribed by (P, φ) and whose generic fibre
is isomorphic to P∆.
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