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INTRODUCTION:

This reading group aims at exploring the links between tropical geometry and mirror symmetry. We will
follow quite closely (up to some action of the symmetric group of some subsets of the (sub)sections) the book
[5]. The ultimate goal is to go through the first three chapters of the book. The format would be the following:
each talk would be between one hour long, we will meet every two weeks (alternatively in Chemnitz and
Leipzig) for two (or more) talks in a row — this depends mostly on the audience and the (hopefully non-
empty!) intersection of our availabilities. It would be nice (if you have time!) if everyone could write down
their talk in TeX in such a way we can put everything together afterwards.

CURRENT SCHEDULE:

03/05 Chemnitz Talks 1, 2, 3
17/05 Leipzig Talks 4, 5, 6, 7
31/05 Chemnitz Talks 8, 9, 10, 11
14/06 Leipzig Talks 12, 13, 14, 15
28/06 Chemnitz Talks 16, 17, 18

For each meeting, the timetable will look like this:

10h00 – 11h00 First talk
11h00 – 11h30 Coffee break
11h30 – 12h30 Second talk
12h30 – 14h00 Lunch break
14h00 – 15h00 Third talk
15h00 – 15h30 Coffee break
15h30 – 16h30 Fourth talk

For the first and the last meetings, we will start at 11h00.

MOTIVATIONAL OVERVIEW:

The story of mirror symmetry starts with the quintic threefold Qt in P4 defined by the equation

4

∑
i=0

x5
i − tx0x1x2x3x4 = 0

where t ∈ A1. For most t, Qt is smooth and one can compute the Hodge numbers of Qt, one gets:

h1,1(Qt) = 1 and h1,2(Qt) = 101.

One can construct a diagonal action of a group G on P4 which restricts on Qt and resolve the quotient Qt/G
to a Calabi-Yau threefold Q̌t called the mirror of Qt; the Hodge numbers of Q̌t are given by

h1,1(Q̌t) = 101 and h1,2(Q̌t) = 1.

In [1], Candelas, de la Ossa, Green and Parkes conjectured links between curve counting on Qt and period
integrals on Q̌t. This suggests the following (vague) conjecture: starting with a Calabi-Yau threefold X, one
should be able to construct another Calabi-Yau threefold X̌ called the mirror of X such that the curve counting
on X is very much related to period integrals on X̌. In any case, this already suggest the existence of two
worlds which are interrelated:

• The A-model: sympletic world, Gromov-Witten invariants (curve counting).

• The B-model: complex analytic world, period integrals.
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In 1996, Strominger, Yau and Zaslow proposed in [6] a conjecture (called the SYZ conjecture) formalizing in
a geometric way this previous conjecture: in addition of the existence of the mirror X̌, the latter predicts the
existence of a basis B and of two fibrations in special Lagrangian tori f1 and f2

X X̌

B

f1 f2

over B whose (generic) fiber are dual to each other — in the sense of tori. The base B is usually an affine
manifold (i. e., there exists an atlas and the transition maps are of the form z 7→ Az + b where A ∈ GLn(Z)
and b ∈ Rn) which is allowed to be singular — the name is a little unfortunate. This base brings into the
picture a third world which is the one of affine structures: the tropical world.

For P2 — which is not Calabi-Yau but Fano, anyway —, a first link between the A-model and the tropical
world is Mikhalkin’s curve counting formula which relates holomorphic curve counting and tropical curve
counting; after introducing all the needed material to navigate in these three worlds and the proof of mirror
symmetry for P2, the proof of this formula will be our first goal. The proof of this formula will make appear
another world: the logarithmogeometric world; it will appear as a bridge between the A-model and the tropical
world.

An ultimate goal would be to relate the tropical world with the B-model, this would complete the picture.
There is another approach to mirror symmetry developed by Kontsevich and called homological mirror sym-

metry formulating mirror symmetry in term of existence of an equivalence of categories between Db(X) and
a category of a symplectic nature called the (derived category) of the Fukaya ∞-category of X̌. We won’t talk
about this approach in this reading group.

Another part we will not talk about is the so-called Gross-Siebert program (chapter 6 of [5]) that try to recon-
struct the pair (X, X̌) from the base B. 1

Here is a global plan of the seminar; one section per talk:

1 A crash-course in toric geometry. (Henry)

In that talk, we want to get all the toric material needed for the seminar, i.e. we want at least the parts 1.2. and
3.1. of [5]. You should define cones, fans, polyhedra, toric varieties and how you construct toric varieties out
of a fan. Put the emphasis on the dictionary between toric geometry and polyhedral geometry (smoothness,
properness, etc.); if you have enough time, you can maybe discuss the orbit-cone correspondance — it is
discussed in [5] but kind of avoided. You should also maybe put the emphasis on the monoid part since it will
be used in logarithmic geometry. Give as many examples as you can. Helpful references could be [2] and [3].

