The Connection Between the Kadison-Singer Problem and Frame Theory

Nicolas Nagel

October 2022

> 88ㅗㅇㅕ8

TECHNISCHE UNIVERSITÄT
CHEMNITZ

- Frames crucial for approximation theory.
($\mathcal{H},\langle\cdot, \cdot\rangle)$ complex Hilbert space, || || its norm.
- Frame is a sequence $\left(f_{i}\right)_{i \in I}$ in \mathcal{H} with absolute constants $0<c \leq C$ such that

- Question: When does a frame have a "good" subframe? (subsampling)
- Application: Lower budget while keeping good approximation properties.
- Answer: Weaver's $K S_{2}$-conjecture.
- Frames crucial for approximation theory.
- $(\mathcal{H},\langle\cdot, \cdot\rangle)$ complex Hilbert space, $\|\cdot\|$ its norm.
- Frame is a sequence $\left(f_{i}\right)_{i \in I}$ in \mathcal{H} with absolute constants $0<c \leq C$ such that

$$
c\|f\|^{2} \leq \sum_{i \in I}\left|\left\langle f, f_{i}\right\rangle\right|^{2} \leq C\|f\|^{2} \quad \forall f \in \mathcal{H} .
$$

- Question: When does a frame have a "good" subframe? (subsampling) - Application: Lower budget while keeping good approximation properties.
- Answer: Weaver's $K S_{2}$-conjecture.
- Frames crucial for approximation theory.
- $(\mathcal{H},\langle\cdot, \cdot\rangle)$ complex Hilbert space, $\|\cdot\|$ its norm.
- Frame is a sequence $\left(f_{i}\right)_{i \in I}$ in \mathcal{H} with absolute constants $0<c \leq C$ such that

$$
c\|f\|^{2} \leq \sum_{i \in I}\left|\left\langle f, f_{i}\right\rangle\right|^{2} \leq C\|f\|^{2} \quad \forall f \in \mathcal{H} .
$$

- Question: When does a frame have a "good" subframe? (subsampling)
- Application: Lower budget while keeping good approximation properties. Answer: Weaver's $K S_{2}$-conjecture.
- Frames crucial for approximation theory.
- $(\mathcal{H},\langle\cdot, \cdot\rangle)$ complex Hilbert space, $\|\cdot\|$ its norm.
- Frame is a sequence $\left(f_{i}\right)_{i \in I}$ in \mathcal{H} with absolute constants $0<c \leq C$ such that

$$
c\|f\|^{2} \leq \sum_{i \in I}\left|\left\langle f, f_{i}\right\rangle\right|^{2} \leq C\|f\|^{2} \quad \forall f \in \mathcal{H} .
$$

- Question: When does a frame have a "good" subframe? (subsampling)
- Application: Lower budget while keeping good approximation properties.
- Answer: Weaver's $K S_{2}$-conjecture.

Interlude: Kadison-Singer problem.

- Motivated by quantum mechanics.
- $\mathcal{H}=\ell_{2}(\mathbb{N})$ Hilbert space of complex, square-summable sequences.
- $\mathfrak{B}=\mathcal{L}(\mathcal{H})$ space of bounded, linear operators $\mathcal{H} \rightarrow \mathcal{H}$.
- $\mathfrak{D} \subseteq \mathfrak{B}$ space of diagonal operators.
- State a continuous, linear functional $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ with
(i) $\varphi(I)=1$ (normalization);
(ii) $\varphi(P) \geq 0$ for all positive operators $P \in D$ (positivity),
- Set of all states $\mathcal{S} \subseteq \mathfrak{D}^{\prime}$ in the dual of \mathfrak{D} convex and weak*-compact, thus $\mathcal{S} \subseteq \mathfrak{D}^{\prime}$ the convex hull of its extreme points.
- Extreme points of \mathcal{S} are called pure states (i.e. cannot be written as a proper convex combination of two other states).

Kadison-Singer Problem

- Motivated by quantum mechanics.
- $\mathcal{H}=\ell_{2}(\mathbb{N})$ Hilbert space of complex, square-summable sequences.
- $\mathfrak{B}=\mathcal{L}(\mathcal{H})$ space of bounded, linear operators $\mathcal{H} \rightarrow \mathcal{H}$.
- $\mathfrak{D} \subseteq \mathfrak{B}$ space of diagonal operators.

State a continuous, linear functional $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ with
(i) $\varphi(I)=1$ (normalization);
(ii) $\varphi(P) \geq 0$ for all positive operators $P \in D$ (positivity)
\rightarrow Set of all states $\mathcal{S} \subseteq \mathfrak{D}^{\prime}$ in the dual of \mathfrak{D} convex and weak*-compact, thus $\mathcal{S} \subseteq \mathfrak{D}^{\prime}$ the convex hull of its extreme points.

