

The Connection Between the Kadison-Singer Problem and Frame Theory

Nicolas Nagel

October 2022

TECHNISCHE UNIVERSITÄT CHEMNITZ

October 2022 · Nicolas Nagel

Frames crucial for approximation theory.

- $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ complex Hilbert space, $\|\cdot\|$ its norm.
- Frame is a sequence $(f_i)_{i \in I}$ in \mathcal{H} with absolute constants $0 < c \leq C$ such that

$$c \|f\|^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le C \|f\|^2 \quad \forall f \in \mathcal{H}.$$

- Question: When does a frame have a "good" subframe? (subsampling)
- Application: Lower budget while keeping good approximation properties.
- Answer: *Weaver's* KS₂-conjecture.

- Frames crucial for approximation theory.
- $\blacktriangleright \ (\mathcal{H}, \langle \cdot, \cdot \rangle) \text{ complex Hilbert space, } \| \cdot \| \text{ its norm.}$
- Frame is a sequence $(f_i)_{i \in I}$ in \mathcal{H} with absolute constants $0 < c \leq C$ such that

$$c \|f\|^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le C \|f\|^2 \quad \forall f \in \mathcal{H}.$$

Question: When does a frame have a "good" subframe? (*subsampling*)
Application: Lower budget while keeping good approximation properties.
Answer: Weaver's KSp-conjecture

- Frames crucial for approximation theory.
- $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ complex Hilbert space, $\|\cdot\|$ its norm.
- Frame is a sequence $(f_i)_{i \in I}$ in \mathcal{H} with absolute constants $0 < c \leq C$ such that

$$c \|f\|^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le C \|f\|^2 \quad \forall f \in \mathcal{H}.$$

- Question: When does a frame have a "good" subframe? (subsampling)
- ► Application: Lower budget while keeping good approximation properties.
- ► Answer: Weaver's KS₂-conjecture.

- Frames crucial for approximation theory.
- $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ complex Hilbert space, $\|\cdot\|$ its norm.
- Frame is a sequence $(f_i)_{i \in I}$ in \mathcal{H} with absolute constants $0 < c \leq C$ such that

$$c \|f\|^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le C \|f\|^2 \quad \forall f \in \mathcal{H}.$$

- Question: When does a frame have a "good" subframe? (subsampling)
- ► Application: Lower budget while keeping good approximation properties.
- ► Answer: Weaver's KS₂-conjecture.

Interlude: Kadison-Singer problem.

Motivated by quantum mechanics.

- ▶ $\mathcal{H} = \ell_2(\mathbb{N})$ Hilbert space of complex, square-summable sequences.
- ▶ $\mathfrak{B} = \mathcal{L}(\mathcal{H})$ space of bounded, linear operators $\mathcal{H} \to \mathcal{H}$.
- $\mathfrak{D} \subseteq \mathfrak{B}$ space of *diagonal* operators.
- **State** a continuous, linear functional $\varphi : \mathfrak{D} \to \mathbb{C}$ with
 - (i) $\varphi(I) = 1$ (normalization);
 - (ii) $\varphi(P) \ge 0$ for all *positive* operators $P \in \mathfrak{D}$ (positivity).
- Set of all states S ⊆ D' in the dual of D convex and weak*-compact, thus S ⊆ D' the convex hull of its *extreme points*.
- Extreme points of S are called **pure states** (i.e. cannot be written as a proper convex combination of two other states).

- Motivated by quantum mechanics.
- ▶ $\mathcal{H} = \ell_2(\mathbb{N})$ Hilbert space of complex, square-summable sequences.
- ▶ $\mathfrak{B} = \mathcal{L}(\mathcal{H})$ space of bounded, linear operators $\mathcal{H} \to \mathcal{H}$.
- $\mathfrak{D} \subseteq \mathfrak{B}$ space of *diagonal* operators.
- **State** a continuous, linear functional $\varphi : \mathfrak{D} \to \mathbb{C}$ with

- (ii) $\varphi(P) \ge 0$ for all *positive* operators $P \in \mathfrak{D}$ (positivity).
- Set of all states S ⊆ D' in the dual of D convex and weak*-compact, thus S ⊆ D' the convex hull of its *extreme points*.
- Extreme points of S are called **pure states** (i.e. cannot be written as a proper convex combination of two other states).

