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The results from this talk originate from a project together with lan Ruohoniemi and
Dmitriy Bilyk (University of Minnesota)
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Introduction

» Two perspectives on discrepancy:

» How uniformly can you distribute N points {x*,...,x™} on a set Q7
» How well does quasi-Monte Carlo integration

[ x5 3 r6d)

perform at best?
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Introduction

» Two perspectives on discrepancy:

» How uniformly can you distribute N points {x*,...,x™} on a set Q7
» How well does quasi-Monte Carlo integration

[ x5 3 r6d)

perform at best?
» First point: compare to test sets (geometric)
» Second point: compare to a function space (analytic)
» In both cases: need notion of uniformity
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Introduction

First example: extremal discrepancy

» Example 1: [0,1)¢
> Test sets: axis parallel boxes [x,y) Y PY L
» Discrepancy function (Note: unnormalization) Py y
| ®
Dx(x,y) = #(X N[xy)) = Nl[x,y)| ® @
L
> Extremal L,-discrepancy L o
X ° ®

L (X)P = / / Dy (x,y)I” dxdy
x<y
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First example: extremal discrepancy

» Example 1: [0,1)¢

> Test sets: axis parallel boxes [x,y) Y PY L
» Discrepancy function (Note: unnormalization) Py y
| ®
Dx(x,y) = #(X N[xy)) = Nl[x,y)| ® @
L
> Extremal L,-discrepancy L o
X ° °
Ly = [| syl axdy
y

» Warnock-type formula for p = 2

d
LEY(X)? = 12d Z H xp(l — xg) Z H(min{xk, Yk} — TrYk)
x,yeX k=1

xeX k=1
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Introduction

Second example: periodic discrepancy

» Example 2: [0,1)? ~ T4
> Test sets: axis parallel, periodic boxes [x,y)

> Discrepancy function (Note: unnormalization)

DX(x7y) = #(Xﬂ [x,y)) 7N|[X7y)‘

» Periodic L,-discrepancy

LT (X )P = / / Dy (x,y)[? dxdy
[0,1)4
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Introduction

Second example: periodic discrepancy

» Example 2: [0,1)? ~ T4

> Test sets: axis parallel, periodic boxes [x,y) ° Py o
> Discrepancy function (Note: unnormalization) | ® y
Dx(x,y) = #(XN[x,y)) = N|[x,y)| °
[
» Periodic L,-discrepancy b x
Y o
e = [[ 1Dyl dxdy
[0,1)4
» Warnock-type formula for p = 2
per 2 N2 1 2
L5 (X) =-37t 1T 3 = |2k =yl + |z — il

x,yeX k=1
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Introduction

QMC integration and RKHS (extremal)

> feHL, iff £:]0,1) — R absolutely continuous, f(0) = f(1) =0 and

1
112 = / f(2) de < oo
0

» 2., via tensor product

> Kernel K% (x,y) = szl (min{zg, yx} — xyk) (Brownian sheet)

» Error functional .
Rx(f)= [ Fe0dx 5 3 560,

xeX
then
LS (X)=N sup [Rx(f)

I1F1lpa, <1
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Introduction

QMC integration and RKHS (periodic)

> f € Hp iff f:[0,1) = R absolutely continuous, f(0) = f(1) and

1 2 1
1
Hf“?—[l :3</ f(z) dil?) +§/ f'(z)*dz < oo
per 0 0
> ’ngr via tensor product

> Kernel KP*(x,y) = [Ti_y (3 — ox — vkl + |z — i)

» Error functional 1
Rx(f ::/ f(x)dx — — f(x),
x(f) o (x) N};{
then

LE(X)=N sup [Rx(f)l
1£12eg, <1
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Introduction

QMC integration and RKHS (periodic)

> f € Hp iff f:[0,1) = R absolutely continuous, f(0) = f(1) and

1 2 1
1
Hf“%—[l :3</ f(iL”)dZE> +§/ f'(z)*dz < oo
per 0 0
> ’ngr via tensor product

> Kernel KP*(x,y) = [Ti_y (3 — ox — vkl + |z — i)

» Error functional .
Rx(f)= [ FG0dx g 3 560,

xeX
then
LE'(X)=N sup [Rx(f)l
1£1eg, <1

» Note the similarity to the Koksma-Hlawka inequality
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» In this talk: extremal and periodic Ly-discrepancy on the torus
» Other aspects:

»  Loo-discrepancy (no need for an underlying measure, optimal asymptotic generally
unknown)

> Star-discrepancy (only boxes [0,y) anchored in the origin)

> Discrepancy on the sphere or projective plane (Stolarsky principle, 2-point
homogeneous spaces, energies, ...)

