

Efficient recovery of non-periodic multivariate functions from few scattered samples

Nicolas Nagel

Joint work with Felix Bartel, Kai Lüttgen and Tino Ullrich

ICIAM 2023 - Waseda University, Tokyo 23rd August 2023

Nicolas Nagel 1 / 25 http://www.tu-chemnitz.de/

Setting

- ▶ Given: $f: [-1,1]^d \to \mathbb{C}$ from some function space (Sobolev space)
- ▶ Goal: approximation of f via samples $f(\mathbf{x}^1),...,f(\mathbf{x}^n)$
- ► Requirements:
 - ightharpoonup Universality: $\mathbf{x}^1,...,\mathbf{x}^n$ should work for the whole function space
 - Bound on the approximation error (depending on the dimension d, the number of samples n and the smoothness s of f)

It has been observed: if $\mathbf{x}^1,...,\mathbf{x}^n$ follow a **Chebyshev distribution** and one uses **Chebyshev polynomials** one obtains near optimal approximations.

We give a theoretical explanation of this phenomenon.

- ▶ Given: $f: [-1,1]^d \to \mathbb{C}$ from some function space (Sobolev space)
- ▶ Goal: approximation of f via samples $f(\mathbf{x}^1), ..., f(\mathbf{x}^n)$
- Requirements:
 - ightharpoonup Universality: $x^1, ..., x^n$ should work for the whole function space
 - \triangleright Bound on the approximation error (depending on the dimension d, the number of samples n and the smoothness s of f)

- ▶ Given: $f: [-1,1]^d \to \mathbb{C}$ from some function space (Sobolev space)
- ▶ Goal: approximation of f via samples $f(\mathbf{x}^1), ..., f(\mathbf{x}^n)$
- Requirements:
 - ightharpoonup Universality: $x^1, ..., x^n$ should work for the whole function space
 - \triangleright Bound on the approximation error (depending on the dimension d, the number of samples n and the smoothness s of f)

It has been observed: if $x^1, ..., x^n$ follow a **Chebyshev distribution** and one uses **Chebyshev polynomials** one obtains near optimal approximations.

- ▶ Given: $f: [-1,1]^d \to \mathbb{C}$ from some function space (Sobolev space)
- ▶ Goal: approximation of f via samples $f(\mathbf{x}^1),...,f(\mathbf{x}^n)$
- ► Requirements:
 - ightharpoonup Universality: $\mathbf{x}^1,...,\mathbf{x}^n$ should work for the whole function space
 - Bound on the approximation error (depending on the dimension d, the number of samples n and the smoothness s of f)

It has been observed: if $\mathbf{x}^1,...,\mathbf{x}^n$ follow a **Chebyshev distribution** and one uses **Chebyshev polynomials** one obtains near optimal approximations.

We give a theoretical explanation of this phenomenon.

Periodic functions

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp(\pi i \mathbf{k} \cdot \mathbf{x})$
 - $lackbox{} \Lambda \subset \mathbb{Z}^d$ finite set of frequencies of size m
 - $ightharpoonup c_{\mathbf{k}}$ determined from the samples $f(\mathbf{x}^i)$
- Questions:
 - ▶ Which frequencies Λ to use? \to Hyperbolic cross $(f \in H^s_{\mathsf{mix}}(\mathbb{T}^d) \text{ for } s > 1/2)$
 - ▶ How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $N = O(m \log m)$
 - ▶ How to determine the coefficients $c_{\mathbf{k}}$? → Ideally interpolate, in general as a least squares system

$$||f - \tilde{f}||_{L_2} \lesssim N^{-s} (\log N)^{ds} ||f||_{H^s_{mix}(\mathbb{T}^d)}$$

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp(\pi i \mathbf{k} \cdot \mathbf{x})$
 - $ightharpoonup \Lambda \subset \mathbb{Z}^d$ finite set of frequencies of size m
 - $ightharpoonup c_{\mathbf{k}}$ determined from the samples $f(\mathbf{x}^i)$
- Questions:
 - ▶ Which frequencies Λ to use? \to Hyperbolic cross $(f \in H^s_{mix}(\mathbb{T}^d) \text{ for } s > 1/2)$
 - ▶ How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $N = O(m \log m)$
 - ▶ How to determine the coefficients $c_{\mathbf{k}}$? → Ideally interpolate, in general as a least squares system