- Extreme points of S are called pure states (i.e cannot be written as a proper convex combination of two other states).
- Motivated by quantum mechanics.
- $\mathcal{H}=\ell_{2}(\mathbb{N})$ Hilbert space of complex, square-summable sequences.
- $\mathfrak{B}=\mathcal{L}(\mathcal{H})$ space of bounded, linear operators $\mathcal{H} \rightarrow \mathcal{H}$.
- $\mathfrak{D} \subseteq \mathfrak{B}$ space of diagonal operators.
- State a continuous, linear functional $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ with
(i) $\varphi(I)=1$ (normalization);
(ii) $\varphi(P) \geq 0$ for all positive operators $P \in \mathfrak{D}$ (positivity).
- Set of all states $\mathcal{S} \subseteq \mathfrak{D}^{\prime}$ in the dual of \mathfrak{D} convex and weak*-compact, thus $\mathcal{S} \subseteq \mathfrak{D}^{\prime}$ the convex hull of its extreme points.
- Extreme points of \mathcal{S} are called pure states (i.e. cannot be written as a proper convex combination of two other states)
- Motivated by quantum mechanics.
- $\mathcal{H}=\ell_{2}(\mathbb{N})$ Hilbert space of complex, square-summable sequences.
- $\mathfrak{B}=\mathcal{L}(\mathcal{H})$ space of bounded, linear operators $\mathcal{H} \rightarrow \mathcal{H}$.
- $\mathfrak{D} \subseteq \mathfrak{B}$ space of diagonal operators.
- State a continuous, linear functional $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ with
(i) $\varphi(I)=1$ (normalization);
(ii) $\varphi(P) \geq 0$ for all positive operators $P \in \mathfrak{D}$ (positivity).
- Set of all states $\mathcal{S} \subseteq \mathfrak{D}^{\prime}$ in the dual of \mathfrak{D} convex and weak*-compact, thus $\mathcal{S} \subseteq \mathfrak{D}^{\prime}$ the convex hull of its extreme points.
$>$ Extreme points of \mathcal{S} are called pure states (i.e. cannot be written as a proper convex combination of two other states)
- Motivated by quantum mechanics.
- $\mathcal{H}=\ell_{2}(\mathbb{N})$ Hilbert space of complex, square-summable sequences.
- $\mathfrak{B}=\mathcal{L}(\mathcal{H})$ space of bounded, linear operators $\mathcal{H} \rightarrow \mathcal{H}$.
- $\mathfrak{D} \subseteq \mathfrak{B}$ space of diagonal operators.
- State a continuous, linear functional $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ with
(i) $\varphi(I)=1$ (normalization);
(ii) $\varphi(P) \geq 0$ for all positive operators $P \in \mathfrak{D}$ (positivity).
- Set of all states $\mathcal{S} \subseteq \mathfrak{D}^{\prime}$ in the dual of \mathfrak{D} convex and weak*-compact, thus $\mathcal{S} \subseteq \mathfrak{D}^{\prime}$ the convex hull of its extreme points.
- Extreme points of \mathcal{S} are called pure states (i.e. cannot be written as a proper convex combination of two other states).

Kadison-Singer Problem

- Every state $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ can be extended to a state $\psi: \mathfrak{B} \rightarrow \mathbb{C}$ (restrict to entries on the main diagonal).
- Kadison, Singer (1959): Is the extension of a pure state unique?

Theorem (Marcus, Spielman, Srivastava 2015; Weaver 2004; Anderson 1979)

Kadison-Singer \Leftrightarrow Anderson paving \Leftrightarrow Weaver $K S_{2}(\Leftrightarrow$ Feichtinger $)$

- Every state $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ can be extended to a state $\psi: \mathfrak{B} \rightarrow \mathbb{C}$ (restrict to entries on the main diagonal).
- Kadison, Singer (1959): Is the extension of a pure state unique?

Theorem (Marcus, Spielman, Srivastava 2015; Weaver 2004; Anderson 1979)

Kadison-Singer \Leftrightarrow Anderson paving \Leftrightarrow Weaver $K S_{2}(\Leftrightarrow$ Feichtinger $)$

- Every state $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ can be extended to a state $\psi: \mathfrak{B} \rightarrow \mathbb{C}$ (restrict to entries on the main diagonal).
- Kadison, Singer (1959): Is the extension of a pure state unique?

