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The results from this talk originate from a project together with Ian Ruohoniemi and
Dmitriy Bilyk (University of Minnesota)
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Introduction

▶ Two perspectives on discrepancy:
▶ How uniformly can you distribute N points {x1, ...,xN} on a set Ω?
▶ How well does quasi-Monte Carlo integration∫

Ω

f(x) dx ≈ 1

N

N∑
i=1

f(xi)

perform at best?

▶ First point: compare to test sets (geometric)

▶ Second point: compare to a function space (analytic)

▶ In both cases: need notion of uniformity
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Introduction
First example: extremal discrepancy

▶ Example 1: [0, 1)d

▶ Test sets: axis parallel boxes [x,y)

▶ Discrepancy function (Note: unnormalization)

DX(x,y) := #(X ∩ [x,y))−N |[x,y)|

▶ Extremal Lp-discrepancy

Lextr
p (X)p =

∫∫
x<y

|DX(x,y)|p dx dy

▶ Warnock-type formula for p = 2

Lextr
2 (X)2 =

N2

12d
− N

2d−1

∑
x∈X

d∏
k=1

xk(1− xk) +
∑

x,y∈X

d∏
k=1

(min{xk, yk} − xkyk)
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Introduction
Second example: periodic discrepancy

▶ Example 2: [0, 1)d ≃ Td

▶ Test sets: axis parallel, periodic boxes [x,y)

▶ Discrepancy function (Note: unnormalization)

DX(x,y) := #(X ∩ [x,y))−N |[x,y)|

▶ Periodic Lp-discrepancy

Lper
p (X)p =

∫∫
[0,1)d

|DX(x,y)|p dx dy

▶ Warnock-type formula for p = 2

Lper
2 (X)2 = −N2

3d
+
∑

x,y∈X

d∏
k=1

(
1

2
− |xk − yk|+ |xk − yk|2

)
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Introduction
QMC integration and RKHS (extremal)

▶ f ∈ H1
extr iff f : [0, 1) → R absolutely continuous, f(0) = f(1) = 0 and

∥f∥2H1
extr

:=

∫ 1

0

f ′(x)2 dx < ∞

▶ Hd
extr via tensor product

▶ Kernel Kextr(x,y) =
∏d

k=1 (min{xk, yk} − xkyk) (Brownian sheet)

▶ Error functional

RX(f) :=

∫
[0,1]d

f(x) dx− 1

N

∑
x∈X

f(x),

then
Lextr
2 (X) = N sup

∥f∥Hd
extr

≤1

|RX(f)|
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Introduction
QMC integration and RKHS (periodic)

▶ f ∈ H1
per iff f : [0, 1) → R absolutely continuous, f(0) = f(1) and

∥f∥2H1
per

:= 3

(∫ 1

0

f(x) dx

)2

+
1

2

∫ 1

0

f ′(x)2 dx < ∞

▶ Hd
per via tensor product

▶ Kernel Kper(x,y) =
∏d

k=1

(
1
2 − |xk − yk|+ |xk − yk|2

)
▶ Error functional

RX(f) :=

∫
[0,1]d

f(x) dx− 1

N

∑
x∈X

f(x),

then
Lper
2 (X) = N sup

∥f∥Hd
per

≤1

|RX(f)|

▶ Note the similarity to the Koksma-Hlawka inequality
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Introduction
Outlook

▶ In this talk: extremal and periodic L2-discrepancy on the torus

▶ Other aspects:
▶ L∞-discrepancy (no need for an underlying measure, optimal asymptotic generally

unknown)
▶ Star-discrepancy (only boxes [0,y) anchored in the origin)
▶ Discrepancy on the sphere or projective plane (Stolarsky principle, 2-point

homogeneous spaces, energies, ...)
▶ Discrepancy for finite metric spaces ([Barg ’21], [Barg, Skriganov ’21]; connections to

coding theory and combinatorics)
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An observed relation

▶ Minimize QMC integration error ⇔ minimize discrepancy

▶ Existence of asymptotically optimal point sets for QMC integration over Sobolev
spaces of arbitrary (integer) smoothness and dimension known (digital net
constructions by Goda, Suzuki, Yoshiki; based on work by Baldeaux, Dick,
Hickernell, Kritzer, Kuo, Niederreiter, Nuyens, Pillichshammer, ...)