Theorem (Krieg, M. Ullrich '21)

$$||f - \tilde{f}||_{L_2} \lesssim N^{-s} (\log N)^{ds} ||f||_{H^s_{mix}(\mathbb{T}^d)}$$

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp(\pi i \mathbf{k} \cdot \mathbf{x})$
 - $lackbox{} \Lambda \subset \mathbb{Z}^d$ finite set of frequencies of size m
 - $ightharpoonup c_{\mathbf{k}}$ determined from the samples $f(\mathbf{x}^i)$
- Questions:
 - lacktriangle Which frequencies Λ to use? \to Hyperbolic cross $(f \in H^s_{ ext{mix}}(\mathbb{T}^d) \text{ for } s > 1/2)$
 - ▶ How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $N = O(m \log m)$
 - ▶ How to determine the coefficients $c_{\mathbf{k}}$? → Ideally interpolate, in general as a least squares system

$$||f - \tilde{f}||_{L_2} \lesssim N^{-s} (\log N)^{ds} ||f||_{H^s_{mix}(\mathbb{T}^d)}$$

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp(\pi i \mathbf{k} \cdot \mathbf{x})$
 - $lackbox{} \Lambda \subset \mathbb{Z}^d$ finite set of frequencies of size m
 - $ightharpoonup c_{\mathbf{k}}$ determined from the samples $f(\mathbf{x}^i)$
- Questions:
 - lacktriangle Which frequencies Λ to use? o Hyperbolic cross $(f \in H^s_{ ext{mix}}(\mathbb{T}^d) ext{ for } s > 1/2)$
 - ▶ How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $N = O(m \log m)$
 - ▶ How to determine the coefficients $c_{\mathbf{k}}$? → Ideally interpolate, in general as a least squares system

$$||f - \tilde{f}||_{L_2} \lesssim N^{-s} (\log N)^{ds} ||f||_{H^s_{mix}(\mathbb{T}^d)}$$

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp(\pi i \mathbf{k} \cdot \mathbf{x})$
 - $lackbox{} \Lambda \subset \mathbb{Z}^d$ finite set of frequencies of size m
 - $ightharpoonup c_{\mathbf{k}}$ determined from the samples $f(\mathbf{x}^i)$
- Questions:
 - lacktriangle Which frequencies Λ to use? \to Hyperbolic cross $(f \in H^s_{ ext{mix}}(\mathbb{T}^d) \text{ for } s > 1/2)$
 - ▶ How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $N = O(m \log m)$
 - ▶ How to determine the coefficients $c_{\mathbf{k}}$? → Ideally interpolate, in general as a least squares system

$$||f - \tilde{f}||_{L_2} \lesssim N^{-s} (\log N)^{ds} ||f||_{H^s_{mix}(\mathbb{T}^d)}$$

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp(\pi i \mathbf{k} \cdot \mathbf{x})$
 - $lackbox{} \Lambda \subset \mathbb{Z}^d$ finite set of frequencies of size m
 - $ightharpoonup c_{\mathbf{k}}$ determined from the samples $f(\mathbf{x}^i)$
- Questions:
 - ▶ Which frequencies Λ to use? \to Hyperbolic cross $(f \in H^s_{mix}(\mathbb{T}^d) \text{ for } s > 1/2)$
 - ▶ How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $N = O(m \log m)$
 - lackbox How to determine the coefficients $c_{f k}$? ightarrow Ideally interpolate, in general as a least squares system

Theorem (Krieg, M. Ullrich '21)

$$||f - \tilde{f}||_{L_2} \lesssim N^{-s} (\log N)^{ds} ||f||_{H^s_{mix}(\mathbb{T}^d)}$$

