Efficient recovery of non-periodic multivariate functions from few scattered samples

Nicolas Nagel
Joint work with Felix Bartel, Kai Lüttgen and Tino Ullrich
ㄹ)
UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE
CHEMNITZ

ICIAM 2023 - Waseda University, Tokyo
23rd August 2023

Setting

- Given: $f:[-1,1]^{d} \rightarrow \mathbb{C}$ from some function space (Sobolev space)
- Goal: approximation of f via samples $f\left(\mathrm{x}^{1}\right), \ldots, f\left(\mathrm{x}^{n}\right)$
- Requirements:
- Universality: $\mathrm{x}^{1}, \ldots, \mathrm{x}^{n}$ should work for the whole function space
- Bound on the approximation error (depending on the dimension d, the number of samples n and the smoothness s of f)
It has been observed: if x^{1}, \ldots, x^{n} follow a Chebyshev distribution and one uses Chebyshev polynomials one obtains near optimal approximations.

We give a theoretical explanation of this phenomenon.

- Given: $f:[-1,1]^{d} \rightarrow \mathbb{C}$ from some function space (Sobolev space)
- Goal: approximation of f via samples $f\left(\mathbf{x}^{1}\right), \ldots, f\left(\mathbf{x}^{n}\right)$
- Requirements:
- Universality: $\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}$ should work for the whole function space
- Bound on the approximation error (depending on the dimension d, the number of samples n and the smoothness s of f)
It has been observed: if x^{1}, \ldots, x^{n} follow a Chebyshev distribution and one uses Chebyshev polynomials one obtains near optimal approximations.

We give a theoretical explanation of this phenomenon.

- Given: $f:[-1,1]^{d} \rightarrow \mathbb{C}$ from some function space (Sobolev space)
- Goal: approximation of f via samples $f\left(\mathbf{x}^{1}\right), \ldots, f\left(\mathbf{x}^{n}\right)$
- Requirements:
- Universality: $\mathrm{x}^{1}, \ldots, \mathrm{x}^{n}$ should work for the whole function space
- Bound on the approximation error (depending on the dimension d, the number of samples n and the smoothness s of f)
It has been observed: if $\mathbf{x}^{1}, \ldots, x^{n}$ follow a Chebyshev distribution and one uses Chebyshev polynomials one obtains near optimal approximations.

We give a theoretical explanation of this phenomenon.

- Given: $f:[-1,1]^{d} \rightarrow \mathbb{C}$ from some function space (Sobolev space)
- Goal: approximation of f via samples $f\left(\mathbf{x}^{1}\right), \ldots, f\left(\mathbf{x}^{n}\right)$
- Requirements:
- Universality: $\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}$ should work for the whole function space
- Bound on the approximation error (depending on the dimension d, the number of samples n and the smoothness s of f)
It has been observed: if $\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}$ follow a Chebyshev distribution and one uses Chebyshev polynomials one obtains near optimal approximations.

We give a theoretical explanation of this phenomenon.

Periodic functions

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp (\pi i \mathbf{k} \cdot \mathbf{x})$
- $\Lambda \subset \mathbb{Z}^{d}$ finite set of frequencies of size m
- $c_{\mathbf{k}}$ determined from the samples $f\left(\mathbf{x}^{i}\right)$
\Rightarrow Questions:
- Which frequencies Λ to use? \rightarrow Hyperbolic cross $\left(f \in H_{\text {mix }}^{s}\left(\mathbb{T}^{d}\right)\right.$ for $\left.s>1 / 2\right)$
- How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $\bar{N}=\tilde{O}(m \log m)$
\Rightarrow How to determine the coefficients c_{k} ? \rightarrow Ideally interpolate, in general as a least squares system

Theorem (TRIDG:
 M. ULirich '21)

For $s>1 / 2$ and using N samples, the above described procedure yields (with high probability) an approximation \tilde{f} with

$$
\|f-\tilde{f}\|_{L_{2}} \lesssim N^{-s}(\log N)^{d s}\|f\|_{H_{m i x}^{s}\left(\mathbb{T}^{d}\right)} .
$$