- Motivated by quantum mechanics.
- ▶ $\mathcal{H} = \ell_2(\mathbb{N})$ Hilbert space of complex, square-summable sequences.
- ▶ $\mathfrak{B} = \mathcal{L}(\mathcal{H})$ space of bounded, linear operators $\mathcal{H} \to \mathcal{H}$.
- $\mathfrak{D} \subseteq \mathfrak{B}$ space of *diagonal* operators.
- State a continuous, linear functional $\varphi : \mathfrak{D} \to \mathbb{C}$ with

(ii) $\varphi(P) \ge 0$ for all *positive* operators $P \in \mathfrak{D}$ (positivity).

- Set of all states $S \subseteq \mathfrak{D}'$ in the dual of \mathfrak{D} convex and weak*-compact, thus $S \subseteq \mathfrak{D}'$ the convex hull of its *extreme points*.
- Extreme points of S are called **pure states** (i.e. cannot be written as a proper convex combination of two other states).

- Motivated by quantum mechanics.
- ▶ $\mathcal{H} = \ell_2(\mathbb{N})$ Hilbert space of complex, square-summable sequences.
- ▶ $\mathfrak{B} = \mathcal{L}(\mathcal{H})$ space of bounded, linear operators $\mathcal{H} \to \mathcal{H}$.
- $\mathfrak{D} \subseteq \mathfrak{B}$ space of *diagonal* operators.
- State a continuous, linear functional $\varphi : \mathfrak{D} \to \mathbb{C}$ with

- (ii) $\varphi(P) \ge 0$ for all *positive* operators $P \in \mathfrak{D}$ (positivity).
- Set of all states S ⊆ D' in the dual of D convex and weak*-compact, thus S ⊆ D' the convex hull of its *extreme points*.
- Extreme points of S are called **pure states** (i.e. cannot be written as a proper convex combination of two other states).

- Motivated by quantum mechanics.
- ▶ $\mathcal{H} = \ell_2(\mathbb{N})$ Hilbert space of complex, square-summable sequences.
- ▶ $\mathfrak{B} = \mathcal{L}(\mathcal{H})$ space of bounded, linear operators $\mathcal{H} \to \mathcal{H}$.
- $\mathfrak{D} \subseteq \mathfrak{B}$ space of *diagonal* operators.
- State a continuous, linear functional $\varphi : \mathfrak{D} \to \mathbb{C}$ with

- (ii) $\varphi(P) \ge 0$ for all *positive* operators $P \in \mathfrak{D}$ (positivity).
- Set of all states $S \subseteq \mathfrak{D}'$ in the dual of \mathfrak{D} convex and weak*-compact, thus $S \subseteq \mathfrak{D}'$ the convex hull of its *extreme points*.
- Extreme points of S are called **pure states** (i.e. cannot be written as a proper convex combination of two other states).

• Every state $\varphi : \mathfrak{D} \to \mathbb{C}$ can be extended to a state $\psi : \mathfrak{B} \to \mathbb{C}$ (restrict to entries on the main diagonal).

Kadison, Singer (1959): Is the extension of a pure state unique?

Theorem (Marcus, Spielman, Srivastava 2015; Weaver 2004; Anderson 1979)

YES!

- Every state φ : D → C can be extended to a state ψ : B → C (restrict to entries on the main diagonal).
- **Kadison, Singer (1959):** Is the extension of a pure state unique?

Theorem (Marcus, Spielman, Srivastava 2015; Weaver 2004; Anderson 1979)

YES!

- Every state $\varphi : \mathfrak{D} \to \mathbb{C}$ can be extended to a state $\psi : \mathfrak{B} \to \mathbb{C}$ (restrict to entries on the main diagonal).
- **Kadison, Singer (1959):** Is the extension of a pure state unique?

Theorem (Marcus, Spielman, Srivastava 2015; Weaver 2004; Anderson 1979)

YES!

- Every state $\varphi : \mathfrak{D} \to \mathbb{C}$ can be extended to a state $\psi : \mathfrak{B} \to \mathbb{C}$ (restrict to entries on the main diagonal).
- **Kadison, Singer (1959):** Is the extension of a pure state unique?

Theorem (Marcus, Spielman, Srivastava 2015; Weaver 2004; Anderson 1979)

YES!