Nicolas Nagel 9 / 22



An observed relation

▶ Lower bounds [Roth ’54; Hinrichs, Kritzinger, Pillichshammer ’21]

Lper
2 (X) ≥ Lextr

2 (X) ≳ (logN)
d−1
2

▶ Constructions matching (asymptotically) the lower bounds (for d = 2):

Fibonacci lattice Hammersley point set
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An observed relation

▶ Exact formulas [Hinrichs, Kritzinger, Pillichshammer ’21]

▶ Hammersley point sets with N = 2n points

Lextr
2 (HamN )2 =

n

64
+

1

72
− 1

144N2

Lper
2 (HamN )2 =

n

16
+

1

9
+

1

36N2

▶ Rational (=integration) lattice Latp/N =
{(

k
N , kp mod N

N

)
: k = 0, 1, ..., N − 1

}
with gcd(p,N) = 1

Lextr
2 (Latp/N )2 =

1

16N2

N−1∑
r=1

1

sin
(
πr
N

)2
sin
(
πpr
N

)2 +
1

72
− 1

144N2

Lper
2 (Latp/N )2 =

1

4N2

N−1∑
r=1

1

sin
(
πr
N

)2
sin
(
πpr
N

)2 +
1

9
+

1

36N2
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An observed relation

▶ Similarities among the formulas noted when they were first computed

▶ For Hammersley point sets and rational lattices X with N points

Lper
2 (X)2 = 4Lextr

2 (X)2 +
N2 + 1

18N2

▶ Really a special relation (not true for general point sets)

▶ Can this be generalized? Is there a “deeper” reason for this relation?

Nicolas Nagel 12 / 22
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Permutation sets

On another note:

▶ Global optimizers of Lper
2 (X) for d = 2 and N ≤ 16 [Hinrichs, Oettershagen ’16]

▶ All (approximate) permutations ⇝ investigate permutation sets

X(σ) :=

{
1

N
(m,σ(m)) : m = 0, 1, ..., N − 1

}
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Permutation sets

▶ Are permutation sets good candidates for approximate global minimizers? (even
optimality of Fibonacci lattices unknown)

▶ Are there combinatorial properties of a permutation σ that imply that X(σ) is of
low discrepancy? (permutation statistics)

▶ What makes permutation sets “special”?

For the last question have the following:

Theorem: Relation for permutation sets [N]

For every permutation σ : {0, 1, ..., N − 1} → {0, 1, ..., N − 1} it holds

Lper
2 (σ)2 = 4Lextr

2 (σ)2 +
N2 + 1

18N2
.

Note: Not a complete characterization of sets fulfilling this relation.
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Permutation sets
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Latin hypercubes

Can be generalized to arbitrary dimensions:
▶ Permutations correspond to subsets of {0, 1, ..., N − 1}2 with exactly one element

per row and column

▶ A (M-)Latin hypercube (of dimension d) H is a subset of {0, 1, ...,M − 1}d with
exactly one element per row (fixing any d− 1 coordinates and varying the remaining
one)

▶ Slight deviation from the usual terms: Latin squares (“sudokus”) give Latin cubes
(point sets of dimension 3)

▶ M -Latin hypercubes consist of N = Md−1 elements
▶ X(H) = 1

MH point set

Theorem: Relation for Latin hypercubes [N]

For every M -Latin hypercube of dimension d it holds

Lper
2 (H)2 − 2dLextr

2 (H)2 =
(2M2 + 1)d + (M2 − 1)d − (1 + 2d)M2d

6dM2
.
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Latin hypercubes

Even more general:

▶ Can define discrepancy for weighted point sets (X,w) where w : X → R
▶ Warnock-type formulas

Lextr
2 (X,w)2 =

∑
x,y∈X

w(x)w(y)

[
1

12d
−

d∏
k=1

xk(1− xk)

2
−

d∏
k=1

yk(1− yk)

2

+

d∏
k=1

(min{xk, yk} − xkyk)

]

Lper
2 (X,w)2 =

∑
x,y∈X

w(x)w(y)

[
− 1

3d
+

d∏
k=1

(
1

2
− |xk − yk|+ |xk − yk|2

)]

▶ Analogue for Latin hypercubes: weights w : 1
M {0, 1, ...,M − 1}d → R with constant

row sums 1

▶ Same relation holds for this (linearly relaxed) case
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Lower bounds

▶ Immediate consequence:

Lper
2 (H)2 ≥ (2M2 + 1)d + (M2 − 1)d − (1 + 2d)M2d

6dM2
=

d(2d−1 − 1)

6d
M2d−4︸ ︷︷ ︸
=N

2 d−2
d−1

+...

▶ Can be slightly improved in the constant:
▶ Let G := {0, 1, ...,M − 1}d and G := 1

MG (discretized torus)

Theorem: Expression of periodic discrepancy [N]

Lper
2 (G,w)2 = − 1

3d

(∑
x∈G

w(x)

)2

+
∑
f∈G

µf

∣∣∣∣∣∑
x∈G

w(x) exp(2πif · x)

∣∣∣∣∣
2

,

µf =
d∏

k=1

{
1
3 + 1

6M2 , fk = 0
1

2M2 sin(πfk/M)2 , fk ̸= 0
.

Nicolas Nagel 18 / 22



Lower bounds

▶ Immediate consequence:

Lper
2 (H)2 ≥ (2M2 + 1)d + (M2 − 1)d − (1 + 2d)M2d

6dM2
=

d(2d−1 − 1)

6d
M2d−4︸ ︷︷ ︸
=N

2 d−2
d−1

+...

▶ Can be slightly improved in the constant:
▶ Let G := {0, 1, ...,M − 1}d and G := 1

MG (discretized torus)

Theorem: Expression of periodic discrepancy [N]

Lper
2 (G,w)2 = − 1

3d

(∑
x∈G

w(x)

)2

+
∑
f∈G

µf

∣∣∣∣∣∑
x∈G

w(x) exp(2πif · x)

∣∣∣∣∣
2

,

µf =

d∏
k=1

{
1
3 + 1

6M2 , fk = 0
1

2M2 sin(πfk/M)2 , fk ̸= 0
.

Nicolas Nagel 18 / 22



Lower bounds

Theorem: Lower bound, Latin hypercube [N]

For every M -Latin hypercube H of dimension d with N = Md−1

Lper
2 (H) ≥

(
d

2 · 3d

)1/2

N
d−2
d−1

and

Lextr
2 (H) ≥

(
d

12d

)1/2

(1− o(1))N
d−2
d−1 .

For d = 3: lower bound of order N1/2 (like random point sets)
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Upper bounds

▶ Upper bound via probabilistic considerations

▶ ELper
2 (H)2 for uniformly random H
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Upper bounds

Theorem: Expected periodic discrepancy [N]

ELper
2 (H)2 =

(M − 1)(M + 1)d + (2M2 + 1)d − 2dM2d

6dM2

Theorem: Upper bound, Latin hypercube [N]

For d ≥ 4 there is an M -Latin hypercube of dimension d with

Lper
2 (H) ≤

(
d

2 · 3d

)1/2

(1 + o(1))N
d−2
d−1 .
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Conclusion

▶ Properties of point sets of the form{
1

N
(σ1(n), ..., σd(n)) : n = 0, 1, ..., N − 1

}
?

Thank you
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