－$f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp (\pi i \mathbf{k} \cdot \mathbf{x})$
$\checkmark \Lambda \subset \mathbb{Z}^{d}$ finite set of frequencies of size m
－$c_{\mathbf{k}}$ determined from the samples $f\left(\mathbf{x}^{i}\right)$
－Questions：
－Which frequencies Λ to use？\rightarrow Hyperbolic cross $\left(f \in H_{\text {mix }}^{s}\left(T^{d}\right)\right.$ for $\left.s>1 / 2\right)$
\rightarrow How to choose the sample nodes？\rightarrow Uniformly random with logarithmic oversampling $N=O(m \log m)$
－How to determine the coefficients c_{k} ？\rightarrow Ideally interpolate，in general as a least squares system

Theorem（Krieg，M．Ullrich＇21）

For $s>1 / 2$ and using N samples，the above $d \epsilon$ scribed procedure yields（with high probability）an approximation \tilde{f} with

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp (\pi i \mathbf{k} \cdot \mathbf{x})$
$\checkmark \Lambda \subset \mathbb{Z}^{d}$ finite set of frequencies of size m
- $c_{\mathbf{k}}$ determined from the samples $f\left(\mathbf{x}^{i}\right)$
- Questions:
- Which frequencies Λ to use? \rightarrow Hyperbolic cross $\left(f \in H_{\text {mix }}^{s}\left(\mathbb{T}^{d}\right)\right.$ for $\left.s>1 / 2\right)$
$>$ How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $N=O(m \log m)$
- How to determine the coefficients c_{k} ? \rightarrow Ideally interpolate, in general as a least squares system

Theorem (Krieg, M. Ullrich '21)

For $s>1 / 2$ and using N samples, the above described procedure yields (with high probability) an approximation \tilde{f} with

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp (\pi i \mathbf{k} \cdot \mathbf{x})$
- $\Lambda \subset \mathbb{Z}^{d}$ finite set of frequencies of size m
- $c_{\mathbf{k}}$ determined from the samples $f\left(\mathbf{x}^{i}\right)$
- Questions:
- Which frequencies Λ to use? \rightarrow Hyperbolic cross $\left(f \in H_{\text {mix }}^{s}\left(\mathbb{T}^{d}\right)\right.$ for $\left.s>1 / 2\right)$
- How to choose the sample nodes?
\Rightarrow How to determine the coefficients c_{k} ? \rightarrow Ideally interpolate, in general as a least squares system

Theorem (TRIDG, M. Ulurich '21)
 For $s>1 / 2$ and using N samples, the above described procedure yields (with high probability) an approximation \tilde{f} with

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp (\pi i \mathbf{k} \cdot \mathbf{x})$
- $\Lambda \subset \mathbb{Z}^{d}$ finite set of frequencies of size m
- $c_{\mathbf{k}}$ determined from the samples $f\left(\mathbf{x}^{i}\right)$
- Questions:
- Which frequencies Λ to use? \rightarrow Hyperbolic cross $\left(f \in H_{\text {mix }}^{s}\left(\mathbb{T}^{d}\right)\right.$ for $\left.s>1 / 2\right)$
- How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $N=O(m \log m)$
\Rightarrow How to determine the coefficients c_{k} ? \rightarrow Ideally interpolate, in general as a least squares system

Theorem (KRIEG, M. UllRich '21)
 For $s>1 / 2$ and using N samples, the above described procedure yields (with high probability) an approximation \tilde{f} with

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp (\pi i \mathbf{k} \cdot \mathbf{x})$
- $\Lambda \subset \mathbb{Z}^{d}$ finite set of frequencies of size m
- $c_{\mathbf{k}}$ determined from the samples $f\left(\mathbf{x}^{i}\right)$
- Questions:
- Which frequencies Λ to use? \rightarrow Hyperbolic cross $\left(f \in H_{\text {mix }}^{s}\left(\mathbb{T}^{d}\right)\right.$ for $\left.s>1 / 2\right)$
- How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $N=O(m \log m)$
- How to determine the coefficients $c_{\mathbf{k}}$? \rightarrow Ideally interpolate, in general as a least squares system
\square