 $\begin{array}{l} \mathsf{MSS} \Rightarrow \mathsf{Anderson} \Rightarrow \mathsf{Kadison}\text{-}\mathsf{Singer} \\ \mathsf{MSS} \Rightarrow \mathsf{Weaver} \Rightarrow \mathsf{Subsampling} \end{array}$

Overview of the proof of the Kadison-Singer problem.

Theorem (Marcus, Spielman, Srivastava 2015)

Let $\varepsilon>0$ and $v_1,...,v_m\in\mathbb{C}^n$ be independent random vectors with finite support fulfilling

$$\sum_{i=1}^{m} \mathbb{E} v_i v_i^* = I$$

and $\mathbb{E} \|v_i\|^2 \leq \varepsilon$ for all *i*. Then

$$\mathbb{P}\left(\left\|\sum_{i=1}^{m} v_i v_i^*\right\| \le (1+\sqrt{\varepsilon})^2\right) > 0.$$

Algebraically: there is an assignment fulfilling the stated bound.

Theorem (Marcus, Spielman, Srivastava 2015)

Let $\varepsilon>0$ and $v_1,...,v_m\in\mathbb{C}^n$ be independent random vectors with finite support fulfilling

$$\sum_{i=1}^{m} \mathbb{E} v_i v_i^* = I$$

and $\mathbb{E} \|v_i\|^2 \leq \varepsilon$ for all *i*. Then

$$\mathbb{P}\left(\left\|\sum_{i=1}^{m} v_i v_i^*\right\| \le (1+\sqrt{\varepsilon})^2\right) > 0.$$

► Algebraically: there is an assignment fulfilling the stated bound.

Corollary

Let $r \in \mathbb{N}$ and $u_1, ..., u_m \in \mathbb{C}^n$ vectors fulfilling

$$\sum_{i=1}^{m} u_i u_i^* = I$$

and $\|u_i\|^2 \leq \delta$ for all i. Then there exists a partition $\{S_1,...,S_r\}$ of [m] with

$$\left\|\sum_{i\in S_j} u_i u_i^*\right\| \le \left(\frac{1}{\sqrt{r}} + \sqrt{\delta}\right)^2 \quad \forall j = 1, ..., r.$$

Apply the Theorem to the uniformly random vectors $v_i = \sqrt{r} [\mathbf{0} \dots u_i \dots \mathbf{0}]^\top \in \mathbb{C}^{rn}$ (randomness in the position of u_i).

• Get partition from the position of the u_i in the assignment of v_i .

Corollary

Let $r \in \mathbb{N}$ and $u_1, ..., u_m \in \mathbb{C}^n$ vectors fulfilling

$$\sum_{i=1}^{m} u_i u_i^* = I$$

and $\|u_i\|^2 \leq \delta$ for all i. Then there exists a partition $\{S_1,...,S_r\}$ of [m] with

$$\left\|\sum_{i\in S_j} u_i u_i^*\right\| \le \left(\frac{1}{\sqrt{r}} + \sqrt{\delta}\right)^2 \quad \forall j = 1, ..., r.$$

Apply the Theorem to the uniformly random vectors $v_i = \sqrt{r} [\mathbf{0} \dots u_i \dots \mathbf{0}]^\top \in \mathbb{C}^{rn}$ (randomness in the position of u_i).

• Get partition from the position of the u_i in the assignment of v_i .

A matrix $T \in \mathbb{C}^{n \times n}$ is (r, ε) -pavable if there are coordinate projections $P_1, ..., P_r \in \{0, 1\}^{n \times n}$ with $\sum_{i=1}^r P_i = I$ and $\|P_i T P_i\| \le \varepsilon \|T\|$ for all i.

Theorem (Anderson's Paving Conjecture)

For every $0 < \varepsilon < 1$ there is an $r = r(\varepsilon) \in \mathbb{N}$, so that any Hermitian $T \in \mathbb{C}^{n \times n}$ with zero diagonal is (r, ε) -pavable.

- \blacktriangleright The concrete projections can depend on T, but their number can be bounded by ε alone.
- Uses the previous Corollary and even yields the bound $r \leq 136/\varepsilon^4$.
- ▶ Optimal behaviour of r(ε) not known, but have r(ε) ≥ ε⁻² (conference matrices).