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp(\pi i \mathbf{k} \cdot \mathbf{x})$
 - $lackbox{} \Lambda \subset \mathbb{Z}^d$ finite set of frequencies of size m
 - $ightharpoonup c_{\mathbf{k}}$ determined from the samples $f(\mathbf{x}^i)$
- Questions:
 - lacktriangle Which frequencies Λ to use? o Hyperbolic cross $(f \in H^s_{ ext{mix}}(\mathbb{T}^d) ext{ for } s > 1/2)$
 - ▶ How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $N = O(m \log m)$
 - ▶ How to determine the coefficients $c_{\mathbf{k}}$? → Ideally interpolate, in general as a least squares system

$$||f - \tilde{f}||_{L_2} \lesssim N^{-s} (\log N)^{ds} ||f||_{H^s_{mix}(\mathbb{T}^d)}$$

- $f(\mathbf{x}) \approx \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} \exp(\pi i \mathbf{k} \cdot \mathbf{x})$
 - $lackbox{} \Lambda \subset \mathbb{Z}^d$ finite set of frequencies of size m
 - $ightharpoonup c_{\mathbf{k}}$ determined from the samples $f(\mathbf{x}^i)$
- Questions:
 - lacktriangle Which frequencies Λ to use? o Hyperbolic cross $(f \in H^s_{\mathsf{mix}}(\mathbb{T}^d) \text{ for } s > 1/2)$
 - ▶ How to choose the sample nodes? \rightarrow Uniformly random with logarithmic oversampling $N = O(m \log m)$
 - ▶ How to determine the coefficients $c_{\mathbf{k}}$? → Ideally interpolate, in general as a least squares system

$$||f - \tilde{f}||_{L_2} \lesssim N^{-s} (\log N)^{ds} ||f||_{H^s_{mix}(\mathbb{T}^d)}.$$

Subsampling

- ▶ Wish: n = O(m) samples should be enough
- ▶ Indeed: Possible by the Kadison-Singer problem via Weaver's KS_2 -conjecture
- Posed by Richard Kadison and Isadore Singer in 1959
- Rather abstract problem from functional analysis (motivated by quantum physics)
- ► Many equivalent formulations:

 \Leftrightarrow Weaver's KS_2 -conjecture

⇔ Feichtinger conjecture

⇔ Bourgain-Tzafriri conjecture

► Solved by Marcus, Spielman, Srivastava 2015

- ▶ Wish: n = O(m) samples should be enough
- lacktriangle Indeed: Possible by the Kadison-Singer problem via Weaver's KS_2 -conjecture
- ▶ Posed by Richard Kadison and Isadore Singer in 1959
- Rather abstract problem from functional analysis (motivated by quantum physics)
- ► Many equivalent formulations:

- \Leftrightarrow Weaver's KS_2 -conjecture
- ⇔ Feichtinger conjecture
- ⇔ Bourgain-Tzafriri conjecture
- ► Solved by Marcus, Spielman, Srivastava 2015

- ▶ Wish: n = O(m) samples should be enough
- ▶ Indeed: Possible by the Kadison-Singer problem via Weaver's KS_2 -conjecture
- ▶ Posed by Richard Kadison and Isadore Singer in 1959
- Rather abstract problem from functional analysis (motivated by quantum physics)
- ► Many equivalent formulations:

 \Leftrightarrow Weaver's KS_2 -conjecture

⇔ Feichtinger conjecture

⇔ Bourgain-Tzafriri conjecture

► Solved by Marcus, Spielman, Srivastava 2015

Nicolas Nagel 7 / 25 http://www.tu-chemnitz.de/

- ▶ Wish: n = O(m) samples should be enough
- ▶ Indeed: Possible by the Kadison-Singer problem via Weaver's KS_2 -conjecture
- ▶ Posed by Richard Kadison and Isadore Singer in 1959
- Rather abstract problem from functional analysis (motivated by quantum physics)
- Many equivalent formulations:

 \Leftrightarrow Weaver's KS_2 -conjecture

⇔ Feichtinger conjecture

 \Leftrightarrow Bourgain-Tzafriri conjecture

▶ Solved by Marcus, Spielman, Srivastava 2015

Nicolas Nagel 7 / 25 http://www.tu-chemnitz.de/

Consider \mathbb{C}^m as a Hilbert space

ightharpoonup A frame is a sequence $\mathbf{u}^1,...,\mathbf{u}^N\in\mathbb{C}^m$ such that

$$A\|\mathbf{w}\|_2^2 \le \sum_{i=1}^N |\langle \mathbf{w}, \mathbf{u}^i \rangle|^2 \le B\|\mathbf{w}\|_2^2$$

for all $\mathbf{w} \in \mathbb{C}^m$, where A and B are constants (the **frame bounds**)

ightharpoonup B/A the **condition** of the frame

Theorem (Weaver's KS_2 -conjecture; MARCUS, SPIELMAN, SRIVASTAVA '15)

If $\mathbf{u}^1,...,\mathbf{u}^N \in \mathbb{C}^m$ with $\|\mathbf{u}^i\|_2 = 1$ for all i and

$$\sum_{i=1}^{N} |\langle \mathbf{w}, \mathbf{u}^i \rangle|^2 = 18 \|\mathbf{w}\|_2^2$$

for all $\mathbf{w} \in \mathbb{C}^m$, then one can partition $S_1 \dot{\cup} S_2 = [N]$ such that

$$2\|\mathbf{w}\|_2^2 \le \sum_{i \in S_i} |\langle \mathbf{w}, \mathbf{u}^i \rangle|^2 \le 16\|\mathbf{w}\|_2^2$$

for all $\mathbf{w} \in \mathbb{C}^m$ and j = 1, 2.

Need: extract subframes from large frames with guarantees on their condition

- NITZAN, OLEVSKII, ULANOVSKII 2014: 1-tight frame $\mathbf{u}^1,...,\mathbf{u}^N\in\mathbb{C}^m$ with $\|\mathbf{u}^i\|_2^2=m/N$, there is a $J\subseteq[N]$ with #J=O(m) and resulting frame bounds $c\frac{m}{N}$ and $C\frac{m}{N}$
- ► TEMLYAKOV/N, SCHÄFER, T. ULLRICH 2020: Non-tight frames and only upper bound on the norms
- \blacktriangleright Dolbeault, Krieg, M. Ullrich 2022: Infinite-dimensional version in ℓ_2

Need: extract subframes from large frames with guarantees on their condition

- ▶ NITZAN, OLEVSKII, ULANOVSKII 2014: 1-tight frame $\mathbf{u}^1,...,\mathbf{u}^N\in\mathbb{C}^m$ with $\|\mathbf{u}^i\|_2^2=m/N$, there is a $J\subseteq[N]$ with #J=O(m) and resulting frame bounds $c\frac{m}{N}$ and $C\frac{m}{N}$
- ► TEMLYAKOV/N, SCHÄFER, T. ULLRICH 2020: Non-tight frames and only upper bound on the norms
- Dolbeault, Krieg, M. Ullrich 2022: Infinite-dimensional version in ℓ_2

Apply to $\mathbf{u}^i = [\eta_{\mathbf{k}}(\mathbf{x}^i)]_{\mathbf{k} \in \Lambda}$ to get well-conditioned subframe on $J \subseteq [N]$ of size n = O(m) (down from $N = O(m \log m)$) with almost asymptotically equal approximation properties

Theorem (N, Schäfer, T. Ullrich '22)

For s>1/2 and using n samples, the algorithm together with the subsampling step yields (with high probability) an approximation \tilde{f} with

$$||f - \tilde{f}||_{L_2} \lesssim n^{-s} (\log n)^{(d-1)s+1/2} ||f||_{H^s_{\min}(\mathbb{T}^d)}$$

Note: Can get rid of the $\sqrt{\log n}$ factor by Dolbeault, Krieg, M. Ullrich

- Problems:
 - Non-algorithmic: Kadison-Singer only gives existence of a subframe
 - ▶ The oversampling factor n = bm might be huge (e.g. b = 6000)
- Polynomial time algorithm with small oversampling factor $b=1+\varepsilon$: Based on Batson, Spielman, Srivastava 2009 and developed further by Bartel, Schäfer, T. Ullrich 2023