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp (\pi i \mathbf{k} \cdot \mathbf{x})$
- $\Lambda \subset \mathbb{Z}^{d}$ finite set of frequencies of size m
- $c_{\mathbf{k}}$ determined from the samples $f\left(\mathbf{x}^{i}\right)$
- Questions:
- Which frequencies Λ to use? \rightarrow Hyperbolic cross $\left(f \in H_{\text {mix }}^{s}\left(\mathbb{T}^{d}\right)\right.$ for $\left.s>1 / 2\right)$
- How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $N=O(m \log m)$
- How to determine the coefficients $c_{\mathbf{k}}$? \rightarrow Ideally interpolate, in general as a least squares system

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp (\pi i \mathbf{k} \cdot \mathbf{x})$
- $\Lambda \subset \mathbb{Z}^{d}$ finite set of frequencies of size m
- $c_{\mathbf{k}}$ determined from the samples $f\left(\mathbf{x}^{i}\right)$
- Questions:
- Which frequencies Λ to use? \rightarrow Hyperbolic cross $\left(f \in H_{\text {mix }}^{s}\left(\mathbb{T}^{d}\right)\right.$ for $\left.s>1 / 2\right)$
- How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $N=O(m \log m)$
- How to determine the coefficients $c_{\mathbf{k}}$? \rightarrow Ideally interpolate, in general as a least squares system

Theorem (Krieg, M. Ullrich '21)

For $s>1 / 2$ and using N samples, the above described procedure yields (with high probability) an approximation \tilde{f} with

$$
\|f-\tilde{f}\|_{L_{2}} \lesssim N^{-s}(\log N)^{d s}\|f\|_{H_{m i x}^{s}\left(\mathbb{T}^{d}\right)}
$$

Subsampling

- Wish: $n=O(m)$ samples should be enough
- Indeed: Possible by the Kadison-Singer problem via Weaver's $K S_{2}$-conjecture
Posed by Richard Kadison and Isadore Singer in 1959
- Rather abstract problem from functional analysis (motivated by quantum physics)
> Many equivalent formulations:

$$
\begin{aligned}
\text { Kadison-Singer } & \Leftrightarrow \text { Anderson's paving conjecture } \\
& \Leftrightarrow \text { Weaver's } K S_{2} \text {-conjecture } \\
& \Leftrightarrow \text { Feichtinger conjecture } \\
& \Leftrightarrow \text { Bourgain-Tzafriri conjecture }
\end{aligned}
$$

- Solved by Marcus, Spielman, Srivastava 2015
- Wish: $n=O(m)$ samples should be enough
- Indeed: Possible by the Kadison-Singer problem via Weaver's $K S_{2}$-conjecture
- Posed by Richard Kadison and Isadore Singer in 1959
- Rather abstract problem from functional analysis (motivated by quantum physics)
- Many equivalent formulations:

- Solved by Marcus, Spielman, Srivastava 2015
- Wish: $n=O(m)$ samples should be enough
- Indeed: Possible by the Kadison-Singer problem via Weaver's $K S_{2}$-conjecture
- Posed by Richard Kadison and Isadore Singer in 1959
- Rather abstract problem from functional analysis (motivated by quantum physics)
- Many equivalent formulations:

$$
\begin{aligned}
\text { Kadison-Singer } & \Leftrightarrow \text { Anderson's paving conjecture } \\
& \Leftrightarrow \text { Weaver's } K S_{2} \text {-conjecture } \\
& \Leftrightarrow \text { Feichtinger conjecture } \\
& \Leftrightarrow \text { Bourgain-Tzafriri conjecture }
\end{aligned}
$$