A matrix $T \in \mathbb{C}^{n \times n}$ is (r, ε) -pavable if there are coordinate projections $P_1, ..., P_r \in \{0, 1\}^{n \times n}$ with $\sum_{i=1}^r P_i = I$ and $\|P_i T P_i\| \le \varepsilon \|T\|$ for all i.

Theorem (Anderson's Paving Conjecture)

For every $0 < \varepsilon < 1$ there is an $r = r(\varepsilon) \in \mathbb{N}$, so that any Hermitian $T \in \mathbb{C}^{n \times n}$ with zero diagonal is (r, ε) -pavable.

- The concrete projections can depend on T, but their number can be bounded by ε alone.
- Uses the previous Corollary and even yields the bound $r \leq 136/\varepsilon^4$.
- ▶ Optimal behaviour of r(ε) not known, but have r(ε) ≥ ε⁻² (conference matrices).

A matrix $T \in \mathbb{C}^{n \times n}$ is (r, ε) -pavable if there are coordinate projections $P_1, ..., P_r \in \{0, 1\}^{n \times n}$ with $\sum_{i=1}^r P_i = I$ and $\|P_i T P_i\| \le \varepsilon \|T\|$ for all i.

Theorem (Anderson's Paving Conjecture)

For every $0 < \varepsilon < 1$ there is an $r = r(\varepsilon) \in \mathbb{N}$, so that any Hermitian $T \in \mathbb{C}^{n \times n}$ with zero diagonal is (r, ε) -pavable.

- \blacktriangleright The concrete projections can depend on T, but their number can be bounded by ε alone.
- Uses the previous Corollary and even yields the bound $r \leq 136/\varepsilon^4$.
- ▶ Optimal behaviour of $r(\varepsilon)$ not known, but have $r(\varepsilon) \ge \varepsilon^{-2}$ (conference matrices).

- Kadison-Singer follows from an infinite dimensional analogue of Anderson's paving conjecture.
- Proof via compactness (Arzelà-Ascoli).

Corollary

Let T be a continuous, selfadjoint operator on $\mathcal{H} = \ell_2$ with zero diagonal. Then T can be (r, ε) -paved with $r \leq 136/\varepsilon^4$.

 Kadison-Singer follows from an infinite dimensional analogue of Anderson's paving conjecture.

Proof via compactness (Arzelà-Ascoli).

Corollary

Let T be a continuous, selfadjoint operator on $\mathcal{H} = \ell_2$ with zero diagonal. Then T can be (r, ε) -paved with $r \leq 136/\varepsilon^4$.

- ▶ Suffices to show: If Q is selfadjoint with zero diagonal then $\psi(Q)=0.$ Let $\varepsilon>0$ arbitrary.
- ▶ By Anderson: Coordinate projections $P_1, ..., P_r$ $(r \le 136/\varepsilon^4)$ with $I = \sum_{i=1}^r P_i$ and $||P_iQP_i|| \le \varepsilon ||Q||$ for all *i*.
- Fact: P coordinate projection, then $\varphi(P) \in \{0,1\}$ (need pureness of φ).
- Thus: $\psi(P_i) = \varphi(P_i) = \delta_{i,i_0}$ for some i_0 (need normalization).
- $\psi(Q) = \sum_{i=1}^{r} \sum_{j=1}^{r} \psi(P_i Q P_j) = \psi(P_{i_0} Q P_{i_0}).$
- ► $|\psi(Q)| = |\psi(P_{i_0}QP_{i_0})| \le ||\psi|| \cdot ||P_{i_0}QP_{i_0}|| \le ||\psi|| \cdot \varepsilon ||Q||.$

- ▶ Suffices to show: If Q is selfadjoint with zero diagonal then $\psi(Q)=0.$ Let $\varepsilon>0$ arbitrary.
- ▶ By Anderson: Coordinate projections $P_1, ..., P_r$ $(r \le 136/\varepsilon^4)$ with $I = \sum_{i=1}^r P_i$ and $||P_iQP_i|| \le \varepsilon ||Q||$ for all *i*.
- Fact: P coordinate projection, then $\varphi(P) \in \{0,1\}$ (need pureness of φ).
- Thus: $\psi(P_i) = \varphi(P_i) = \delta_{i,i_0}$ for some i_0 (need normalization).
- $\psi(Q) = \sum_{i=1}^{r} \sum_{j=1}^{r} \psi(P_i Q P_j) = \psi(P_{i_0} Q P_{i_0}).$
- $|\psi(Q)| = |\psi(P_{i_0}QP_{i_0})| \le \|\psi\| \cdot \|P_{i_0}QP_{i_0}\| \le \|\psi\| \cdot \varepsilon\|Q\|.$