Theorem (Marcus, Spielman, Srivastava 2015; Weaver 2004; Anderson 1979)

YES!

$$
\text { Kadison-Singer } \Leftrightarrow \text { Anderson paving } \Leftrightarrow \text { Weaver } K S_{2}(\Leftrightarrow \text { Feichtinger })
$$

- Every state $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ can be extended to a state $\psi: \mathfrak{B} \rightarrow \mathbb{C}$ (restrict to entries on the main diagonal).
- Kadison, Singer (1959): Is the extension of a pure state unique?

Theorem (Marcus, Spielman, Srivastava 2015; Weaver 2004; Anderson 1979)

YES!

Kadison-Singer \Leftrightarrow Anderson paving \Leftrightarrow Weaver $K S_{2}(\Leftrightarrow$ Feichtinger $)$

MSS \Rightarrow Anderson \Rightarrow Kadison-Singer MSS \Rightarrow Weaver \Rightarrow Subsampling

Overview of the proof of the Kadison-Singer problem.

Theorem (Marcus, Spielman, Srivastava 2015)

Let $\varepsilon>0$ and $v_{1}, \ldots, v_{m} \in \mathbb{C}^{n}$ be independent random vectors with finite support fulfilling

$$
\sum_{i=1}^{m} \mathbb{E} v_{i} v_{i}^{*}=I
$$

and $\mathbb{E}\left\|v_{i}\right\|^{2} \leq \varepsilon$ for all i. Then

$$
\mathbb{P}\left(\left\|\sum_{i=1}^{m} v_{i} v_{i}^{*}\right\| \leq(1+\sqrt{\varepsilon})^{2}\right)>0
$$

Algebraically: there is an assignment fulfilling the stated bound.

Theorem (Marcus, Spielman, Srivastava 2015)

Let $\varepsilon>0$ and $v_{1}, \ldots, v_{m} \in \mathbb{C}^{n}$ be independent random vectors with finite support fulfilling

$$
\sum_{i=1}^{m} \mathbb{E} v_{i} v_{i}^{*}=I
$$

and $\mathbb{E}\left\|v_{i}\right\|^{2} \leq \varepsilon$ for all i. Then

$$
\mathbb{P}\left(\left\|\sum_{i=1}^{m} v_{i} v_{i}^{*}\right\| \leq(1+\sqrt{\varepsilon})^{2}\right)>0
$$

- Algebraically: there is an assignment fulfilling the stated bound.

Corollary

Let $r \in \mathbb{N}$ and $u_{1}, \ldots, u_{m} \in \mathbb{C}^{n}$ vectors fulfilling

$$
\sum_{i=1}^{m} u_{i} u_{i}^{*}=I
$$

and $\left\|u_{i}\right\|^{2} \leq \delta$ for all i. Then there exists a partition $\left\{S_{1}, \ldots, S_{r}\right\}$ of $[m]$ with

$$
\left\|\sum_{i \in S_{j}} u_{i} u_{i}^{*}\right\| \leq\left(\frac{1}{\sqrt{r}}+\sqrt{\delta}\right)^{2} \quad \forall j=1, \ldots, r
$$

- Apply the Theorem to the uniformly random vectors $v_{i}=\sqrt{r}\left[\mathbf{0} \ldots u_{i} \ldots \mathbf{0}\right]^{\top} \in \mathbb{C}^{r n}$ (randomness in the position of u_{i}).
\Rightarrow Get partition from the position of the u_{i} in the assignment of v_{i}

Corollary

Let $r \in \mathbb{N}$ and $u_{1}, \ldots, u_{m} \in \mathbb{C}^{n}$ vectors fulfilling

$$
\sum_{i=1}^{m} u_{i} u_{i}^{*}=I
$$

and $\left\|u_{i}\right\|^{2} \leq \delta$ for all i. Then there exists a partition $\left\{S_{1}, \ldots, S_{r}\right\}$ of $[m]$ with

$$
\left\|\sum_{i \in S_{j}} u_{i} u_{i}^{*}\right\| \leq\left(\frac{1}{\sqrt{r}}+\sqrt{\delta}\right)^{2} \quad \forall j=1, \ldots, r .
$$

- Apply the Theorem to the uniformly random vectors $v_{i}=\sqrt{r}\left[\mathbf{0} \ldots u_{i} \ldots \mathbf{0}\right]^{\top} \in \mathbb{C}^{r n}$ (randomness in the position of u_{i}).
- Get partition from the position of the u_{i} in the assignment of v_{i}.