- Solved by Marcus, Spielman, Srivastava 2015
- Wish: $n=O(m)$ samples should be enough
- Indeed: Possible by the Kadison-Singer problem via Weaver's $K S_{2}$-conjecture
- Posed by Richard Kadison and Isadore Singer in 1959
- Rather abstract problem from functional analysis (motivated by quantum physics)
- Many equivalent formulations:

$$
\begin{aligned}
\text { Kadison-Singer } & \Leftrightarrow \text { Anderson's paving conjecture } \\
& \Leftrightarrow \text { Weaver's } K S_{2} \text {-conjecture } \\
& \Leftrightarrow \text { Feichtinger conjecture } \\
& \Leftrightarrow \text { Bourgain-Tzafriri conjecture }
\end{aligned}
$$

- Solved by Marcus, Spielman, Srivastava 2015

Subsampling

Consider \mathbb{C}^{m} as a Hilbert space

- A frame is a sequence $\mathbf{u}^{1}, \ldots, \mathbf{u}^{N} \in \mathbb{C}^{m}$ such that

$$
A\|\mathbf{w}\|_{2}^{2} \leq \sum_{i=1}^{N}\left|\left\langle\mathbf{w}, \mathbf{u}^{i}\right\rangle\right|^{2} \leq B\|\mathbf{w}\|_{2}^{2}
$$

for all $\mathbf{w} \in \mathbb{C}^{m}$, where A and B are constants (the frame bounds)

- B / A the condition of the frame

Theorem (Weaver's $K S_{2}$-conjecture; Marcus, Spielman, Srivastava '15)
If $\mathbf{u}^{1}, \ldots, \mathbf{u}^{N} \in \mathbb{C}^{m}$ with $\left\|\mathbf{u}^{i}\right\|_{2}=1$ for all i and

$$
\sum_{i=1}^{N}\left|\left\langle\mathbf{w}, \mathbf{u}^{i}\right\rangle\right|^{2}=18\|\mathbf{w}\|_{2}^{2}
$$

for all $\mathbf{w} \in \mathbb{C}^{m}$, then one can partition $S_{1} \dot{\cup} S_{2}=[N]$ such that

$$
2\|\mathbf{w}\|_{2}^{2} \leq \sum_{i \in S_{j}}\left|\left\langle\mathbf{w}, \mathbf{u}^{i}\right\rangle\right|^{2} \leq 16\|\mathbf{w}\|_{2}^{2}
$$

for all $\mathbf{w} \in \mathbb{C}^{m}$ and $j=1,2$.

Need: extract subframes from large frames with guarantees on their condition

- Nitzan, OlevskiI, Ulanovskii 2014: 1-tight frame $\mathbf{u}^{1}, \ldots, \mathbf{u}^{N} \in \mathbb{C}^{m}$ with $\left\|\mathbf{u}^{i}\right\|_{2}^{2}=m / N$, there is a $J \subseteq[N]$ with $\# J=O(m)$ and resulting frame bounds $c \frac{m}{N}$ and $C \frac{m}{N}$
only upper bound on the norms
Ullrich 2020: Non-tight frames and Dolbeault, Krieg, M. Ullrich 2022: Infinite-dimensional version in

Need: extract subframes from large frames with guarantees on their condition

- Nitzan, OlevskiI, Ulanovskii 2014: 1-tight frame $\mathbf{u}^{1}, \ldots, \mathbf{u}^{N} \in \mathbb{C}^{m}$ with $\left\|\mathbf{u}^{i}\right\|_{2}^{2}=m / N$, there is a $J \subseteq[N]$ with $\# J=O(m)$ and resulting frame bounds $c \frac{m}{N}$ and $C \frac{m}{N}$
- Temlyakov/N, Schäfer, T. Ullrich 2020: Non-tight frames and only upper bound on the norms
- Dolbeault, Krieg, M. Ullrich 2022: Infinite-dimensional version in ℓ_{2}

Apply to $\mathbf{u}^{i}=\left[\eta_{\mathbf{k}}\left(\mathbf{x}^{i}\right)\right]_{\mathbf{k} \in \Lambda}$ to get well-conditioned subframe on $J \subseteq[N]$ of size $n=O(m)$ (down from $N=O(m \log m)$) with almost asymptotically equal approximation properties