- ▶ Suffices to show: If Q is selfadjoint with zero diagonal then $\psi(Q)=0.$ Let $\varepsilon>0$ arbitrary.
- ▶ By Anderson: Coordinate projections $P_1, ..., P_r$ $(r \le 136/\varepsilon^4)$ with $I = \sum_{i=1}^r P_i$ and $||P_iQP_i|| \le \varepsilon ||Q||$ for all *i*.
- Fact: P coordinate projection, then $\varphi(P) \in \{0,1\}$ (need pureness of φ).
- ▶ Thus: $\psi(P_i) = \varphi(P_i) = \delta_{i,i_0}$ for some i_0 (need normalization).
- $\psi(Q) = \sum_{i=1}^{r} \sum_{j=1}^{r} \psi(P_i Q P_j) = \psi(P_{i_0} Q P_{i_0}).$
- $|\psi(Q)| = |\psi(P_{i_0}QP_{i_0})| \le ||\psi|| \cdot ||P_{i_0}QP_{i_0}|| \le ||\psi|| \cdot \varepsilon ||Q||.$

- ▶ Suffices to show: If Q is selfadjoint with zero diagonal then $\psi(Q) = 0$. Let $\varepsilon > 0$ arbitrary.
- ▶ By Anderson: Coordinate projections $P_1, ..., P_r$ $(r \le 136/\varepsilon^4)$ with $I = \sum_{i=1}^r P_i$ and $||P_iQP_i|| \le \varepsilon ||Q||$ for all *i*.
- Fact: P coordinate projection, then $\varphi(P) \in \{0,1\}$ (need pureness of φ).
- ▶ Thus: $\psi(P_i) = \varphi(P_i) = \delta_{i,i_0}$ for some i_0 (need normalization).
- ▶ $\psi(Q) = \sum_{i=1}^{r} \sum_{j=1}^{r} \psi(P_i Q P_j) = \psi(P_{i_0} Q P_{i_0}).$ ▶ $|\psi(Q)| = |\psi(P_{i_0} Q P_{i_0})| \le ||\psi|| \cdot ||P_{i_0} Q P_{i_0}|| \le ||\psi|| \cdot \varepsilon ||Q||.$

The extension of a pure state $\varphi : \mathfrak{D} \to \mathbb{C}$ to a state $\psi : \mathfrak{B} \to \mathbb{C}$ is unique.

- ▶ Suffices to show: If Q is selfadjoint with zero diagonal then $\psi(Q) = 0$. Let $\varepsilon > 0$ arbitrary.
- ▶ By Anderson: Coordinate projections $P_1, ..., P_r$ $(r \le 136/\varepsilon^4)$ with $I = \sum_{i=1}^r P_i$ and $||P_iQP_i|| \le \varepsilon ||Q||$ for all *i*.
- Fact: P coordinate projection, then $\varphi(P) \in \{0,1\}$ (need pureness of φ).
- ▶ Thus: $\psi(P_i) = \varphi(P_i) = \delta_{i,i_0}$ for some i_0 (need normalization).

•
$$\psi(Q) = \sum_{i=1}^{r} \sum_{j=1}^{r} \psi(P_i Q P_j) = \psi(P_{i_0} Q P_{i_0}).$$

 $|\psi(Q)| = |\psi(P_{i_0}QP_{i_0})| \le ||\psi|| \cdot ||P_{i_0}QP_{i_0}|| \le ||\psi|| \cdot \varepsilon ||Q||.$