Nicolas Nagel 11 / 25 http://www.tu-chemnitz.de/

Apply to $\mathbf{u}^i = [\eta_{\mathbf{k}}(\mathbf{x}^i)]_{\mathbf{k} \in \Lambda}$ to get well-conditioned subframe on $J \subseteq [N]$ of size n = O(m) (down from $N = O(m \log m)$) with almost asymptotically equal approximation properties

Theorem (N, Schäfer, T. Ullrich '22)

For s>1/2 and using n samples, the algorithm together with the subsampling step yields (with high probability) an approximation \tilde{f} with

$$||f - \tilde{f}||_{L_2} \lesssim n^{-s} (\log n)^{(d-1)s+1/2} ||f||_{H^s_{mix}(\mathbb{T}^d)}$$

Note: Can get rid of the $\sqrt{\log n}$ factor by DOLBEAULT, KRIEG, M. ULLRICH

- Problems:
 - Non-algorithmic: Kadison-Singer only gives existence of a subframe
 - ▶ The oversampling factor n = bm might be huge (e.g. b = 6000)
- Polynomial time algorithm with small oversampling factor $b=1+\varepsilon$: Based on Batson, Spielman, Srivastava 2009 and developed further by Bartel, Schäfer, T. Ullrich 2023

Nicolas Nagel 11 / 25 http://www.tu-chemnitz.de/

Apply to $\mathbf{u}^i = [\eta_{\mathbf{k}}(\mathbf{x}^i)]_{\mathbf{k} \in \Lambda}$ to get well-conditioned subframe on $J \subseteq [N]$ of size n = O(m) (down from $N = O(m \log m)$) with almost asymptotically equal approximation properties

Theorem (N, Schäfer, T. Ullrich '22)

For s>1/2 and using n samples, the algorithm together with the subsampling step yields (with high probability) an approximation \tilde{f} with

$$||f - \tilde{f}||_{L_2} \lesssim n^{-s} (\log n)^{(d-1)s+1/2} ||f||_{H^s_{mix}(\mathbb{T}^d)}$$

Note: Can get rid of the $\sqrt{\log n}$ factor by DOLBEAULT, KRIEG, M. ULLRICH

- Problems:
 - Non-algorithmic: Kadison-Singer only gives existence of a subframe
 - ▶ The oversampling factor n = bm might be huge (e.g. b = 6000)
- Polynomial time algorithm with small oversampling factor $b=1+\varepsilon$: Based on Batson, Spielman, Srivastava 2009 and developed further by Bartel, Schäfer, T. Ullrich 2023

Nicolas Nagel 11 / 25 http://www.tu-chemnitz.de/

Theorem (Batson, Spielman, Srivastava '09/Bartel, Schäfer, T. Ullrich '23)

Let $\mathbf{u}^1,...,\mathbf{u}^N\in\mathbb{C}^m$ (arbitrary), choose $b>1+\frac{1}{m}$ and assume $N\geq bm$. There is a polynomial time algorithm to construct a $J\subseteq [N]$ with $\#J\leq \lceil bm\rceil$ and

$$\frac{1}{N} \sum_{i=1}^{N} |\langle \mathbf{w}, \mathbf{u}^i \rangle|^2 \le 89 \frac{(b+1)^2}{(b-1)^3} \cdot \frac{1}{m} \sum_{i \in J} |\langle \mathbf{w}, \mathbf{u}^j \rangle|^2.$$

Note: only lower bound, algorithm with guarantee on the upper bound unknown Still: resulting sample nodes $\mathbf{x}^1,...,\mathbf{x}^n$ random, their quality is measured by the condition of the matrix

$$\begin{bmatrix} \eta_{\mathbf{k}_1}(\mathbf{x}^1) & \cdots & \eta_{\mathbf{k}_m}(\mathbf{x}^1) \\ \vdots & & \vdots \\ \eta_{\mathbf{k}_1}(\mathbf{x}^n) & \cdots & \eta_{\mathbf{k}_m}(\mathbf{x}^n) \end{bmatrix}$$