A matrix $T \in \mathbb{C}^{n \times n}$ is (r, ε)-pavable if there are coordinate projections $P_{1}, \ldots, P_{r} \in\{0,1\}^{n \times n}$ with $\sum_{i=1}^{r} P_{i}=I$ and $\left\|P_{i} T P_{i}\right\| \leq \varepsilon\|T\|$ for all i.

Theorem (Anderson's Paving Conjecture)

For every $0<\varepsilon<1$ there is an $r=r(\varepsilon) \in \mathbb{N}$, so that any Hermitian $T \in \mathbb{C}^{n \times n}$ with zero diagonal is (r, ε)-pavable.

- The concrete projections can depend on T, but their number can be bounded by ε alone.
- Uses the previous Corollary and even yields the bound $r \leq 136 / \varepsilon^{4}$.
- Optimal behaviour of $r(\varepsilon)$ not known, but have $r(\varepsilon) \geq \varepsilon^{-2}$ (conference matrices)

A matrix $T \in \mathbb{C}^{n \times n}$ is (r, ε)-pavable if there are coordinate projections $P_{1}, \ldots, P_{r} \in\{0,1\}^{n \times n}$ with $\sum_{i=1}^{r} P_{i}=I$ and $\left\|P_{i} T P_{i}\right\| \leq \varepsilon\|T\|$ for all i.

Theorem (Anderson's Paving Conjecture)

For every $0<\varepsilon<1$ there is an $r=r(\varepsilon) \in \mathbb{N}$, so that any Hermitian $T \in \mathbb{C}^{n \times n}$ with zero diagonal is (r, ε)-pavable.

- The concrete projections can depend on T, but their number can be bounded by ε alone.
Uses the previous Corollary and even yields the bound $r \leq 136 / \varepsilon^{4}$. Optimal behaviour of $r(\varepsilon)$ not known, but have $r(\varepsilon) \geq \varepsilon^{-2}$ (conference matrices)

A matrix $T \in \mathbb{C}^{n \times n}$ is (r, ε)-pavable if there are coordinate projections $P_{1}, \ldots, P_{r} \in\{0,1\}^{n \times n}$ with $\sum_{i=1}^{r} P_{i}=I$ and $\left\|P_{i} T P_{i}\right\| \leq \varepsilon\|T\|$ for all i.

Theorem (Anderson's Paving Conjecture)

For every $0<\varepsilon<1$ there is an $r=r(\varepsilon) \in \mathbb{N}$, so that any Hermitian $T \in \mathbb{C}^{n \times n}$ with zero diagonal is (r, ε)-pavable.

- The concrete projections can depend on T, but their number can be bounded by ε alone.
- Uses the previous Corollary and even yields the bound $r \leq 136 / \varepsilon^{4}$.
- Optimal behaviour of $r(\varepsilon)$ not known, but have $r(\varepsilon) \geq \varepsilon^{-2}$ (conference matrices).
- Kadison-Singer follows from an infinite dimensional analogue of Anderson's paving conjecture.
- Proof via compactness (Arzelà-Ascoli).

Corollary
 Let T be a continuous, selfadjoint operator on $\mathcal{H}=\ell_{2}$ with zero diagonal. Then T can be (r, ε)-paved with $r \leq 136 / \varepsilon^{4}$

- Kadison-Singer follows from an infinite dimensional analogue of Anderson's paving conjecture.
- Proof via compactness (Arzelà-Ascoli).

Corollary

Let T be a continuous, selfadjoint operator on $\mathcal{H}=\ell_{2}$ with zero diagonal. Then T can be (r, ε)-paved with $r \leq 136 / \varepsilon^{4}$.

Theorem (Kadison-Singer problem)

The extension of a pure state $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ to a state $\psi: \mathfrak{B} \rightarrow \mathbb{C}$ is unique.

- Suffices to show: If Q is selfadjoint with zero diagonal then $\psi(Q)=0$. Let $\varepsilon>0$ arbitrary.
\Rightarrow By Anderson: Coordinate projections $P_{1}, \ldots, P_{r}\left(r \leq 136 / \varepsilon^{4}\right)$ with $I=\sum_{i=1}^{r} P_{i}$ and $\left\|P_{i} Q P_{i}\right\| \leq \varepsilon\|Q\|$ for all i \rightarrow Fact: P coordinate projection, then $\varphi(P) \in\{0,1\}$ (need pureness of φ). \Rightarrow Thus: $\psi\left(P_{i}\right)=\varphi\left(P_{i}\right)=\delta_{i, i_{0}}$ for some i_{0} (need normalization). - $\psi(Q)=\sum_{i=1}^{r} \sum_{j=1}^{r} \psi\left(P_{i} Q P_{j}\right)=\psi\left(P_{i_{0}} Q P_{i_{0}}\right)$. $\rightarrow|\psi(Q)|=\left|\psi\left(P_{i_{0}} Q P_{i_{0}}\right)\right| \leq\|\psi\| \cdot\left\|P_{i_{0}} Q P_{i_{0}}\right\| \leq\|\psi\| \cdot \varepsilon\|Q\|$.