- ▶ Suffices to show: If Q is selfadjoint with zero diagonal then $\psi(Q) = 0$. Let $\varepsilon > 0$ arbitrary.
- ▶ By Anderson: Coordinate projections $P_1, ..., P_r$ $(r \le 136/\varepsilon^4)$ with $I = \sum_{i=1}^r P_i$ and $||P_iQP_i|| \le \varepsilon ||Q||$ for all *i*.
- Fact: P coordinate projection, then $\varphi(P) \in \{0,1\}$ (need pureness of φ).
- ▶ Thus: $\psi(P_i) = \varphi(P_i) = \delta_{i,i_0}$ for some i_0 (need normalization).
- $\psi(Q) = \sum_{i=1}^{r} \sum_{j=1}^{r} \psi(P_i Q P_j) = \psi(P_{i_0} Q P_{i_0}).$
- ► $|\psi(Q)| = |\psi(P_{i_0}QP_{i_0})| \le ||\psi|| \cdot ||P_{i_0}QP_{i_0}|| \le ||\psi|| \cdot \varepsilon ||Q||.$

Application of Weaver's Conjecture to Frames.

Corollary

Let $r \in \mathbb{N}$ and $u_1, ..., u_m \in \mathbb{C}^n$ vectors fulfilling

$$\sum_{i=1}^{m} u_i u_i^* = I$$

and $||u_i||^2 \leq \delta$ for all i. Then there exists a partition $\{S_1,...,S_r\}$ of [m] with

$$\left\|\sum_{i\in S_j} u_i u_i^*\right\| \le \left(\frac{1}{\sqrt{r}} + \sqrt{\delta}\right)^2 \quad \forall j = 1, ..., r$$

October 2022 · Nicolas Nagel

Theorem (Weaver's *KS*₂-conjecture)

Let $u_1, ..., u_m \in \mathbb{C}^n$ be vectors with $||u_i|| \leq 1$ and suppose

$$\sum_{i=1}^{m} |\langle w, u_i \rangle|^2 = 18 ||w||^2 \quad \forall w \in \mathbb{C}^n.$$

Then there is a partition $S_1 \dot{\cup} S_2 = [m]$ with

$$\sum_{i \in S_j} |\langle w, u_i \rangle|^2 \le 16 ||w||^2 \quad \forall w \in \mathbb{C}^n \forall j = 1, 2$$

Problems:

- In general we do not have a *tight* frame.
- Don't need a partition, just a good subframe.

First results by Nitzan, Olevskii, Ulanovskii (2016):

Theorem

Let $1 > \varepsilon > 0$ and $u_1, ..., u_m \in \mathbb{C}^n$ be vectors with $\|u_i\|^2 \le \varepsilon$ and suppose

$$\sum_{i=1}^{m} |\langle w, u_i \rangle|^2 = ||w||^2 \quad \forall w \in \mathbb{C}^n.$$

Then there is a partition $S_1 \dot{\cup} S_2 = [m]$ with

$$\frac{1-5\sqrt{\varepsilon}}{2}\|w\|^2 \le \sum_{i\in S_j} |\langle w, u_i\rangle|^2 \le \frac{1+5\sqrt{\varepsilon}}{2}\|w\|^2 \quad \forall w \in \mathbb{C}^n \forall j=1,2.$$

October 2022 · Nicolas Nagel

Corollary

Let $u_1, ..., u_m \in \mathbb{C}^n$ with $||u_i||^2 \leq \varepsilon$ and

$$\alpha \|w\|^2 \le \sum_{i=1}^m |\langle w, u_i \rangle|^2 \le \beta \|w\|^2 \quad \forall w \in \mathbb{C}^n,$$

where $0 < \varepsilon < \alpha \leq \beta$. Then there is a partition $S_1 \dot{\cup} S_2 = [m]$ with

$$\frac{1-5\sqrt{\varepsilon/\alpha}}{2} \cdot \alpha \|w\|^2 \leq \sum_{i \in S_j} |\langle w, v_i \rangle|^2 \leq \frac{1+5\sqrt{\varepsilon/\alpha}}{2} \cdot \beta \|w\|^2 \quad \forall w \in \mathbb{C}^n \forall j = 1, 2.$$

• Operator $Mw := \sum_{i=1}^{m} \langle w, u_i \rangle u_i$, then $M^{-1/2}u_i$ tight frame.