Theorem (Batson, Spielman, Srivastava '09/Bartel, Schäfer, T. Ullrich '23)

Let $\mathbf{u}^1,...,\mathbf{u}^N\in\mathbb{C}^m$ (arbitrary), choose $b>1+\frac{1}{m}$ and assume $N\geq bm$. There is a polynomial time algorithm to construct a $J\subseteq [N]$ with $\#J\leq \lceil bm\rceil$ and

$$\frac{1}{N} \sum_{i=1}^{N} |\langle \mathbf{w}, \mathbf{u}^i \rangle|^2 \le 89 \frac{(b+1)^2}{(b-1)^3} \cdot \frac{1}{m} \sum_{i \in J} |\langle \mathbf{w}, \mathbf{u}^j \rangle|^2.$$

Note: only lower bound, algorithm with guarantee on the upper bound unknown Still: resulting sample nodes $\mathbf{x}^1,...,\mathbf{x}^n$ random, their quality is measured by the condition of the matrix

$$\begin{bmatrix} \eta_{\mathbf{k}_1}(\mathbf{x}^1) & \cdots & \eta_{\mathbf{k}_m}(\mathbf{x}^1) \\ \vdots & & \vdots \\ \eta_{\mathbf{k}_1}(\mathbf{x}^n) & \cdots & \eta_{\mathbf{k}_m}(\mathbf{x}^n) \end{bmatrix}$$

Subsampling (d=2, R=20, m=107, N=2000, n=117)

Final algorithm (periodic):

- ▶ Choose size of hyperbolic cross $\Lambda = \{ \mathbf{k} \in \mathbb{Z}^d : \prod_{\ell=1}^d \max\{1, |k_\ell|\} \le R \}$, $m = \#\Lambda$
- ightharpoonup Set $N = \lceil 4m \log m \rceil$
- ▶ Choose N nodes $\mathbf{x}^i \in [-1, 1]^d$ uniformly at random
- ▶ Subsampling gives nodes $\{\mathbf{x}^j: j \in J\}$ with $n = \#J \leq \lceil 1.1m \rceil$ using the basis functions $\eta_{\mathbf{k}}(\mathbf{x}) = \prod_{\ell=1}^d e^{\pi i k_\ell x_\ell}$ (works for all of $H^s_{\min}(\mathbb{T}^d)$)
- ▶ Determine the coefficients $c_{\mathbf{k}}$ from the $\mathbf{x}^j, j \in J$ via the least-squares system with the basis functions $\eta_{\mathbf{k}}(\mathbf{x})$

Non-periodic functions

Applying the above procedure to a more general function $f:[-1,1]^d\to\mathbb{C}$ treats f like a periodized version on \mathbb{R}^d

 \Rightarrow may introduce non-regularities

Applying the above procedure to a more general function $f:[-1,1]^d\to\mathbb{C}$ treats f like a periodized version on \mathbb{R}^d \Rightarrow may introduce non-regularities

Applying the above procedure to a more general function $f:[-1,1]^d\to\mathbb{C}$ treats f like a periodized version on \mathbb{R}^d \Rightarrow may introduce non-regularities

To apply the algorithm for periodic functions, we need to periodize f in a way that preserves regularity

- ▶ Periodic extension: May introduce discontinuities
- ► Tent transform: Preserves continuity, might destroy smoothness (kinks)

We will use a **cosine composition** $T_{
m cos}$ defined by

$$(T_{\cos}f)(x_1,...,x_d) = f(\cos \pi x_1,...,\cos \pi x_d)$$

Theorem (Bartel, Lüttgen, N, T. Ullrich)

The operator T_{\cos} is continuous as

$$T_{\cos}: H^s_{\mathit{mix}}([-1,1]^d) \to H^s_{\mathit{mix}}(\mathbb{T}^d)$$

for s > 1/2.