Theorem (Kadison-Singer problem)

The extension of a pure state $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ to a state $\psi: \mathfrak{B} \rightarrow \mathbb{C}$ is unique.

- Suffices to show: If Q is selfadjoint with zero diagonal then $\psi(Q)=0$. Let $\varepsilon>0$ arbitrary.

Theorem (Kadison-Singer problem)

The extension of a pure state $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ to a state $\psi: \mathfrak{B} \rightarrow \mathbb{C}$ is unique.

- Suffices to show: If Q is selfadjoint with zero diagonal then $\psi(Q)=0$. Let $\varepsilon>0$ arbitrary.
- By Anderson: Coordinate projections $P_{1}, \ldots, P_{r}\left(r \leq 136 / \varepsilon^{4}\right)$ with $I=\sum_{i=1}^{r} P_{i}$ and $\left\|P_{i} Q P_{i}\right\| \leq \varepsilon\|Q\|$ for all i.

Theorem (Kadison-Singer problem)

The extension of a pure state $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ to a state $\psi: \mathfrak{B} \rightarrow \mathbb{C}$ is unique.

- Suffices to show: If Q is selfadjoint with zero diagonal then $\psi(Q)=0$. Let $\varepsilon>0$ arbitrary.
- By Anderson: Coordinate projections $P_{1}, \ldots, P_{r}\left(r \leq 136 / \varepsilon^{4}\right)$ with $I=\sum_{i=1}^{r} P_{i}$ and $\left\|P_{i} Q P_{i}\right\| \leq \varepsilon\|Q\|$ for all i.
- Fact: P coordinate projection, then $\varphi(P) \in\{0,1\}$ (need pureness of φ).
- Thus: $\psi\left(P_{i}\right)=\varphi\left(P_{i}\right)=\delta_{i, i_{0}}$ for some i_{0} (need normalization).

Theorem (Kadison-Singer problem)

The extension of a pure state $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ to a state $\psi: \mathfrak{B} \rightarrow \mathbb{C}$ is unique.

- Suffices to show: If Q is selfadjoint with zero diagonal then $\psi(Q)=0$. Let $\varepsilon>0$ arbitrary.
- By Anderson: Coordinate projections $P_{1}, \ldots, P_{r}\left(r \leq 136 / \varepsilon^{4}\right)$ with $I=\sum_{i=1}^{r} P_{i}$ and $\left\|P_{i} Q P_{i}\right\| \leq \varepsilon\|Q\|$ for all i.
- Fact: P coordinate projection, then $\varphi(P) \in\{0,1\}$ (need pureness of φ).
- Thus: $\psi\left(P_{i}\right)=\varphi\left(P_{i}\right)=\delta_{i, i_{0}}$ for some i_{0} (need normalization).
- $\psi(Q)=\sum_{i=1}^{r} \sum_{j=1}^{r} \psi\left(P_{i} Q P_{j}\right)=\psi\left(P_{i_{0}} Q P_{i_{0}}\right)$.

Theorem (Kadison-Singer problem)

The extension of a pure state $\varphi: \mathfrak{D} \rightarrow \mathbb{C}$ to a state $\psi: \mathfrak{B} \rightarrow \mathbb{C}$ is unique.

- Suffices to show: If Q is selfadjoint with zero diagonal then $\psi(Q)=0$. Let $\varepsilon>0$ arbitrary.
- By Anderson: Coordinate projections $P_{1}, \ldots, P_{r}\left(r \leq 136 / \varepsilon^{4}\right)$ with $I=\sum_{i=1}^{r} P_{i}$ and $\left\|P_{i} Q P_{i}\right\| \leq \varepsilon\|Q\|$ for all i.
- Fact: P coordinate projection, then $\varphi(P) \in\{0,1\}$ (need pureness of φ).
- Thus: $\psi\left(P_{i}\right)=\varphi\left(P_{i}\right)=\delta_{i, i_{0}}$ for some i_{0} (need normalization).
- $\psi(Q)=\sum_{i=1}^{r} \sum_{j=1}^{r} \psi\left(P_{i} Q P_{j}\right)=\psi\left(P_{i_{0}} Q P_{i_{0}}\right)$.
- $|\psi(Q)|=\left|\psi\left(P_{i_{0}} Q P_{i_{0}}\right)\right| \leq\|\psi\| \cdot\left\|P_{i_{0}} Q P_{i_{0}}\right\| \leq\|\psi\| \cdot \varepsilon\|Q\|$.