October 2022 · Nicolas Nagel

http://www.tu-chemnitz.de/

Corollary

Let $u_1, ..., u_m \in \mathbb{C}^n$ with $||u_i||^2 \leq \varepsilon$ and

$$\alpha \|w\|^2 \le \sum_{i=1}^m |\langle w, u_i \rangle|^2 \le \beta \|w\|^2 \quad \forall w \in \mathbb{C}^n,$$

where $0 < \varepsilon < \alpha \leq \beta$. Then there is a partition $S_1 \dot{\cup} S_2 = [m]$ with

$$\frac{1-5\sqrt{\varepsilon/\alpha}}{2} \cdot \alpha \|w\|^2 \leq \sum_{i \in S_j} |\langle w, v_i \rangle|^2 \leq \frac{1+5\sqrt{\varepsilon/\alpha}}{2} \cdot \beta \|w\|^2 \quad \forall w \in \mathbb{C}^n \forall j = 1, 2.$$

• Operator $Mw := \sum_{i=1}^{m} \langle w, u_i \rangle u_i$, then $M^{-1/2}u_i$ tight frame.

October 2022 · Nicolas Nagel

Iterative application of the previous Corollary:

Theorem (Nitzan, Olevskii, Ulanovskii 2016)

Let $u_1,...,u_m\in\mathbb{C}^n$ with $\|u_i\|^2=rac{n}{m}$ for all i and

$$\sum_{i=1}^{m} |\langle w, u_i \rangle|^2 = ||w||^2 \quad \forall w \in \mathbb{C}^n$$

Then there is a $J \subseteq [m]$ with

$$c \cdot \frac{n}{m} \|w\|^2 \le \sum_{i \in J} |\langle w, u_i \rangle|^2 \le C \cdot \frac{n}{m} \|w\|^2 \quad \forall w \in \mathbb{C}^n,$$

where $c \geq 25$ and $C \leq 3521$.

Theorem (Nitzan, Olevskii, Ulanovskii 2016)

There are constants c, C > 0 such that: For every set $S \subseteq \mathbb{R}$ of finite measure there is a discrete set $\Lambda \subseteq \mathbb{R}$ so that $E(\Lambda) = \{\exp(i\lambda \cdot)\}_{\lambda \in \Lambda}$ is a frame in $L_2(S)$ with frame bounds c|S| and C|S| (where |S| is the measure of S), that is

$$c|S|\cdot \|h\|_2^2 \leq \sum_{u\in E(\Lambda)} |\langle h,u\rangle|^2 \leq C|S|\cdot \|h\|_2^2$$

for all $h \in L_2(S)$.

Note: $c \ge 6 \cdot 10^{-4}$ and $C \le 6 \cdot 10^8$.

Theorem (Nitzan, Olevskii, Ulanovskii 2016)

Let
$$u_1,...,u_m\in\mathbb{C}^n$$
 with $\|u_i\|^2=\frac{n}{m}$ for all i and

$$\sum_{i=1}^{m} |\langle w, u_i \rangle|^2 = ||w||^2 \quad \forall w \in \mathbb{C}^n$$

Then there is a $J\subseteq [m]$ with

$$c \cdot \frac{n}{m} \|w\|^2 \le \sum_{i \in J} |\langle w, u_i \rangle|^2 \le C \cdot \frac{n}{m} \|w\|^2 \quad \forall w \in \mathbb{C}^n,$$

where $c \geq 25$ and $C \leq 3521$.

Problems:

- ▶ Do not necessarily have vectors of a precise norm, just bounded norm.
- Do not necessaily start out with a tight frame.
- How to bound #J?

Theorem (N., Schäfer, T. Ullrich / Limonova, Temlyakov 2020)

Let $k_1,k_2,k_3>0$ and $u_1,...,u_m\in\mathbb{C}^n$ with $\|u_i\|^2\leq k_1\frac{n}{m}$ for all i and

$$k_2 \|w\|^2 \le \sum_{i=1}^m |\langle w, u_i \rangle|^2 \le k_3 \|w\|^2 \quad \forall w \in \mathbb{C}^n.$$

Then there is a $J \subseteq [m]$ of size $\#J \leq c_1 n$ with

$$c_2 \cdot \frac{n}{m} \|w\|^2 \le \sum_{i \in J} |\langle w, u_i \rangle|^2 \le c_3 \cdot \frac{n}{m} \|w\|^2 \quad \forall w \in \mathbb{C}^n,$$

where c_1, c_2, c_3 only depend on k_1, k_2, k_3 .