Theorem (N, SchÄfer, T. UllRICH '22)

For $s>1 / 2$ and using n samples, the algorithm together with the subsampling step yields (with high probability) an approximation \tilde{f} with

$$
\|f-\tilde{f}\|_{L_{2}} \lesssim n^{-s}(\log n)^{(d-1) s+1 / 2}\|f\|_{H_{m i x}^{s}\left(\mathbb{T}^{d}\right)}
$$

Note: Can get rid of the $\sqrt{\log n}$ factor by Dolbeault, Krieg, M. Ullrich - Problems

- Non-algorithmic: Kadison-Singer only gives existence of a subframe - The oversampling factor $n=b m$ might be huge (e.g. $b=6000$) - Polynomial time algorithm with small oversampling factor $b=1+\varepsilon$:
Based on BATSON, SpIELMAN, SRIVASTAVA 2009 and developed further by Bartel, Schäfer, T. Ullrich 2023

Apply to $\mathbf{u}^{i}=\left[\eta_{\mathbf{k}}\left(\mathbf{x}^{i}\right)\right]_{\mathbf{k} \in \Lambda}$ to get well-conditioned subframe on $J \subseteq[N]$ of size $n=O(m)$ (down from $N=O(m \log m)$) with almost asymptotically equal approximation properties

Theorem (N, SCHÄFER, T. UlLRICH '22)

For $s>1 / 2$ and using n samples, the algorithm together with the subsampling step yields (with high probability) an approximation \tilde{f} with

$$
\|f-\tilde{f}\|_{L_{2}} \lesssim n^{-s}(\log n)^{(d-1) s+1 / 2}\|f\|_{H_{m i x}^{s}\left(\mathbb{T}^{d}\right)}
$$

Note: Can get rid of the $\sqrt{\log n}$ factor by Dolbeault, Krieg, M. Ullrich

- Problems:
- Non-algorithmic: Kadison-Singer only gives existence of a subframe
- The oversampling factor $n=b m$ might be huge (e.g. $b=6000$)
> > Polynomial time algorithm with small oversampling factor $b=1+\varepsilon$ Based on Batson, Spielman, Srivastava 2009 and developed further by Bartel, Schäfer, T. Ullrich 2023

Apply to $\mathbf{u}^{i}=\left[\eta_{\mathbf{k}}\left(\mathbf{x}^{i}\right)\right]_{\mathbf{k} \in \Lambda}$ to get well-conditioned subframe on $J \subseteq[N]$ of size $n=O(m)$ (down from $N=O(m \log m)$) with almost asymptotically equal approximation properties

Theorem (N, SchÄfer, T. UllRICH '22)

For $s>1 / 2$ and using n samples, the algorithm together with the subsampling step yields (with high probability) an approximation \tilde{f} with

$$
\|f-\tilde{f}\|_{L_{2}} \lesssim n^{-s}(\log n)^{(d-1) s+1 / 2}\|f\|_{H_{m i x}^{s}\left(\mathbb{T}^{d}\right)}
$$

Note: Can get rid of the $\sqrt{\log n}$ factor by Dolbeault, Krieg, M. Ullrich

- Problems:
- Non-algorithmic: Kadison-Singer only gives existence of a subframe
- The oversampling factor $n=b m$ might be huge (e.g. $b=6000$)
- Polynomial time algorithm with small oversampling factor $b=1+\varepsilon$: Based on Batson, Spielman, Srivastava 2009 and developed further by Bartel, Schäfer, T. Ullrich 2023

Theorem (Batson, Spielman, Srivastava ’09/Bartel, Schäfer, T. Ullrich '23)