Application of Weaver's Conjecture to Frames.

Corollary

Let $r \in \mathbb{N}$ and $u_{1}, \ldots, u_{m} \in \mathbb{C}^{n}$ vectors fulfilling

$$
\sum_{i=1}^{m} u_{i} u_{i}^{*}=I
$$

and $\left\|u_{i}\right\|^{2} \leq \delta$ for all i. Then there exists a partition $\left\{S_{1}, \ldots, S_{r}\right\}$ of $[m]$ with

$$
\left\|\sum_{i \in S_{j}} u_{i} u_{i}^{*}\right\| \leq\left(\frac{1}{\sqrt{r}}+\sqrt{\delta}\right)^{2} \quad \forall j=1, \ldots, r .
$$

Theorem (Weaver's $K S_{2}$-conjecture)

Let $u_{1}, \ldots, u_{m} \in \mathbb{C}^{n}$ be vectors with $\left\|u_{i}\right\| \leq 1$ and suppose

$$
\sum_{i=1}^{m}\left|\left\langle w, u_{i}\right\rangle\right|^{2}=18\|w\|^{2} \quad \forall w \in \mathbb{C}^{n}
$$

Then there is a partition $S_{1} \dot{\cup} S_{2}=[m]$ with

$$
\sum_{i \in S_{j}}\left|\left\langle w, u_{i}\right\rangle\right|^{2} \leq 16\|w\|^{2} \quad \forall w \in \mathbb{C}^{n} \forall j=1,2 .
$$

Problems:

- In general we do not have a tight frame.
- Don't need a partition, just a good subframe.

First results by Nitzan, Olevskii, Ulanovskii (2016):

Theorem

Let $1>\varepsilon>0$ and $u_{1}, \ldots, u_{m} \in \mathbb{C}^{n}$ be vectors with $\left\|u_{i}\right\|^{2} \leq \varepsilon$ and suppose

$$
\sum_{i=1}^{m}\left|\left\langle w, u_{i}\right\rangle\right|^{2}=\|w\|^{2} \quad \forall w \in \mathbb{C}^{n}
$$

Then there is a partition $S_{1} \cup \dot{\cup} S_{2}=[m]$ with

$$
\frac{1-5 \sqrt{\varepsilon}}{2}\|w\|^{2} \leq \sum_{i \in S_{j}}\left|\left\langle w, u_{i}\right\rangle\right|^{2} \leq \frac{1+5 \sqrt{\varepsilon}}{2}\|w\|^{2} \quad \forall w \in \mathbb{C}^{n} \forall j=1,2
$$

Corollary

Let $u_{1}, \ldots, u_{m} \in \mathbb{C}^{n}$ with $\left\|u_{i}\right\|^{2} \leq \varepsilon$ and

$$
\alpha\|w\|^{2} \leq \sum_{i=1}^{m}\left|\left\langle w, u_{i}\right\rangle\right|^{2} \leq \beta\|w\|^{2} \quad \forall w \in \mathbb{C}^{n}
$$

where $0<\varepsilon<\alpha \leq \beta$. Then there is a partition $S_{1} \dot{\cup} S_{2}=[m]$ with

$$
\frac{1-5 \sqrt{\varepsilon / \alpha}}{2} \cdot \alpha\|w\|^{2} \leq \sum_{i \in S_{j}}\left|\left\langle w, v_{i}\right\rangle\right|^{2} \leq \frac{1+5 \sqrt{\varepsilon / \alpha}}{2} \cdot \beta\|w\|^{2} \quad \forall w \in \mathbb{C}^{n} \forall j=1,2
$$

Operator $M w:=\sum_{i=1}^{m}\left\langle w, u_{i}\right\rangle u_{i}$, then $M^{-1 / 2} u_{i}$ tight frame.