> Discrepancy for finite metric spaces ([Barg '21], [Barg, Skriganov '21]; connections to
coding theory and combinatorics)
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An observed relation

» Minimize QMC integration error < minimize discrepancy

> Existence of asymptotically optimal point sets for QMC integration over Sobolev
spaces of arbitrary (integer) smoothness and dimension known (digital net
constructions by Goda, Suzuki, Yoshiki; based on work by Baldeaux, Dick,
Hickernell, Kritzer, Kuo, Niederreiter, Nuyens, Pillichshammer, ...)
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285 An observed relation

> Lower bounds [Roth '54; Hinrichs, Kritzinger, Pillichshammer '21]

LE(X) > LYY (X) = (log N) 7
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285 An observed relation

> Lower bounds [Roth '54; Hinrichs, Kritzinger, Pillichshammer '21]

L5 (X) > L5 (X) 2 (log N)

d—1
2

» Constructions matching (asymptotically) the lower bounds (for d = 2):

Fibonacci lattice

Hammersley point set

Nicolas Nagel
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285 An observed relation

» Exact formulas [Hinrichs, Kritzinger, Pillichshammer '21]
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285 An observed relation

» Exact formulas [Hinrichs, Kritzinger, Pillichshammer '21]

» Hammersley point sets with N = 2" points

1 1
Lextr H 2 _ E el
2% (Hamy)™ = 0+ o5 — iz
11
P Hamay? = o L
2 (Hamy)™ = 7645+ 3532

11/ 22
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285 An observed relation

» Exact formulas [Hinrichs, Kritzinger, Pillichshammer '21]

» Hammersley point sets with N = 2" points

1 1
Lextr H 2 _ E -
2% (Hamy)™ = 0+ o5 — iz

r n 1 1
15" (Hamy)® = 36+ 5 + 362

k kp mod N\ . __
ko frmedNY g 0,1, N~ 1}

> Rational (=integration) lattice Lat,/y = {(

with ged(p, N) =1

N-1
1 1 1 1
Lextr(Lat N)2 _ R
2 »/ L6N? 2 gin (m)%sin (22)? 72 144N
N-1
1 1 11
L5 (Lat,/n)? = + ot
CUT AN S () e ()0 3OV
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An observed relation

» Similarities among the formulas noted when they were first computed
» For Hammersley point sets and rational lattices X with N points
N2 +1

per 2 extr 2
LE(X)? = AL (X +
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An observed relation

» Similarities among the formulas noted when they were first computed
» For Hammersley point sets and rational lattices X with N points
N2 +1

Lper X 2 — 4Lextr X 2
(X = ALE(X P + S
» Really a special relation (not true for general point sets)

» Can this be generalized? Is there a “deeper” reason for this relation?
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Permutation sets

On another note:
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Permutation sets

On another note:
» Global optimizers of L5*(X) for d =2 and N < 16 [Hinrichs, Oettershagen '16]
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2mEs Permutation sets

On another note:
» Global optimizers of L5*(X) for d =2 and N < 16 [Hinrichs, Oettershagen '16]
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» All (approximate) permutations ~~ investigate permutation sets

X(0) = {le(m,a(m)) M= 0,1, N — 1}
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Permutation sets

> Are permutation sets good candidates for approximate global minimizers? (even
optimality of Fibonacci lattices unknown)

» Are there combinatorial properties of a permutation ¢ that imply that X (o) is of
low discrepancy? (permutation statistics)

» What makes permutation sets “special”?

For the last question have the following:
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Permutation sets

> Are permutation sets good candidates for approximate global minimizers? (even
optimality of Fibonacci lattices unknown)

» Are there combinatorial properties of a permutation ¢ that imply that X (o) is of
low discrepancy? (permutation statistics)

» What makes permutation sets “special”?

For the last question have the following:

Theorem: Relation for permutation sets [N]

For every permutation o : {0,1,...,N — 1} — {0,1,..., N — 1} it holds

N2 +1

L5 (0)* = 4L5"(0)* + g3

Nicolas Nagel 14 / 22



Permutation sets

> Are permutation sets good candidates for approximate global minimizers? (even
optimality of Fibonacci lattices unknown)

» Are there combinatorial properties of a permutation ¢ that imply that X (o) is of
low discrepancy? (permutation statistics)

» What makes permutation sets “special”?

For the last question have the following:

Theorem: Relation for permutation sets [N]

For every permutation o : {0,1,...,N — 1} — {0,1,..., N — 1} it holds

N2 +1

L5 (0)* = 4L5"(0)* + g3

Note: Not a complete characterization of sets fulfilling this relation.