Let $\mathbf{u}^{1}, \ldots, \mathbf{u}^{N} \in \mathbb{C}^{m}$ (arbitrary), choose $b>1+\frac{1}{m}$ and assume $N \geq b m$. There is a polynomial time algorithm to construct a $J \subseteq[N]$ with $\# J \leq\lceil b m\rceil$ and

$$
\frac{1}{N} \sum_{i=1}^{N}\left|\left\langle\mathbf{w}, \mathbf{u}^{i}\right\rangle\right|^{2} \leq 89 \frac{(b+1)^{2}}{(b-1)^{3}} \cdot \frac{1}{m} \sum_{j \in J}\left|\left\langle\mathbf{w}, \mathbf{u}^{j}\right\rangle\right|^{2}
$$

Note: only lower bound, algorithm with guarantee on the upper bound unknown Still: resulting sample nodes $\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}$ random, their quality is measured by the condition of the matrix

Theorem (Batson, Spielman, Srivastava ’09/Bartel, SChÄFER, T. UlLRICH '23)

Let $\mathbf{u}^{1}, \ldots, \mathbf{u}^{N} \in \mathbb{C}^{m}$ (arbitrary), choose $b>1+\frac{1}{m}$ and assume $N \geq b m$. There is a polynomial time algorithm to construct a $J \subseteq[N]$ with $\# J \leq\lceil b m\rceil$ and

$$
\frac{1}{N} \sum_{i=1}^{N}\left|\left\langle\mathbf{w}, \mathbf{u}^{i}\right\rangle\right|^{2} \leq 89 \frac{(b+1)^{2}}{(b-1)^{3}} \cdot \frac{1}{m} \sum_{j \in J}\left|\left\langle\mathbf{w}, \mathbf{u}^{j}\right\rangle\right|^{2}
$$

Note: only lower bound, algorithm with guarantee on the upper bound unknown Still: resulting sample nodes $\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}$ random, their quality is measured by the condition of the matrix

$$
\left[\begin{array}{ccc}
\eta_{\mathbf{k}_{1}}\left(\mathbf{x}^{1}\right) & \cdots & \eta_{\mathbf{k}_{m}}\left(\mathbf{x}^{1}\right) \\
\vdots & & \vdots \\
\eta_{\mathbf{k}_{1}}\left(\mathbf{x}^{n}\right) & \cdots & \eta_{\mathbf{k}_{m}}\left(\mathbf{x}^{n}\right)
\end{array}\right]
$$

Subsampling ($d=2, R=20, m=107, N=2000, n=117$)

Final algorithm (periodic):

- Choose size of hyperbolic cross $\Lambda=\left\{\mathbf{k} \in \mathbb{Z}^{d}: \prod_{\ell=1}^{d} \max \left\{1,\left|k_{\ell}\right|\right\} \leq R\right\}$, $m=\# \Lambda$
- Set $N=\lceil 4 m \log m\rceil$
- Choose N nodes $\mathbf{x}^{i} \in[-1,1]^{d}$ uniformly at random
- Subsampling gives nodes $\left\{\mathbf{x}^{j}: j \in J\right\}$ with $n=\# J \leq\lceil 1.1 m\rceil$ using the basis functions $\eta_{\mathbf{k}}(\mathbf{x})=\prod_{\ell=1}^{d} e^{\pi i k_{\ell} x_{\ell}}$ (works for all of $H_{\text {mix }}^{s}\left(\mathbb{T}^{d}\right)$)
- Determine the coefficients $c_{\mathbf{k}}$ from the $\mathbf{x}^{j}, j \in J$ via the least-squares system with the basis functions $\eta_{\mathbf{k}}(\mathbf{x})$

Non－periodic functions

Non－periodic functions

Applying the above procedure to a more general function $f:[-1,1]^{d} \rightarrow \mathbb{C}$ treats f like a periodized version on \mathbb{R}^{d}

Applying the above procedure to a more general function $f:[-1,1]^{d} \rightarrow \mathbb{C}$ treats f like a periodized version on \mathbb{R}^{d}
\Rightarrow may introduce non-regularities

Applying the above procedure to a more general function $f:[-1,1]^{d} \rightarrow \mathbb{C}$ treats f like a periodized version on \mathbb{R}^{d}
\Rightarrow may introduce non-regularities