More general versions over Besov spaces are possible (to be published in a future paper by LÜTTGEN, T. ULLRICH)

To apply the algorithm for periodic functions, we need to periodize f in a way that preserves regularity

- ▶ Periodic extension: May introduce discontinuities
- ► Tent transform: Preserves continuity, might destroy smoothness (kinks)

We will use a cosine composition T_{\cos} defined by

$$(T_{\cos}f)(x_1,...,x_d) = f(\cos \pi x_1,...,\cos \pi x_d)$$

Theorem (Bartel, Lüttgen, N, T. Ullrich)

The operator T_{\cos} is continuous as

$$T_{\cos}: H^s_{\mathit{mix}}([-1,1]^d) \to H^s_{\mathit{mix}}(\mathbb{T}^d)$$

for s > 1/2.

More general versions over Besov spaces are possible (to be published in a future paper by LÜTTGEN, T. ULLRICH)

To apply the algorithm for periodic functions, we need to periodize f in a way that preserves regularity

- ▶ Periodic extension: May introduce discontinuities
- ► Tent transform: Preserves continuity, might destroy smoothness (kinks)

We will use a cosine composition T_{\cos} defined by

$$(T_{\cos}f)(x_1,...,x_d) = f(\cos \pi x_1,...,\cos \pi x_d)$$

Theorem (BARTEL, LÜTTGEN, N, T. ULLRICH)

The operator T_{\cos} is continuous as

$$T_{\cos}: H^s_{\mathit{mix}}([-1,1]^d) \to H^s_{\mathit{mix}}(\mathbb{T}^d)$$

for s > 1/2.

More general versions over Besov spaces are possible (to be published in a future paper by $L\ddot{U}TTGEN$, T.~ULLRICH)

Strategy: Approximate $T_{\cos}f$ with the Fourier basis and undo the periodization

	$f(\cos \pi x_1,, \cos \pi x_d)$	$f(x_1,, x_d)$
Sample nodes	$\mathbf{x}^i \sim \mathcal{U}[-1,1]^d$	$\mathbf{x}^i = \cos(\pi \mathbf{U}^i), \mathbf{U}^i \sim \mathcal{U}[-1, 1]^d$
		$d\varrho(\mathbf{x}) = \prod_{\ell=1}^{d} \left(\pi \sqrt{1 - x_{\ell}^2}\right)^{-1} d\mathbf{x}$
Basis functions	$\prod_{\ell=1}^d \cos(\pi k_\ell x_\ell)$	$\prod_{\ell=1}^d \cos(k_\ell \arccos x_\ell)$

- $ightharpoonup \mathbf{x}^i$ Chebyshev distributed
- $\eta_{\mathbf{k}}(\mathbf{x}) = \prod_{\ell=1}^{d} T_{k_{\ell}}(x_{\ell}), \mathbf{k} \in \mathbb{N}_{0}^{d} \text{ with } T_{k}(x) = \sqrt{2}^{\min\{1,k\}} \cos(k \arccos x) \\
 (L_{2}(\varrho)-\text{normalized Chebyshev polynomials})$

Strategy: Approximate $T_{\cos}f$ with the Fourier basis and undo the periodization

	$f(\cos \pi x_1,, \cos \pi x_d)$	$f(x_1,, x_d)$
Sample nodes	$\mathbf{x}^i \sim \mathcal{U}[-1,1]^d$	$\mathbf{x}^i = \cos(\pi \mathbf{U}^i), \mathbf{U}^i \sim \mathcal{U}[-1, 1]^d$
		$d\varrho(\mathbf{x}) = \prod_{\ell=1}^{d} \left(\pi \sqrt{1 - x_{\ell}^2}\right)^{-1} d\mathbf{x}$
Basis functions	$\prod_{\ell=1}^d \cos(\pi k_\ell x_\ell)$	$\prod_{\ell=1}^d \cos(k_\ell \arccos x_\ell)$