Frames

Corollary

Let $u_{1}, \ldots, u_{m} \in \mathbb{C}^{n}$ with $\left\|u_{i}\right\|^{2} \leq \varepsilon$ and

$$
\alpha\|w\|^{2} \leq \sum_{i=1}^{m}\left|\left\langle w, u_{i}\right\rangle\right|^{2} \leq \beta\|w\|^{2} \quad \forall w \in \mathbb{C}^{n}
$$

where $0<\varepsilon<\alpha \leq \beta$. Then there is a partition $S_{1} \dot{\cup} S_{2}=[m]$ with

$$
\frac{1-5 \sqrt{\varepsilon / \alpha}}{2} \cdot \alpha\|w\|^{2} \leq \sum_{i \in S_{j}}\left|\left\langle w, v_{i}\right\rangle\right|^{2} \leq \frac{1+5 \sqrt{\varepsilon / \alpha}}{2} \cdot \beta\|w\|^{2} \quad \forall w \in \mathbb{C}^{n} \forall j=1,2
$$

- Operator $M w:=\sum_{i=1}^{m}\left\langle w, u_{i}\right\rangle u_{i}$, then $M^{-1 / 2} u_{i}$ tight frame.

Iterative application of the previous Corollary:

Theorem (Nitzan, Olevskii, Ulanovskii 2016)

Let $u_{1}, \ldots, u_{m} \in \mathbb{C}^{n}$ with $\left\|u_{i}\right\|^{2}=\frac{n}{m}$ for all i and

$$
\sum_{i=1}^{m}\left|\left\langle w, u_{i}\right\rangle\right|^{2}=\|w\|^{2} \quad \forall w \in \mathbb{C}^{n}
$$

Then there is a $J \subseteq[m]$ with

$$
c \cdot \frac{n}{m}\|w\|^{2} \leq \sum_{i \in J}\left|\left\langle w, u_{i}\right\rangle\right|^{2} \leq C \cdot \frac{n}{m}\|w\|^{2} \quad \forall w \in \mathbb{C}^{n}
$$

where $c \geq 25$ and $C \leq 3521$.

Theorem (Nitzan, Olevskii, Ulanovskii 2016)

There are constants $c, C>0$ such that: For every set $S \subseteq \mathbb{R}$ of finite measure there is a discrete set $\Lambda \subseteq \mathbb{R}$ so that $E(\Lambda)=\{\exp (i \lambda \cdot)\}_{\lambda \in \Lambda}$ is a frame in $L_{2}(S)$ with frame bounds $c|S|$ and $C|S|$ (where $|S|$ is the measure of S), that is

$$
c|S| \cdot\|h\|_{2}^{2} \leq \sum_{u \in E(\Lambda)}|\langle h, u\rangle|^{2} \leq C|S| \cdot\|h\|_{2}^{2}
$$

for all $h \in L_{2}(S)$.
Note: $c \geq 6 \cdot 10^{-4}$ and $C \leq 6 \cdot 10^{8}$.

Theorem (Nitzan, Olevskii, Ulanovskii 2016)

Let $u_{1}, \ldots, u_{m} \in \mathbb{C}^{n}$ with $\left\|u_{i}\right\|^{2}=\frac{n}{m}$ for all i and

$$
\sum_{i=1}^{m}\left|\left\langle w, u_{i}\right\rangle\right|^{2}=\|w\|^{2} \quad \forall w \in \mathbb{C}^{n}
$$

Then there is a $J \subseteq[m]$ with

$$
c \cdot \frac{n}{m}\|w\|^{2} \leq \sum_{i \in J}\left|\left\langle w, u_{i}\right\rangle\right|^{2} \leq C \cdot \frac{n}{m}\|w\|^{2} \quad \forall w \in \mathbb{C}^{n}
$$

where $c \geq 25$ and $C \leq 3521$.

Problems:

- Do not necessarily have vectors of a precise norm, just bounded norm.
- Do not necessaily start out with a tight frame.
- How to bound $\# J$?

Theorem (N., Schäfer, T. Ullrich / Limonova, Temlyakov 2020)

Let $k_{1}, k_{2}, k_{3}>0$ and $u_{1}, \ldots, u_{m} \in \mathbb{C}^{n}$ with $\left\|u_{i}\right\|^{2} \leq k_{1} \frac{n}{m}$ for all i and

$$
k_{2}\|w\|^{2} \leq \sum_{i=1}^{m}\left|\left\langle w, u_{i}\right\rangle\right|^{2} \leq k_{3}\|w\|^{2} \quad \forall w \in \mathbb{C}^{n}
$$

Then there is a $J \subseteq[m]$ of size $\# J \leq c_{1} n$ with

$$
c_{2} \cdot \frac{n}{m}\|w\|^{2} \leq \sum_{i \in J}\left|\left\langle w, u_{i}\right\rangle\right|^{2} \leq c_{3} \cdot \frac{n}{m}\|w\|^{2} \quad \forall w \in \mathbb{C}^{n}
$$

where c_{1}, c_{2}, c_{3} only depend on k_{1}, k_{2}, k_{3}.