To apply the algorithm for periodic functions, we need to periodize f in a way that preserves regularity

- Periodic extension: May introduce discontinuities
- Tent transform: Preserves continuity, might destroy smoothness (kinks)

$$
\left(T_{\cos } f\right)\left(x_{1}, \ldots, x_{d}\right)=f\left(\cos \pi x_{1}, \ldots, \cos \pi x_{d}\right)
$$

To apply the algorithm for periodic functions, we need to periodize f in a way that preserves regularity

- Periodic extension: May introduce discontinuities
- Tent transform: Preserves continuity, might destroy smoothness (kinks) We will use a cosine composition $T_{\text {cos }}$ defined by

$$
\left(T_{\cos } f\right)\left(x_{1}, \ldots, x_{d}\right)=f\left(\cos \pi x_{1}, \ldots, \cos \pi x_{d}\right)
$$

To apply the algorithm for periodic functions, we need to periodize f in a way that preserves regularity

- Periodic extension: May introduce discontinuities
- Tent transform: Preserves continuity, might destroy smoothness (kinks) We will use a cosine composition $T_{\text {cos }}$ defined by

$$
\left(T_{\cos } f\right)\left(x_{1}, \ldots, x_{d}\right)=f\left(\cos \pi x_{1}, \ldots, \cos \pi x_{d}\right)
$$

Theorem (Bartel, Lüttgen, N, T. Ullrich)

The operator $T_{\text {cos }}$ is continuous as

$$
T_{\mathrm{cos}}: H_{m i x}^{s}\left([-1,1]^{d}\right) \rightarrow H_{m i x}^{s}\left(\mathbb{T}^{d}\right)
$$

for $s>1 / 2$.
More general versions over Besov spaces are possible (to be published in a future paper by Lüttgen, T. Ullrich)

Strategy: Approximate $T_{\text {cos }} f$ with the Fourier basis and undo the periodization

	$f\left(\cos \pi x_{1}, \ldots, \cos \pi x_{d}\right)$	$f\left(x_{1}, \ldots, x_{d}\right)$
Sample nodes	$\mathbf{x}^{i} \sim \mathcal{U}[-1,1]^{d}$	$\mathbf{x}^{i}=\cos \left(\pi \mathbf{U}^{i}\right), \mathbf{U}^{i} \sim \mathcal{U}[-1,1]^{d}$
		$\mathrm{~d} \varrho(\mathbf{x})=\prod_{\ell=1}^{d}\left(\pi \sqrt{1-x_{\ell}^{2}}\right)^{-1} \mathrm{~d} \mathbf{x}$
Basis functions	$\prod_{\ell=1}^{d} \cos \left(\pi k_{\ell} x_{\ell}\right)$	$\prod_{\ell=1}^{d} \cos \left(k_{\ell} \arccos x_{\ell}\right)$

Strategy: Approximate $T_{\text {cos }} f$ with the Fourier basis and undo the periodization

	$f\left(\cos \pi x_{1}, \ldots, \cos \pi x_{d}\right)$	$f\left(x_{1}, \ldots, x_{d}\right)$
Sample nodes	$\mathbf{x}^{i} \sim \mathcal{U}[-1,1]^{d}$	$\mathbf{x}^{i}=\cos \left(\pi \mathbf{U}^{i}\right), \mathbf{U}^{i} \sim \mathcal{U}[-1,1]^{d}$
		$\mathrm{~d} \varrho(\mathbf{x})=\prod_{\ell=1}^{d}\left(\pi \sqrt{1-x_{\ell}^{2}}\right)^{-1} \mathrm{~d} \mathbf{x}$
Basis functions	$\prod_{\ell=1}^{d} \cos \left(\pi k_{\ell} x_{\ell}\right)$	$\prod_{\ell=1}^{d} \cos \left(k_{\ell} \arccos x_{\ell}\right)$