Nicolas Nagel 14 / 22



Permutation sets

Nicolas Nagel
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Latin hypercubes

Can be generalized to arbitrary dimensions:
» Permutations correspond to subsets of {0,1,..., N — 1}? with exactly one element
per row and column
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Latin hypercubes

Can be generalized to arbitrary dimensions:

» Permutations correspond to subsets of {0,1,..., N — 1}? with exactly one element
per row and column

» A (M-)Latin hypercube (of dimension d) H is a subset of {0,1,..., M — 1}% with
exactly one element per row (fixing any d — 1 coordinates and varying the remaining
one)

» Slight deviation from the usual terms: Latin squares ( “sudokus”) give Latin cubes
(point sets of dimension 3)

» M-Latin hypercubes consist of N = M9~ elements

> X(H) = 3;H point set
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Latin hypercubes

Can be generalized to arbitrary dimensions:

» Permutations correspond to subsets of {0,1,..., N — 1}? with exactly one element
per row and column

» A (M-)Latin hypercube (of dimension d) H is a subset of {0,1,..., M — 1}% with
exactly one element per row (fixing any d — 1 coordinates and varying the remaining
one)

» Slight deviation from the usual terms: Latin squares ( “sudokus”) give Latin cubes
(point sets of dimension 3)

» M-Latin hypercubes consist of N = M9~ elements

> X(H) = 3;H point set

Theorem: Relation for Latin hypercubes [N]

For every M-Latin hypercube of dimension d it holds

(2M? +1)% 4+ (M? — 1) — (1 + 2¢)M2?

Lger(/H)Z _ 2dL;xtr(/H)2 _ ST

Nicolas Nagel 16 / 22



Latin hypercubes

Even more general:
» Can define discrepancy for weighted point sets (X, w) where w: X — R
» Warnock-type formulas

d d
L& (X, w)? = Z w(x)w(y) |}§d _ H M _ H M
k=1 k=1

x,yeX

d
+ H (min{zy, yr} — -Tkylc)]
k=1

d
O = 3 wtsgots)| - g T (5 o+ vt |
k

x,yeX =1
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Latin hypercubes

Even more general:
» Can define discrepancy for weighted point sets (X, w) where w: X — R
» Warnock-type formulas

d d
L& (X, w)? = Z w(x)w(y) |}§d _ H M _ H M
k=1 k=1

x,yeX

d
+ H (min{zy, yr} — xkylc)]
k=1

d
O = 3 wtsgots)| - g T (5 o+ vt |
k

x,yeX =1

» Analogue for Latin hypercubes: weights w : ﬁ{o, 1,..., M — 1} — R with constant
row sums 1

» Same relation holds for this (linearly relaxed) case
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2885 ‘ Lower bounds

» Immediate consequence:
@M?+ 1)+ (M2 - 1) = (1L 2)M>T 2771 —1) | agy i

per 2
Ly (H)” = 6I M2 o 69 —

» Can be slightly improved in the constant:
> Let G:={0,1,...M —1}¢ and G := ;G (discretized torus)
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2885 ‘ Lower bounds

» Immediate consequence:
— (1 +2%)M2d g4t —1) Mt

2 d 2 d
per 2 (2M + 1) + (M — 1) _
Ly (H) z 64 M2 - 64 —_—
R =

» Can be slightly improved in the constant:
> Let G:={0,1,...M —1}¢ and G := ;G (discretized torus)

Z x) exp(27if - x)|

LY (G, w)? = —;—d (Zw X ) = Zuf

xeG [ {=te] xeG
d
% + 6# afk =0
He = H 1 0"
k=1 \ 2M2sin(x f,/M)? ’fk #
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2885 Lower bounds

Theorem: Lower bound, Latin hypercube [N]

For every M-Latin hypercube H of dimension d with N = M9~!

d 1/2 ~
L (H) > <2 _ 3d> Nt
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2885 Lower bounds

Theorem: Lower bound, Latin hypercube [N]

For every M-Latin hypercube H of dimension d with N = M9~!

d 1/2 ~
L (H) > <2 _ 3d> Nt

and

1/2 P
02 (1g7) (- oL

For d = 3: lower bound of order N*/2 (like random point sets)
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‘ Upper bounds

» Upper bound via probabilistic considerations
> ELS(H)? for uniformly random H
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2885 ‘ Upper bounds

» Upper bound via probabilistic considerations
> ELS(H)? for uniformly random H

min M —0 p p+o max (o = id)

Distribution of LY*'(#)?
with M =12, d =2
(permutations)

0.8 0.9 1
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2885 ‘ Upper bounds

Theorem: Expected periodic discrepancy [N]

(M —1)(M +1)% + (2M? + 1)4 — 2424

ELE(H)? = T
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2885 ‘ Upper bounds

Theorem: Expected periodic discrepancy [N]

(M —1)(M +1)% + (2M? + 1)4 — 2424

ELE(H)? = T

Theorem: Upper bound, Latin hypercube [N]

For d > 4 there is an M-Latin hypercube of dimension d with

1/2 un
LB (H) < (273(1) (1+0(1)) N,
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ogEc Conclusion

» Properties of point sets of the form

{%(al(n), e oa(n)) in = 0,1, N — 1} ?
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2885 Conclusion

» Properties of point sets of the form
1
{N(al(n), wuyog(n)):n=0,1,...,N — 1} ?

Thank you

Nicolas Nagel 22 /22
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