2 Tropical hypersurfaces. (Emeryck)

In this talk, follow the section 1.1. of [5], put emphasis on the pictures.

3 Parametrized tropical curves. (Peter)

In that talk, follow the section 1.3. of [5]. You can maybe do some tiny recalls about graphs.

4 Stable pointed curves and stable maps. (Max)

In that talk, follow the section 2.1. of [5]. As in the book, take stacks as a black box (maybe you can give a
rough idea about it: we like quotients to exists but the non-triviality of the stabilizer(s) is usually a problem
for the quotient to exist as a scheme, hence we have to pass to stacks; in our case, the groups in questions are
group of automorphisms2, passing to stacks will make more functors representable. Since things could seem
a little hidden under the carpet here, put the emphasis on the examples and especially on the Gromov-Witten
invariant since it will be important in the sequel: this is the object for curves counting and it comes into the play
in the definition of quantum cohomology. Explain the manifestation of stacky phenomena in Gromov-Witten
invariants (when they are not a natural number).

1It might be the object of a second act of this seminar.
2"La conclusion pratique à laquelle je suis arrivé dès maintenant, c’est que chaque fois que en vertu de mes critères, une variété de

modules (ou plutôt, un schéma de modules) pour la classification des variations (globales, ou infinitésimales) de certaines structures
(variétés complètes non singulières, fibrés vectoriels, etc.) ne peut exister, malgré de bonnes hypothèses de platitude, propreté, et non
singularité éventuellement, la raison en est seulement l’existence d’automorphismes de la structure qui empêche la technique de descente
de marcher." A letter from Grothendieck to Serre (1959)
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5 Quantum cohomology and quantum differential equation. (Luca)

In that talk, follow the sections 2.1.2. and 2.1.4. of [5]. Introduce the (big) quantum cohomology on a variety
with no odd cohomology and the WDVV equation. Compute the quantum product for P2. Introduce the
quantum differential equation and derive a fundamental set of solutions. The map S(Ti) = si as defined in
2.1.4 will play an important role in the sequel so should be discussed.

6 Semi-infinite variations of Hodge structures and moving subspace re-
alisation. (Christian)

In that talk, follow the sections 2.1.5. and 2.1.6. of [5]. Define semi-infinite variations of Hodge structure and
show how one arises from the quantum cohomology ring. Talk about the moving subspace realisation, again
with emphasis on the quantum cohomology example.

7 Frobenius manifolds and semi-infinite variations of Hodge structures.
(Christian)

In that talk, follow the sections 2.1.3. and 2.1.7. of [5]. Define the formal notions of pre-Frobenius structures
and Frobenius manifolds and describe how a Frobenius manifold arises from the quantum product. In more
generality, explain how a Frobenius manifold may be constructed from a miniversal semi-infinite variation of
Hodge structure with a flat identity and Euler vector field. (Due to time constraints some of the details may
have to be omitted; focus on the quantum cohomology example if necessary.) Define the Givental J-function
and derive it for P2.

8 The twisted de Rham complex and homology. (Yichen)

In that talk, follow the sections 2.2.1. and 2.2.2. of [5]. Now we turn to the B-model. For a smooth variety X and
regular function W : X → C, define the twisted de Rham complex (Ω•

X , d + dW∧), and discuss the homology
groups dual to the hypercohomology groups of this complex. Describe a basis of this homology group for the
case (X̌, W) = ((C∗)2, x0 + x1 + x2), the mirror to P2.

9 The B-model semi-infinite variation of Hodge structure. (Avi)

In that talk, follow the section 2.2.3. of [5]. Define the universal unfolding of the mirror to Pn and define a
(graded) semi-infinite variation of Hodge structure on this.

10 The B-model Frobenius manifold. (Paul)

In that talk, follow the section 2.2.4. of [5]. Use the theory of talk 7 to define a Frobenius manifold structure on
the universal unfolding of the mirror to Pn from the semi-infinite variation of Hodge structure defined in the
previous talk.

11 Mirror symmetry for Pn. (Henry or Emeryck)

In that talk, follow the section 2.2.5. of [5]; this is going to be probably quite short but it’s important. Describe
exactly what we mean by mirror symmetry in this case.