- Constants c_1, c_2, c_3 may be huge: For $k_1 = k_3 = 2$ and $k_2 = 1/2$ have $c_1 = 6600, c_2 = 24, c_3 = 13200$.
- Better constants possible, see Martin Schäfer's talk.

Theorem (Limonova, Temlyakov 2020)

Let $\emptyset \neq \Omega \subseteq \mathbb{R}^d$ and μ a probability measure on Ω . Let $X \subseteq L_2(\Omega, \mu)$ be an *n*-dimensional subspace. There are universal constants C_1, C_2, C_3 such that there are $\{\xi^k\}_{k=1}^m \subseteq \Omega$ with $m \leq C_1 n$ and nonnegative weights $\{\lambda_k\}_{k=1}^m$ with

$$C_2 \|f\|_{L_2}^2 \le \sum_{k=1}^m \lambda_k |f(\xi^k)|^2 \le C_3 \|f\|_{L_2}^2 \quad \forall f \in X.$$

Corollary (Temlyakov 2020)

Sampling numbers \lesssim Kolmogorov numbers in L_∞

October 2022 · Nicolas Nagel

http://www.tu-chemnitz.de/

Theorem (Limonova, Temlyakov 2020)

Let $\emptyset \neq \Omega \subseteq \mathbb{R}^d$ and μ a probability measure on Ω . Let $X \subseteq L_2(\Omega, \mu)$ be an *n*-dimensional subspace. There are universal constants C_1, C_2, C_3 such that there are $\{\xi^k\}_{k=1}^m \subseteq \Omega$ with $m \leq C_1 n$ and nonnegative weights $\{\lambda_k\}_{k=1}^m$ with

$$C_2 \|f\|_{L_2}^2 \le \sum_{k=1}^m \lambda_k |f(\xi^k)|^2 \le C_3 \|f\|_{L_2}^2 \quad \forall f \in X.$$

Corollary (Temlyakov 2020)

Sampling numbers \lesssim Kolmogorov numbers in L_∞

October 2022 · Nicolas Nagel

Theorem (N., Schäfer, T. Ullrich 2020)

Let H(K) be a separable reproducing kernel Hilbert space on $D \subseteq \mathbb{R}^d$ with positive semidefinite kernel $K : D \times D \to \mathbb{C}$ satisfying

$$\int_D K(x,x)d\varrho(x) < \infty$$

for some measure ϱ on D. Then $\mathrm{Id}_{K,\varrho} : H(K) \to L_2(D,\varrho)$ is a Hilbert-Schmidt embedding, the corresponding sequence of singular numbers $(\sigma_k)_{k=1}^{\infty}$ square-summable. For the sequence of sampling numbers

$$q_n = \inf_{x^1,...,x^n \in D} \inf_{\varphi:\mathbb{C}^n \to L_2} \sup_{\|f\|_{H(K)} \le 1} \|f - \varphi(f(x^1),...,f(x^n))\|_{L_2(D,\varrho)}$$

we have the bound

$$g_n^2 \le C \frac{\log n}{n} \sum_{k \ge cn} \sigma_k^2 \quad \forall n \ge 2,$$

where C, c > 0 are universal constants.

October 2022 · Nicolas Nagel

Theorem (Dolbeault, Krieg, M. Ullrich 2022)

The setting as in the previous theorem, then even

$$g_n^2 \le \frac{C}{n} \sum_{k \ge cn} \sigma_k^2,$$

matching the lower bound.

- ANDERSON. Restrictions and representations of states on C*-algebras. 1979
- DOLBEAULT, KRIEG, M. ULLRICH. A sharp upper bound for sampling numbers in L₂. 2022
- ▶ KADISON, SINGER. Extensions of pure states. 1959
- ▶ LIMONOVA, TEMLYAKOV. On sampling discretization in *L*₂. 2020
- MARCUS, SPIELMAN, SRIVASTAVA. Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem. 2015
- ▶ NAGEL, SCHÄFER, T. ULLRICH. A New Upper Bound for Sampling Numbers. 2020
- NITZAN, OLEVSKII, ULANOVSKII. Exponential frames for unbounded frames. 2016
- TEMLYAKOV. On optimal recovery in L_2 . 2020
- ▶ WEAVER. The Kadison-Singer Problem in discrepancy theory. 2004

October 2022 · Nicolas Nagel

The End