- x^{i} Chebyshev distributed
- $\eta_{\mathbf{k}}(\mathbf{x})=\prod_{\ell=1}^{d} T_{k_{\ell}}\left(x_{\ell}\right), \mathbf{k} \in \mathbb{N}_{0}^{d}$ with $T_{k}(x)=\sqrt{2}^{\min \{1, k\}} \cos (k \arccos x)$ ($L_{2}(\varrho)$-normalized Chebyshev polynomials)

Final algorithm (non-periodic):

- Choose size of hyperbolic cross $\Lambda=\left\{\mathbf{k} \in \mathbb{N}_{0}^{d}: \prod_{\ell=1}^{d} \max \left\{1, k_{\ell}\right\} \leq R\right\}$ (in the non-negative orthant), $m=\# \Lambda$
- Set $N=\lceil 4 m \log m\rceil$
- Choose N nodes $\mathbf{x}^{i} \in[-1,1]^{d}$ Chebyshev distributed
- Subsampling gives nodes $\left\{\mathbf{x}^{j}: j \in J\right\}$ with $n=\# J \leq\lceil 1.1 m\rceil$ using the basis functions $\eta_{\mathbf{k}}(\mathbf{x})=\prod_{\ell=1}^{d} T_{k_{\ell}}\left(x_{\ell}\right)$ (works for all of $H_{\text {mix }}^{s}\left([-1,1]^{d}\right)$)
- Determine the coefficients $c_{\mathbf{k}}$ from the $\mathbf{x}^{j}, j \in J$ via the least-squares system with the basis functions $\eta_{\mathbf{k}}(\mathbf{x})$

For $s>1 / 2$ and using n samples, the above algorithm yields (with high probability) an approximation f with

Final algorithm (non-periodic):

- Choose size of hyperbolic cross $\Lambda=\left\{\mathbf{k} \in \mathbb{N}_{0}^{d}: \prod_{\ell=1}^{d} \max \left\{1, k_{\ell}\right\} \leq R\right\}$ (in the non-negative orthant), $m=\# \Lambda$
- Set $N=\lceil 4 m \log m\rceil$
- Choose N nodes $\mathbf{x}^{i} \in[-1,1]^{d}$ Chebyshev distributed
- Subsampling gives nodes $\left\{\mathbf{x}^{j}: j \in J\right\}$ with $n=\# J \leq\lceil 1.1 m\rceil$ using the basis functions $\eta_{\mathbf{k}}(\mathbf{x})=\prod_{\ell=1}^{d} T_{k_{\ell}}\left(x_{\ell}\right)$ (works for all of $H_{\text {mix }}^{s}\left([-1,1]^{d}\right)$)
- Determine the coefficients $c_{\mathbf{k}}$ from the $\mathbf{x}^{j}, j \in J$ via the least-squares system with the basis functions $\eta_{\mathbf{k}}(\mathbf{x})$

Theorem (Bartel, LÜTtgen, N, T. Ullrich)

For $s>1 / 2$ and using n samples, the above algorithm yields (with high probability) an approximation \tilde{f} with

$$
\|f-\tilde{f}\|_{L_{2}(\varrho)} \lesssim n^{-s}(\log n)^{(d-1) s+1 / 2}\|f\|_{H_{m i x}^{s}\left([-1,1]^{d}\right)}
$$

Numerical experiment

Test function: Tensored cutout of a quadratic B-spline (smoothness $s=2.5$)

Approximation error for an $f \in H_{\text {mix }}^{2.5-\varepsilon}\left([-1,1]^{d}\right)$

Further test functions (7-dimensional), error measured in L_{∞} (BARTHELMANN, Novak, Ritter 2000)

Further test functions (7-dimensional), error measured in L_{∞} (BARTHELMANN, Novak, Ritter 2000)

The end

- "Constructive Kadison-Singer"? (remove the $\sqrt{\log }$-factor)
- Deterministic constructions for good samples nodes?

Thank you for your attention!

The end

- "Constructive Kadison-Singer"? (remove the $\sqrt{\log -f a c t o r) ~}$
- Deterministic constructions for good samples nodes?

Thank you for your attention!