12 Logarithmic geometry. (?)

Here, the content can be found in the third chapter of [5]. As you can see, there are many things and it is not
possible to discuss everything in a one hour talk. I think it’s good to discuss the introduction (it shows that
logarithmic geometry is helpful to study singular complex algebraic varieties) and one of the leading ideas is
that smooth varieties are really well-behaved so we try to define a class of varieties (we have to add a little
something: a logarithmic structure) which is larger but which somehow behave like a smooth varieties, we will
call them log smooth varieties.
You should discussed the small part on monoids very quickly; you can also discuss functoriality in the con-
struction of toric varieties and you must discuss the orbit-cone correspondance; I am not that sure that the

3



discussion on the Picard group of a toric variety is needed. The part 3.1.3. has already been discussed in the
first talk.
Concerning logarithmic geometry itself, the definitions that must be discussed are the following: (pre)log
structures, log scheme, morphism of log schemes, log structure associated to a prelog structure, finiteness con-
dition (fine log scheme, saturated log scheme, log smoothness, log derivations, log forms (mention it’s locally
free in the log smooth case).
Now, the examples that must be discussed are the following: the divisorial log structure, the log point, the
example 3.12., the toric example (example 3.15.), example 3.24., example 3.26. about local description of log
smooth curves, example 3.36. It is not necessary to talk about logarithmic deformation theory.

13 Mikhalkin’s curve counting formula and log to tropical. (?)

In that talk, follow the sections 4.1. and 4.2. of [5]. The next few talks will focus on Mikhalkin’s curve-counting
formula. The proof relates holomorphic curves and tropical curves by passing through log geometry. In this
first talk, state Mikhalkin’s curve counting formula and begin by explaining how we construct a tropical curve
out of a (torically transverse) log curve.

14 The way back: tropical to log. (?)

In that talk, follow the section 4.3. of [5]. The main theorem of this section calculates exactly how many torically
transverse marked log curves give a fixed marked tropical curve under the construction given in the previous
talk.

15 Wandering: classical to log to classical and Mikhalkin’s final act. (?)

In that talk, follow the sections 4.4., 4.5. and 4.6. of [5]. Show how a torically tranverse log curve arises on
the central fibre of a degeneration of a toric variety on whose general fibres is given a family of genus zero
curves. Show conversely that such a (genus zero) log curve can be extended to a family of curves. Combine
these results with those of the previous two talks to deduce Mikhalkin’s curve counting formula.

16 The perturbed Landau-Ginzburg potential. (?)

In that talk, follow the section 5.1. of [5]. The next focus for the book is to reformulate the B-model in terms of
tropical geometry, as we may now do with relative ease for the A-model using Mikhalkin’s formula. Chapter 5
of Gross’ book is based upon his paper [4], I recommend reading the opening of this paper for some additional
context. The first step is to define the universal unfolding of the Landau-Ginzberg potential.

17 Tropical descendant invariants and the main B-model statement. (?)

In that talk, follow the sections 5.2. and 5.3. of [5]. Define the tropical descendent invariants and the tropical
J-function. Use this to state both the formulation of the B-model in terms of tropical geometry and the resulting
tropical geometry theoretic mirror symmetry statement (Theorem 5.18 and Corollary 5.20 of [5]).

18 An overview of the proof of the main B-model statement. (?)

In that talk, try to give the ideas of the proof of the main B-model statement, i.e. squeezing the 52 pages of the
sections 5.4. and 5.5. of [5]; in other words: good luck. First we have to show that our period integrals are
independent of the choice of points P1, . . . , Pk, Q (we use a wall-crossing formula). Then we have to evaluate
these integrals.

References

[1] P. Candelas, X. C. de la Ossa, P. S. Green, and L. Parkes. A pair of Calabi-Yau manifolds as exactly soluble
superconformal theory. Nuclear Physics B359, pages 21–74, 1991.

[2] D. A. Cox, J. B. Little, and H. K. Schenck. Toric varieties. Number 124 in Graduate Studies in Mathematics.
AMS, 2011.

4



[3] W. Fulton. Introduction to toric varieties. Number 131 in Annals of Mathematics Studies. Princeton Uni-
versity Press, 1993.

[4] M. Gross. Mirror symmetry for P2 and tropical geometry. Number 224 in Advances in Mathematics, pages
169–245. Elsevier, 2010.

[5] M. Gross. Tropical geometry and mirror symmetry. Number 114 in CBMS Regional Conference Series in
Mathematics. AMS, 2011.

[6] A. Strominger, S.-T. Yau, and E. Zaslow. Mirror symmetry is T-duality. Nuclear Physics B479, pages 243–259,
1996.

5