- ▶ xⁱ Chebyshev distributed
- ▶ $\eta_{\mathbf{k}}(\mathbf{x}) = \prod_{\ell=1}^{d} T_{k_{\ell}}(x_{\ell}), \mathbf{k} \in \mathbb{N}_{0}^{d} \text{ with } T_{k}(x) = \sqrt{2}^{\min\{1,k\}} \cos(k \arccos x)$ ($L_{2}(\varrho)$ -normalized Chebyshev polynomials)

Final algorithm (non-periodic):

- ► Choose size of hyperbolic cross $\Lambda = \{ \mathbf{k} \in \mathbb{N}_0^d : \prod_{\ell=1}^d \max\{1, k_\ell\} \leq R \}$ (in the non-negative orthant), $m = \#\Lambda$
- ightharpoonup Set $N = \lceil 4m \log m \rceil$
- lacktriangle Choose N nodes $\mathbf{x}^i \in [-1,1]^d$ Chebyshev distributed
- ▶ Subsampling gives nodes $\{\mathbf{x}^j: j \in J\}$ with $n = \#J \leq \lceil 1.1m \rceil$ using the basis functions $\eta_{\mathbf{k}}(\mathbf{x}) = \prod_{\ell=1}^d T_{k\ell}(x_\ell)$ (works for all of $H^s_{\text{mix}}(\lceil -1, 1 \rceil^d)$)
- ▶ Determine the coefficients $c_{\mathbf{k}}$ from the $\mathbf{x}^j, j \in J$ via the least-squares system with the basis functions $\eta_{\mathbf{k}}(\mathbf{x})$

Theorem (Bartel, Lüttgen, N, T. Ullrich)

For s>1/2 and using n samples, the above algorithm yields (with high probability) an approximation \tilde{f} with

$$||f - \tilde{f}||_{L_2(\varrho)} \lesssim n^{-s} (\log n)^{(d-1)s+1/2} ||f||_{H^s_{miv}([-1,1]^d)}.$$

Final algorithm (non-periodic):

- ► Choose size of hyperbolic cross $\Lambda = \{ \mathbf{k} \in \mathbb{N}_0^d : \prod_{\ell=1}^d \max\{1, k_\ell\} \leq R \}$ (in the non-negative orthant), $m = \#\Lambda$
- ightharpoonup Set $N = \lceil 4m \log m \rceil$
- ▶ Choose N nodes $\mathbf{x}^i \in [-1,1]^d$ Chebyshev distributed
- ▶ Subsampling gives nodes $\{\mathbf{x}^j: j \in J\}$ with $n = \#J \leq \lceil 1.1m \rceil$ using the basis functions $\eta_{\mathbf{k}}(\mathbf{x}) = \prod_{\ell=1}^d T_{k\ell}(x_\ell)$ (works for all of $H^s_{\text{mix}}(\lceil -1, 1 \rceil^d)$)
- ▶ Determine the coefficients $c_{\mathbf{k}}$ from the $\mathbf{x}^j, j \in J$ via the least-squares system with the basis functions $\eta_{\mathbf{k}}(\mathbf{x})$

Theorem (Bartel, Lüttgen, N, T. Ullrich)

For s>1/2 and using n samples, the above algorithm yields (with high probability) an approximation \tilde{f} with

$$||f - \tilde{f}||_{L_2(\varrho)} \lesssim n^{-s} (\log n)^{(d-1)s+1/2} ||f||_{H^s_{\min}([-1,1]^d)}.$$

Numerical experiment

Test function: Tensored cutout of a quadratic B-spline (smoothness s=2.5)

Approximation error for an $f \in H^{2.5-\varepsilon}_{\text{mix}}([-1,1]^d)$

Further test functions (7-dimensional), error measured in L_{∞} (Barthelmann, Novak, Ritter 2000)

Further test functions (7-dimensional), error measured in L_{∞} (BARTHELMANN, NOVAK, RITTER 2000)

- "Constructive Kadison-Singer"? (remove the $\sqrt{\log}$ -factor)
- ▶ Deterministic constructions for good samples nodes?

Thank you for your attention!

- "Constructive Kadison-Singer"? (remove the $\sqrt{\log}$ -factor)
- ▶ Deterministic constructions for good samples nodes?

Thank you for your attention!