- Constants c_{1}, c_{2}, c_{3} may be huge: For $k_{1}=k_{3}=2$ and $k_{2}=1 / 2$ have $c_{1}=6600, c_{2}=24, c_{3}=13200$.
- Better constants possible, see Martin Schäfer's talk.

Theorem (Limonova, Temlyakov 2020)

Let $\emptyset \neq \Omega \subseteq \mathbb{R}^{d}$ and μ a probability measure on Ω. Let $X \subseteq L_{2}(\Omega, \mu)$ be an n-dimensional subspace. There are universal constants C_{1}, C_{2}, C_{3} such that there are $\left\{\xi^{k}\right\}_{k=1}^{m} \subseteq \Omega$ with $m \leq C_{1} n$ and nonnegative weights $\left\{\lambda_{k}\right\}_{k=1}^{m}$ with

$$
C_{2}\|f\|_{L_{2}}^{2} \leq \sum_{k=1}^{m} \lambda_{k}\left|f\left(\xi^{k}\right)\right|^{2} \leq C_{3}\|f\|_{L_{2}}^{2} \quad \forall f \in X
$$

Corollary (Temlyakov 2020)

Sampling numbers \lesssim Kolmogorov numbers in L_{∞}

Theorem (Limonova, Temlyakov 2020)

Let $\emptyset \neq \Omega \subseteq \mathbb{R}^{d}$ and μ a probability measure on Ω. Let $X \subseteq L_{2}(\Omega, \mu)$ be an n-dimensional subspace. There are universal constants C_{1}, C_{2}, C_{3} such that there are $\left\{\xi^{k}\right\}_{k=1}^{m} \subseteq \Omega$ with $m \leq C_{1} n$ and nonnegative weights $\left\{\lambda_{k}\right\}_{k=1}^{m}$ with

$$
C_{2}\|f\|_{L_{2}}^{2} \leq \sum_{k=1}^{m} \lambda_{k}\left|f\left(\xi^{k}\right)\right|^{2} \leq C_{3}\|f\|_{L_{2}}^{2} \quad \forall f \in X
$$

Corollary (Temlyakov 2020)

Sampling numbers \lesssim Kolmogorov numbers in L_{∞}

Theorem (N., Schäfer, T. Ullrich 2020)

Let $H(K)$ be a separable reproducing kernel Hilbert space on $D \subseteq \mathbb{R}^{d}$ with positive semidefinite kernel $K: D \times D \rightarrow \mathbb{C}$ satisfying

$$
\int_{D} K(x, x) d \varrho(x)<\infty
$$

for some measure ϱ on D. Then $\operatorname{Id}_{K, \varrho}: H(K) \rightarrow L_{2}(D, \varrho)$ is a Hilbert-Schmidt embedding, the corresponding sequence of singular numbers $\left(\sigma_{k}\right)_{k=1}^{\infty}$ square-summable. For the sequence of sampling numbers

$$
g_{n}=\inf _{x^{1}, \ldots, x^{n} \in D} \inf _{\varphi: \mathbb{C}^{n} \rightarrow L_{2}} \sup _{\|f\|_{H(K)} \leq 1}\left\|f-\varphi\left(f\left(x^{1}\right), \ldots, f\left(x^{n}\right)\right)\right\|_{L_{2}(D, \varrho)}
$$

we have the bound

$$
g_{n}^{2} \leq C \frac{\log n}{n} \sum_{k \geq c n} \sigma_{k}^{2} \quad \forall n \geq 2
$$

where $C, c>0$ are universal constants.

Theorem (Dolbeault, Krieg, M. Ullrich 2022)

The setting as in the previous theorem, then even

$$
g_{n}^{2} \leq \frac{C}{n} \sum_{k \geq c n} \sigma_{k}^{2}
$$

matching the lower bound.

- Anderson. Restrictions and representations of states on C*-algebras. 1979
- Dolbeault, Krieg, M. Ullrich. A sharp upper bound for sampling numbers in $L_{2} .2022$
- Kadison, Singer. Extensions of pure states. 1959
- Limonova, Temlyakov. On sampling discretization in $L_{2} .2020$
- Marcus, Spielman, Srivastava. Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem. 2015
- Nagel, Schäfer, T. Ullrich. A New Upper Bound for Sampling Numbers. 2020
- Nitzan, Olevskif, Ulanovskii. Exponential frames for unbounded frames. 2016
- Temlyakov. On optimal recovery in $L_{2} .2020$
- Weaver. The Kadison-Singer Problem in discrepancy theory. 2004

